validator: Add --wait-for-super-majority to facilitate asynchronous cluster restarts (bp #7701) (#7704)

automerge
This commit is contained in:
mergify[bot]
2020-01-07 15:48:11 -08:00
committed by Grimes
parent b7fb050d09
commit de941f4074
4 changed files with 90 additions and 31 deletions

View File

@ -52,5 +52,5 @@ Solana's trustless sense of time and ordering provided by its PoH data structure
As discussed in the [Economic Design](../implemented-proposals/ed_overview/) section, annual validator interest rates are to be specified as a function of total percentage of circulating supply that has been staked. The cluster rewards validators who are online and actively participating in the validation process throughout the entirety of their _validation period_. For validators that go offline/fail to validate transactions during this period, their annual reward is effectively reduced.
Similarly, we may consider an algorithmic reduction in a validator's active amount staked amount in the case that they are offline. I.e. if a validator is inactive for some amount of time, either due to a partition or otherwise, the amount of their stake that is considered active \(eligible to earn rewards\) may be reduced. This design would be structured to help long-lived partitions to eventually reach finality on their respective chains as the % of non-voting total stake is reduced over time until a super-majority can be achieved by the active validators in each partition. Similarly, upon re-engaging, the active amount staked will come back online at some defined rate. Different rates of stake reduction may be considered depending on the size of the partition/active set.
Similarly, we may consider an algorithmic reduction in a validator's active amount staked amount in the case that they are offline. I.e. if a validator is inactive for some amount of time, either due to a partition or otherwise, the amount of their stake that is considered active \(eligible to earn rewards\) may be reduced. This design would be structured to help long-lived partitions to eventually reach finality on their respective chains as the % of non-voting total stake is reduced over time until a supermajority can be achieved by the active validators in each partition. Similarly, upon re-engaging, the active amount staked will come back online at some defined rate. Different rates of stake reduction may be considered depending on the size of the partition/active set.

View File

@ -2,7 +2,7 @@
This design describes Solana's _Tower BFT_ algorithm. It addresses the following problems:
* Some forks may not end up accepted by the super-majority of the cluster, and voters need to recover from voting on such forks.
* Some forks may not end up accepted by the supermajority of the cluster, and voters need to recover from voting on such forks.
* Many forks may be votable by different voters, and each voter may see a different set of votable forks. The selected forks should eventually converge for the cluster.
* Reward based votes have an associated risk. Voters should have the ability to configure how much risk they take on.
* The [cost of rollback](tower-bft.md#cost-of-rollback) needs to be computable. It is important to clients that rely on some measurable form of Consistency. The costs to break consistency need to be computable, and increase super-linearly for older votes.

View File

@ -48,7 +48,8 @@ use std::{
sync::atomic::{AtomicBool, Ordering},
sync::mpsc::Receiver,
sync::{Arc, Mutex, RwLock},
thread::Result,
thread::{sleep, Result},
time::Duration,
};
#[derive(Clone, Debug)]
@ -67,6 +68,7 @@ pub struct ValidatorConfig {
pub broadcast_stage_type: BroadcastStageType,
pub partition_cfg: Option<PartitionCfg>,
pub fixed_leader_schedule: Option<FixedSchedule>,
pub wait_for_supermajority: bool,
}
impl Default for ValidatorConfig {
@ -86,6 +88,7 @@ impl Default for ValidatorConfig {
broadcast_stage_type: BroadcastStageType::Standard,
partition_cfg: None,
fixed_leader_schedule: None,
wait_for_supermajority: false,
}
}
}
@ -138,27 +141,7 @@ impl Validator {
warn!("identity pubkey: {:?}", id);
warn!("vote pubkey: {:?}", vote_account);
warn!(
"CUDA is {}abled",
if solana_perf::perf_libs::api().is_some() {
"en"
} else {
"dis"
}
);
// Validator binaries built on a machine with AVX support will generate invalid opcodes
// when run on machines without AVX causing a non-obvious process abort. Instead detect
// the mismatch and error cleanly.
#[target_feature(enable = "avx")]
{
if is_x86_feature_detected!("avx") {
info!("AVX detected");
} else {
error!("Your machine does not have AVX support, please rebuild from source on your machine");
process::exit(1);
}
}
report_target_features();
info!("entrypoint: {:?}", entrypoint_info_option);
@ -293,14 +276,7 @@ impl Validator {
if config.snapshot_config.is_some() {
poh_recorder.set_bank(&bank);
}
let poh_recorder = Arc::new(Mutex::new(poh_recorder));
let poh_service = PohService::new(poh_recorder.clone(), &poh_config, &exit);
assert_eq!(
blocktree.new_shreds_signals.len(),
1,
"New shred signal for the TVU should be the same as the clear bank signal."
);
let ip_echo_server = solana_net_utils::ip_echo_server(node.sockets.ip_echo.unwrap());
@ -321,6 +297,22 @@ impl Validator {
.set_entrypoint(entrypoint_info.clone());
}
if config.wait_for_supermajority {
info!(
"Waiting more than 66% of activated stake at slot {} to be in gossip...",
bank.slot()
);
loop {
let gossip_stake_percent = get_stake_percent_in_gossip(&bank, &cluster_info);
info!("{}% of activated stake in gossip", gossip_stake_percent,);
if gossip_stake_percent > 66 {
break;
}
sleep(Duration::new(1, 0));
}
}
let sockets = Sockets {
repair: node
.sockets
@ -353,6 +345,13 @@ impl Validator {
Some(voting_keypair.clone())
};
let poh_service = PohService::new(poh_recorder.clone(), &poh_config, &exit);
assert_eq!(
blocktree.new_shreds_signals.len(),
1,
"New shred signal for the TVU should be the same as the clear bank signal."
);
let tvu = Tvu::new(
vote_account,
voting_keypair,
@ -584,6 +583,59 @@ pub fn new_validator_for_tests() -> (Validator, ContactInfo, Keypair, PathBuf) {
(node, contact_info, mint_keypair, ledger_path)
}
fn report_target_features() {
warn!(
"CUDA is {}abled",
if solana_perf::perf_libs::api().is_some() {
"en"
} else {
"dis"
}
);
// Validator binaries built on a machine with AVX support will generate invalid opcodes
// when run on machines without AVX causing a non-obvious process abort. Instead detect
// the mismatch and error cleanly.
#[target_feature(enable = "avx")]
{
if is_x86_feature_detected!("avx") {
info!("AVX detected");
} else {
error!("Your machine does not have AVX support, please rebuild from source on your machine");
process::exit(1);
}
}
}
// Get the activated stake percentage (based on the provided bank) that is visible in gossip
fn get_stake_percent_in_gossip(
bank: &Arc<solana_runtime::bank::Bank>,
cluster_info: &Arc<RwLock<ClusterInfo>>,
) -> u64 {
let mut gossip_stake = 0;
let mut total_activated_stake = 0;
let tvu_peers = cluster_info.read().unwrap().tvu_peers();
for (activated_stake, vote_account) in bank.vote_accounts().values() {
let vote_state =
solana_vote_program::vote_state::VoteState::from(&vote_account).unwrap_or_default();
total_activated_stake += activated_stake;
if tvu_peers
.iter()
.any(|peer| peer.id == vote_state.node_pubkey)
{
trace!(
"observed {} in gossip, (activated_stake={})",
vote_state.node_pubkey,
activated_stake
);
gossip_stake += activated_stake;
}
}
gossip_stake * 100 / total_activated_stake
}
#[cfg(test)]
mod tests {
use super::*;

View File

@ -537,6 +537,12 @@ pub fn main() {
.takes_value(true)
.help("Redirect logging to the specified file, '-' for standard error"),
)
.arg(
Arg::with_name("wait_for_supermajority")
.long("wait-for-supermajority")
.takes_value(false)
.help("After processing the ledger, wait until a supermajority of stake is visible on gossip before starting PoH"),
)
.get_matches();
let identity_keypair = Arc::new(
@ -582,6 +588,7 @@ pub fn main() {
validator_config.dev_halt_at_slot = value_t!(matches, "dev_halt_at_slot", Slot).ok();
validator_config.rpc_config.enable_validator_exit = matches.is_present("enable_rpc_exit");
validator_config.wait_for_supermajority = matches.is_present("wait_for_supermajority");
validator_config.rpc_config.faucet_addr = matches.value_of("rpc_faucet_addr").map(|address| {
solana_net_utils::parse_host_port(address).expect("failed to parse faucet address")