* Changed database implementation. Removed static objects. * Fix Logs * Fix 40 errors from checkstyle plugin run. 139 left)) * Fix CacheStore errors from checkstyle plugin 107 left * Fix last errors in checkstyle. * Fix sonar issues * Fix issues in VALIDATE phase * Fix Bug with mongo connection. Used "Try with resources" * Add test * Added docker-compose for mongo db. MongoDb db work fixed. * Provided missing tests * Comments to start Application with mongo. * Fixes according PR comments. Mainly Readme edits. * Remove duplicated imports
346 lines
12 KiB
Markdown
346 lines
12 KiB
Markdown
---
|
|
layout: pattern
|
|
title: Caching
|
|
folder: caching
|
|
permalink: /patterns/caching/
|
|
categories: Behavioral
|
|
language: en
|
|
tags:
|
|
- Performance
|
|
- Cloud distributed
|
|
---
|
|
|
|
## Intent
|
|
|
|
The caching pattern avoids expensive re-acquisition of resources by not releasing them immediately
|
|
after use. The resources retain their identity, are kept in some fast-access storage, and are
|
|
re-used to avoid having to acquire them again.
|
|
|
|
## Explanation
|
|
|
|
Real world example
|
|
|
|
> A team is working on a website that provides new homes for abandoned cats. People can post their
|
|
> cats on the website after registering, but all the new posts require approval from one of the
|
|
> site moderators. The user accounts of the site moderators contain a specific flag and the data
|
|
> is stored in a MongoDB database. Checking for the moderator flag each time a post is viewed
|
|
> becomes expensive and it's a good idea to utilize caching here.
|
|
|
|
In plain words
|
|
|
|
> Caching pattern keeps frequently needed data in fast-access storage to improve performance.
|
|
|
|
Wikipedia says:
|
|
|
|
> In computing, a cache is a hardware or software component that stores data so that future
|
|
> requests for that data can be served faster; the data stored in a cache might be the result of
|
|
> an earlier computation or a copy of data stored elsewhere. A cache hit occurs when the requested
|
|
> data can be found in a cache, while a cache miss occurs when it cannot. Cache hits are served by
|
|
> reading data from the cache, which is faster than recomputing a result or reading from a slower
|
|
> data store; thus, the more requests that can be served from the cache, the faster the system
|
|
> performs.
|
|
|
|
**Programmatic Example**
|
|
|
|
Let's first look at the data layer of our application. The interesting classes are `UserAccount`
|
|
which is a simple Java object containing the user account details, and `DbManager` interface which handles
|
|
reading and writing of these objects to/from database.
|
|
|
|
```java
|
|
@Data
|
|
@AllArgsConstructor
|
|
@ToString
|
|
@EqualsAndHashCode
|
|
public class UserAccount {
|
|
private String userId;
|
|
private String userName;
|
|
private String additionalInfo;
|
|
}
|
|
|
|
public interface DbManager {
|
|
|
|
void connect();
|
|
void disconnect();
|
|
|
|
UserAccount readFromDb(String userId);
|
|
UserAccount writeToDb(UserAccount userAccount);
|
|
UserAccount updateDb(UserAccount userAccount);
|
|
UserAccount upsertDb(UserAccount userAccount);
|
|
}
|
|
```
|
|
|
|
In the example, we are demonstrating various different caching policies
|
|
|
|
* Write-through writes data to the cache and DB in a single transaction
|
|
* Write-around writes data immediately into the DB instead of the cache
|
|
* Write-behind writes data into the cache initially whilst the data is only written into the DB
|
|
when the cache is full
|
|
* Cache-aside pushes the responsibility of keeping the data synchronized in both data sources to
|
|
the application itself
|
|
* Read-through strategy is also included in the aforementioned strategies and it returns data from
|
|
the cache to the caller if it exists, otherwise queries from DB and stores it into the cache for
|
|
future use.
|
|
|
|
The cache implementation in `LruCache` is a hash table accompanied by a doubly
|
|
linked-list. The linked-list helps in capturing and maintaining the LRU data in the cache. When
|
|
data is queried (from the cache), added (to the cache), or updated, the data is moved to the front
|
|
of the list to depict itself as the most-recently-used data. The LRU data is always at the end of
|
|
the list.
|
|
|
|
```java
|
|
@Slf4j
|
|
public class LruCache {
|
|
|
|
static class Node {
|
|
String userId;
|
|
UserAccount userAccount;
|
|
Node previous;
|
|
Node next;
|
|
|
|
public Node(String userId, UserAccount userAccount) {
|
|
this.userId = userId;
|
|
this.userAccount = userAccount;
|
|
}
|
|
}
|
|
|
|
/* ... omitted details ... */
|
|
|
|
public LruCache(int capacity) {
|
|
this.capacity = capacity;
|
|
}
|
|
|
|
public UserAccount get(String userId) {
|
|
if (cache.containsKey(userId)) {
|
|
var node = cache.get(userId);
|
|
remove(node);
|
|
setHead(node);
|
|
return node.userAccount;
|
|
}
|
|
return null;
|
|
}
|
|
|
|
public void set(String userId, UserAccount userAccount) {
|
|
if (cache.containsKey(userId)) {
|
|
var old = cache.get(userId);
|
|
old.userAccount = userAccount;
|
|
remove(old);
|
|
setHead(old);
|
|
} else {
|
|
var newNode = new Node(userId, userAccount);
|
|
if (cache.size() >= capacity) {
|
|
LOGGER.info("# Cache is FULL! Removing {} from cache...", end.userId);
|
|
cache.remove(end.userId); // remove LRU data from cache.
|
|
remove(end);
|
|
setHead(newNode);
|
|
} else {
|
|
setHead(newNode);
|
|
}
|
|
cache.put(userId, newNode);
|
|
}
|
|
}
|
|
|
|
public boolean contains(String userId) {
|
|
return cache.containsKey(userId);
|
|
}
|
|
|
|
public void remove(Node node) { /* ... */ }
|
|
public void setHead(Node node) { /* ... */ }
|
|
public void invalidate(String userId) { /* ... */ }
|
|
public boolean isFull() { /* ... */ }
|
|
public UserAccount getLruData() { /* ... */ }
|
|
public void clear() { /* ... */ }
|
|
public List<UserAccount> getCacheDataInListForm() { /* ... */ }
|
|
public void setCapacity(int newCapacity) { /* ... */ }
|
|
}
|
|
```
|
|
|
|
The next layer we are going to look at is `CacheStore` which implements the different caching
|
|
strategies.
|
|
|
|
```java
|
|
@Slf4j
|
|
public class CacheStore {
|
|
|
|
private static final int CAPACITY = 3;
|
|
private static LruCache cache;
|
|
private final DbManager dbManager;
|
|
|
|
/* ... details omitted ... */
|
|
|
|
public UserAccount readThrough(final String userId) {
|
|
if (cache.contains(userId)) {
|
|
LOGGER.info("# Found in Cache!");
|
|
return cache.get(userId);
|
|
}
|
|
LOGGER.info("# Not found in cache! Go to DB!!");
|
|
UserAccount userAccount = dbManager.readFromDb(userId);
|
|
cache.set(userId, userAccount);
|
|
return userAccount;
|
|
}
|
|
|
|
public void writeThrough(final UserAccount userAccount) {
|
|
if (cache.contains(userAccount.getUserId())) {
|
|
dbManager.updateDb(userAccount);
|
|
} else {
|
|
dbManager.writeToDb(userAccount);
|
|
}
|
|
cache.set(userAccount.getUserId(), userAccount);
|
|
}
|
|
|
|
public void writeAround(final UserAccount userAccount) {
|
|
if (cache.contains(userAccount.getUserId())) {
|
|
dbManager.updateDb(userAccount);
|
|
// Cache data has been updated -- remove older
|
|
cache.invalidate(userAccount.getUserId());
|
|
// version from cache.
|
|
} else {
|
|
dbManager.writeToDb(userAccount);
|
|
}
|
|
}
|
|
|
|
public static void clearCache() {
|
|
if (cache != null) {
|
|
cache.clear();
|
|
}
|
|
}
|
|
|
|
public static void flushCache() {
|
|
LOGGER.info("# flushCache...");
|
|
Optional.ofNullable(cache)
|
|
.map(LruCache::getCacheDataInListForm)
|
|
.orElse(List.of())
|
|
.forEach(DbManager::updateDb);
|
|
}
|
|
|
|
/* ... omitted the implementation of other caching strategies ... */
|
|
|
|
}
|
|
```
|
|
|
|
`AppManager` helps to bridge the gap in communication between the main class and the application's
|
|
back-end. DB connection is initialized through this class. The chosen caching strategy/policy is
|
|
also initialized here. Before the cache can be used, the size of the cache has to be set. Depending
|
|
on the chosen caching policy, `AppManager` will call the appropriate function in the `CacheStore`
|
|
class.
|
|
|
|
```java
|
|
@Slf4j
|
|
public final class AppManager {
|
|
|
|
private static CachingPolicy cachingPolicy;
|
|
private final DbManager dbManager;
|
|
private final CacheStore cacheStore;
|
|
|
|
private AppManager() {
|
|
}
|
|
|
|
public void initDb() { /* ... */ }
|
|
|
|
public static void initCachingPolicy(CachingPolicy policy) { /* ... */ }
|
|
|
|
public static void initCacheCapacity(int capacity) { /* ... */ }
|
|
|
|
public UserAccount find(final String userId) {
|
|
LOGGER.info("Trying to find {} in cache", userId);
|
|
if (cachingPolicy == CachingPolicy.THROUGH
|
|
|| cachingPolicy == CachingPolicy.AROUND) {
|
|
return cacheStore.readThrough(userId);
|
|
} else if (cachingPolicy == CachingPolicy.BEHIND) {
|
|
return cacheStore.readThroughWithWriteBackPolicy(userId);
|
|
} else if (cachingPolicy == CachingPolicy.ASIDE) {
|
|
return findAside(userId);
|
|
}
|
|
return null;
|
|
}
|
|
|
|
public void save(final UserAccount userAccount) {
|
|
LOGGER.info("Save record!");
|
|
if (cachingPolicy == CachingPolicy.THROUGH) {
|
|
cacheStore.writeThrough(userAccount);
|
|
} else if (cachingPolicy == CachingPolicy.AROUND) {
|
|
cacheStore.writeAround(userAccount);
|
|
} else if (cachingPolicy == CachingPolicy.BEHIND) {
|
|
cacheStore.writeBehind(userAccount);
|
|
} else if (cachingPolicy == CachingPolicy.ASIDE) {
|
|
saveAside(userAccount);
|
|
}
|
|
}
|
|
|
|
public static String printCacheContent() {
|
|
return CacheStore.print();
|
|
}
|
|
|
|
/* ... details omitted ... */
|
|
}
|
|
```
|
|
|
|
Here is what we do in the main class of the application.
|
|
|
|
```java
|
|
@Slf4j
|
|
public class App {
|
|
|
|
public static void main(final String[] args) {
|
|
boolean isDbMongo = isDbMongo(args);
|
|
if(isDbMongo){
|
|
LOGGER.info("Using the Mongo database engine to run the application.");
|
|
} else {
|
|
LOGGER.info("Using the 'in Memory' database to run the application.");
|
|
}
|
|
App app = new App(isDbMongo);
|
|
app.useReadAndWriteThroughStrategy();
|
|
String splitLine = "==============================================";
|
|
LOGGER.info(splitLine);
|
|
app.useReadThroughAndWriteAroundStrategy();
|
|
LOGGER.info(splitLine);
|
|
app.useReadThroughAndWriteBehindStrategy();
|
|
LOGGER.info(splitLine);
|
|
app.useCacheAsideStategy();
|
|
LOGGER.info(splitLine);
|
|
}
|
|
|
|
public void useReadAndWriteThroughStrategy() {
|
|
LOGGER.info("# CachingPolicy.THROUGH");
|
|
appManager.initCachingPolicy(CachingPolicy.THROUGH);
|
|
|
|
var userAccount1 = new UserAccount("001", "John", "He is a boy.");
|
|
|
|
appManager.save(userAccount1);
|
|
LOGGER.info(appManager.printCacheContent());
|
|
appManager.find("001");
|
|
appManager.find("001");
|
|
}
|
|
|
|
public void useReadThroughAndWriteAroundStrategy() { /* ... */ }
|
|
|
|
public void useReadThroughAndWriteBehindStrategy() { /* ... */ }
|
|
|
|
public void useCacheAsideStategy() { /* ... */ }
|
|
}
|
|
```
|
|
|
|
## Class diagram
|
|
|
|

|
|
|
|
## Applicability
|
|
|
|
Use the Caching pattern(s) when
|
|
|
|
* Repetitious acquisition, initialization, and release of the same resource cause unnecessary
|
|
performance overhead.
|
|
|
|
## Related patterns
|
|
|
|
* [Proxy](https://java-design-patterns.com/patterns/proxy/)
|
|
|
|
## Credits
|
|
|
|
* [Write-through, write-around, write-back: Cache explained](http://www.computerweekly.com/feature/Write-through-write-around-write-back-Cache-explained)
|
|
* [Read-Through, Write-Through, Write-Behind, and Refresh-Ahead Caching](https://docs.oracle.com/cd/E15357_01/coh.360/e15723/cache_rtwtwbra.htm#COHDG5177)
|
|
* [Cache-Aside pattern](https://docs.microsoft.com/en-us/azure/architecture/patterns/cache-aside)
|
|
* [Java EE 8 High Performance: Master techniques such as memory optimization, caching, concurrency, and multithreading to achieve maximum performance from your enterprise applications](https://www.amazon.com/gp/product/178847306X/ref=as_li_qf_asin_il_tl?ie=UTF8&tag=javadesignpat-20&creative=9325&linkCode=as2&creativeASIN=178847306X&linkId=e948720055599f248cdac47da9125ff4)
|
|
* [Java Performance: In-Depth Advice for Tuning and Programming Java 8, 11, and Beyond](https://www.amazon.com/gp/product/1492056111/ref=as_li_qf_asin_il_tl?ie=UTF8&tag=javadesignpat-20&creative=9325&linkCode=as2&creativeASIN=1492056111&linkId=7e553581559b9ec04221259e52004b08)
|
|
* [Effective Java](https://www.amazon.com/gp/product/B078H61SCH/ref=as_li_qf_asin_il_tl?ie=UTF8&tag=javadesignpat-20&creative=9325&linkCode=as2&creativeASIN=B078H61SCH&linkId=f06607a0b48c76541ef19c5b8b9e7882)
|
|
* [Java Performance: The Definitive Guide: Getting the Most Out of Your Code](https://www.amazon.com/gp/product/1449358454/ref=as_li_qf_asin_il_tl?ie=UTF8&tag=javadesignpat-20&creative=9325&linkCode=as2&creativeASIN=1449358454&linkId=475c18363e350630cc0b39ab681b2687)
|