Compare commits

..

8 Commits

1015 changed files with 26447 additions and 180136 deletions

View File

@ -1,42 +0,0 @@
version: '{build}'
branches:
only:
- master
- /^v[0-9.]+\.[0-9.]+/
cache:
- '%USERPROFILE%\.cargo'
- '%APPVEYOR_BUILD_FOLDER%\target'
clone_folder: d:\projects\solana
build_script:
- bash ci/publish-tarball.sh
notifications:
- provider: Slack
incoming_webhook:
secure: GJsBey+F5apAtUm86MHVJ68Uqa6WN1SImcuIc4TsTZrDhA8K1QWUNw9FFQPybUWDyOcS5dly3kubnUqlGt9ux6Ad2efsfRIQYWv0tOVXKeY=
channel: ci-status
on_build_success: false
on_build_failure: true
on_build_status_changed: true
deploy:
- provider: S3
access_key_id:
secure: fTbJl6JpFebR40J7cOWZ2mXBa3kIvEiXgzxAj6L3N7A=
secret_access_key:
secure: vItsBXb2rEFLvkWtVn/Rcxu5a5+2EwC+b7GsA0waJy9hXh6XuBAD0lnHd9re3g/4
bucket: release.solana.com
region: us-west-1
set_public: true
- provider: GitHub
auth_token:
secure: 81fEmPZ0cV1wLtNuUrcmtgxKF6ROQF1+/ft5m+fHX21z6PoeCbaNo8cTyLioWBj7
draft: false
prerelease: false
on:
appveyor_repo_tag: true

View File

@ -1 +0,0 @@
/secrets_unencrypted.ejson

View File

@ -1,31 +0,0 @@
[ejson](https://github.com/Shopify/ejson) and
[ejson2env](https://github.com/Shopify/ejson2env) are used to manage access
tokens and other secrets required for CI.
#### Setup
```bash
$ sudo gem install ejson ejson2env
```
then obtain the necessary keypair and place it in `/opt/ejson/keys/`.
#### Usage
Run the following command to decrypt the secrets into the environment:
```bash
eval $(ejson2env secrets.ejson)
```
#### Managing secrets.ejson
To decrypt `secrets.ejson` for modification, run:
```bash
$ ejson decrypt secrets.ejson -o secrets_unencrypted.ejson
```
Edit, then run the following to re-encrypt the file **BEFORE COMMITING YOUR
CHANGES**:
```bash
$ ejson encrypt secrets_unencrypted.ejson
$ mv secrets_unencrypted.ejson secrets.ejson
```

View File

@ -1,15 +0,0 @@
{
"_public_key": "ae29f4f7ad2fc92de70d470e411c8426d5d48db8817c9e3dae574b122192335f",
"environment": {
"CODECOV_TOKEN": "EJ[1:yGpTmjdbyjW2kjgIHkFoJv7Ue7EbUvUbqHyw6anGgWg=:JnxhrIxh09AvqdJgrVSYmb7PxSrh19aE:07WzVExCHEd1lJ1m8QizRRthGri+WBNeZRKjjEvsy5eo4gv3HD7zVEm42tVTGkqITKkBNQ==]",
"CRATES_IO_TOKEN": "EJ[1:yGpTmjdbyjW2kjgIHkFoJv7Ue7EbUvUbqHyw6anGgWg=:d0jJqC32/axwzq/N7kMRmpxKhnRrhtpt:zvcPHwkOzGnjhNkAQSejwdy1Jkr9wR1qXFFCnfIjyt/XQYubzB1tLkoly/qdmeb5]",
"GEOLOCATION_API_KEY": "EJ[1:yGpTmjdbyjW2kjgIHkFoJv7Ue7EbUvUbqHyw6anGgWg=:R4gfB6Ey4i50HyfLt4UZDLBqg3qHEUye:UfZCOgt8XI6Y2g+ivCRVoS1fjFycFs7/GSevvCqh1B50mG0+hzpEyzXQLuKG5OeI]",
"GITHUB_TOKEN": "EJ[1:yGpTmjdbyjW2kjgIHkFoJv7Ue7EbUvUbqHyw6anGgWg=:Vq2dkGTOzfEpRht0BAGHFp/hDogMvXJe:tFXHg1epVt2mq9hkuc5sRHe+KAnVREi/p8S+IZu67XRyzdiA/nGak1k860FXYuuzuaE0QWekaEc=]",
"INFLUX_DATABASE": "EJ[1:yGpTmjdbyjW2kjgIHkFoJv7Ue7EbUvUbqHyw6anGgWg=:5KI9WBkXx3R/W4m256mU5MJOE7N8aAT9:Cb8QFELZ9I60t5zhJ9h55Kcs]",
"INFLUX_PASSWORD": "EJ[1:yGpTmjdbyjW2kjgIHkFoJv7Ue7EbUvUbqHyw6anGgWg=:hQRMpLCrav+OYkNphkeM4hagdVoZv5Iw:AUO76rr6+gF1OLJA8ZLSG8wHKXgYCPNk6gRCV8rBhZBJ4KwDaxpvOhMl7bxxXG6jol7v4aRa/Lk=]",
"INFLUX_USERNAME": "EJ[1:yGpTmjdbyjW2kjgIHkFoJv7Ue7EbUvUbqHyw6anGgWg=:R7BNmQjfeqoGDAFTJu9bYTGHol2NgnYN:Q2tOT/EBcFvhFk+DKLKmVU7tLCpVC3Ui]",
"SOLANA_INSTALL_UPDATE_MANIFEST_KEYPAIR_x86_64_unknown_linux_gnu": "EJ[1:yGpTmjdbyjW2kjgIHkFoJv7Ue7EbUvUbqHyw6anGgWg=:Egc2dMrHDU0NcZ71LwGv/V66shUhwYUE:04VoIb8CKy7KYhQ5W4cEW9SDKZltxWBL5Hob106lMBbUOD/yUvKYcG3Ep8JfTMwO3K8zowW5HpU/IdGoilX0XWLiJJ6t+p05WWK0TA16nOEtwrEG+UK8wm3sN+xCO20i4jDhpNpgg3FYFHT5rKTHW8+zaBTNUX/SFxkN67Lm+92IM28CXYE43SU1WV6H99hGFFVpTK5JVM3JuYU1ex/dHRE+xCzTr4MYUB/F+nGoNFW8HUDV/y0e1jxT9to3x0SmnytEEuk+5RUzFuEt9cKNFeNml3fOCi4qL+sfj/Y5pjH9xDiUxsvH/8NL35jbLP244aFHgWcp]",
"SOLANA_INSTALL_UPDATE_MANIFEST_KEYPAIR_x86_64_apple_darwin": "EJ[1:yGpTmjdbyjW2kjgIHkFoJv7Ue7EbUvUbqHyw6anGgWg=:NeOxSoWCvXB9AL4H6OK26l/7bmsKd/oz:Ijfoxtvk2CHlN1ZXHup3Gg/914kbbAkEGWJfvozA8UIe+aUzUObMyTrKkVOeNAH8Q8YH9tNzk7RRnrTcpnzeCCBLlWcVEeruMxHox3mPRzmSeDLxtbzCl9VePlRO3T7jg90K5hW+ZAkd5J/WJNzpAcmr93ts/of3MbvGHSujId/efCTzJEcP6JInnBb8Vrj7TlgKbzUlnqpq1+NjYPSXN3maKa9pKeo2JWxZlGBMoy6QWUUY5GbYEylw9smwh1LJcHZjlaZNMuOl4gNKtaSr38IXQkAXaRUJDPAmPras00YObKzXU8RkTrP4EoP/jx5LPR7f]",
"SOLANA_INSTALL_UPDATE_MANIFEST_KEYPAIR_x86_64_pc_windows_msvc": "EJ[1:yGpTmjdbyjW2kjgIHkFoJv7Ue7EbUvUbqHyw6anGgWg=:7t+56twjW+jR7fpFNNeRFLPd7E4lbmyN:JuviDpkQrfVcNUGRGsa2e/UhvH6tTYyk1s4cHHE5xZH1NByL7Kpqx36VG/+o1AUGEeSQdsBnKgzYdMoFYbO8o50DoRPc86QIEVXCupD6J9avxLFtQgOWgJp+/mCdUVXlqXiFs/vQgS/L4psrcKdF6WHd77BeUr6ll8DjH+9m5FC9Rcai2pXno6VbPpunHQ0oUdYzhFR64+LiRacBaefQ9igZ+nSEWDLqbaZSyfm9viWkijoVFTq8gAgdXXEh7g0QdxVE5T6bPristJhT6jWBhWunPUCDNFFErWIsbRGctepl4pbCWqh2hNTw9btSgVfeY6uGCOsdy9E=]"
}
}

View File

@ -1,42 +1,2 @@
CI_BUILD_START=$(date +%s)
export CI_BUILD_START
source ci/env.sh
#
# Kill any running docker containers, which are potentially left over from the
# previous CI job
#
(
containers=$(docker ps -q)
if [[ $(hostname) != metrics-solana-com && -n $containers ]]; then
echo "+++ Killing stale docker containers"
docker ps
# shellcheck disable=SC2086 # Don't want to double quote $containers
docker kill $containers
fi
)
# Processes from previously aborted CI jobs seem to loiter, unclear why as one
# would expect the buildkite-agent to clean up all child processes of the
# aborted CI job.
# But as a workaround for now manually kill some known loiterers. These
# processes will all have the `init` process as their PPID:
(
victims=
for name in bash cargo docker solana; do
victims="$victims $(pgrep -u "$(id -u)" -P 1 -d \ $name)"
done
for victim in $victims; do
echo "Killing pid $victim"
kill -9 "$victim" || true
done
)
# HACK: These are in our docker images, need to be removed from CARGO_HOME
# because we try to cache downloads across builds with CARGO_HOME
# cargo lacks a facility for "system" tooling, always tries CARGO_HOME first
cargo uninstall cargo-audit || true
cargo uninstall svgbob_cli || true
cargo uninstall mdbook || true

View File

@ -3,16 +3,15 @@
#
# Save target/ for the next CI build on this machine
#
(
set -x
d=$HOME/cargo-target-cache/"$BUILDKITE_LABEL"
mkdir -p "$d"
set -x
rsync -a --delete --link-dest="$PWD" target "$d"
du -hs "$d"
read -r cacheSizeInGB _ < <(du -s --block-size=1800000000 "$d")
echo "--- ${cacheSizeInGB}GB: $d"
)
if [[ -n $CARGO_TARGET_CACHE_NAME ]]; then
(
d=$HOME/cargo-target-cache/"$CARGO_TARGET_CACHE_NAME"
mkdir -p "$d"
set -x
rsync -a --delete --link-dest="$PWD" target "$d"
du -hs "$d"
)
fi
#
# Add job_stats data point

View File

@ -1,7 +1,4 @@
#!/usr/bin/env bash
set -e
eval "$(ejson2env .buildkite/env/secrets.ejson)"
#!/bin/bash -e
# Ensure the pattern "+++ ..." never occurs when |set -x| is set, as buildkite
# interprets this as the start of a log group.
@ -11,23 +8,20 @@ export PS4="++"
#
# Restore target/ from the previous CI build on this machine
#
(
set -x
d=$HOME/cargo-target-cache/"$BUILDKITE_LABEL"
MAX_CACHE_SIZE=18 # gigabytes
[[ -n "$CARGO_TARGET_CACHE_NAME" ]] || (
d=$HOME/cargo-target-cache/"$CARGO_TARGET_CACHE_NAME"
if [[ -d $d ]]; then
du -hs "$d"
read -r cacheSizeInGB _ < <(du -s --block-size=1800000000 "$d")
echo "--- ${cacheSizeInGB}GB: $d"
if [[ $cacheSizeInGB -gt $MAX_CACHE_SIZE ]]; then
echo "--- $d is too large, removing it"
read -r cacheSizeInGB _ < <(du -s --block-size=1000000000 "$d")
if [[ $cacheSizeInGB -gt 5 ]]; then
echo "$d has gotten too large, removing it"
rm -rf "$d"
fi
else
echo "--- $d not present"
fi
mkdir -p "$d"/target
set -x
rsync -a --delete --link-dest="$d" "$d"/target .
)

View File

@ -1,31 +0,0 @@
#!/usr/bin/env bash
#
# This script is used to upload the full buildkite pipeline. The steps defined
# in the buildkite UI should simply be:
#
# steps:
# - command: ".buildkite/pipeline-upload.sh"
#
set -e
cd "$(dirname "$0")"/..
if [[ -n $BUILDKITE_TAG ]]; then
buildkite-agent annotate --style info --context release-tag \
"https://github.com/solana-labs/solana/releases/$BUILDKITE_TAG"
buildkite-agent pipeline upload ci/buildkite-release.yml
else
if [[ $BUILDKITE_BRANCH =~ ^pull ]]; then
# Add helpful link back to the corresponding Github Pull Request
buildkite-agent annotate --style info --context pr-backlink \
"Github Pull Request: https://github.com/solana-labs/solana/$BUILDKITE_BRANCH"
fi
if [[ $BUILDKITE_MESSAGE =~ GitBook: ]]; then
buildkite-agent annotate --style info --context gitbook-ci-skip \
"GitBook commit detected, CI skipped"
exit
fi
buildkite-agent pipeline upload ci/buildkite.yml
fi

View File

@ -1,12 +1,5 @@
ignore:
- "src/bin"
coverage:
range: 50..100
round: down
precision: 1
status:
project: off
patch: off
comment:
layout: "diff"
behavior: default
require_changes: no

View File

@ -1,5 +0,0 @@
root: ./book/src
structure:
readme: introduction.md
summary: SUMMARY.md

View File

@ -1,6 +0,0 @@
#### Problem
#### Proposed Solution

View File

@ -1,5 +0,0 @@
#### Problem
#### Summary of Changes
Fixes #

24
.github/stale.yml vendored
View File

@ -1,24 +0,0 @@
only: pulls
# Number of days of inactivity before a pull request becomes stale
daysUntilStale: 7
# Number of days of inactivity before a stale pull request is closed
daysUntilClose: 7
# Issues with these labels will never be considered stale
exemptLabels:
- security
# Label to use when marking a pull request as stale
staleLabel: stale
# Comment to post when marking a pull request as stale. Set to `false` to disable
markComment: >
This pull request has been automatically marked as stale because it has not had
recent activity. It will be closed if no further activity occurs.
# Comment to post when closing a stale pull request. Set to `false` to disable
closeComment: >
This stale pull request has been automatically closed.
Thank you for your contributions.

26
.gitignore vendored
View File

@ -1,24 +1,16 @@
/book/html/
/book/src/tests.ok
/book/src/.gitbook/assets/*.svg
/farf/
/solana-release/
/solana-release.tar.bz2
/solana-metrics/
/solana-metrics.tar.bz2
Cargo.lock
/target/
**/*.rs.bk
.cargo
# node configuration files
/config/
/config-private/
/config-drone/
/config-validator/
/config-client/
/multinode-demo/test/config-client/
# log files
*.log
log-*.txt
log-*/
# intellij files
/.idea/
/solana.iml
/.vscode/
# test temp files, ledgers, etc.
/farf/

View File

@ -1,45 +0,0 @@
# Validate your changes with:
#
# $ curl -F 'data=@.mergify.yml' https://gh.mergify.io/validate
#
# https://doc.mergify.io/
pull_request_rules:
- name: remove outdated reviews
conditions:
- base=master
actions:
dismiss_reviews:
changes_requested: true
- name: set automerge label on mergify backport PRs
conditions:
- author=mergify[bot]
- head~=^mergify/bp/
- "#status-failure=0"
actions:
label:
add:
- automerge
- name: v0.22 backport
conditions:
- base=master
- label=v0.22
actions:
backport:
branches:
- v0.22
- name: v0.23 backport
conditions:
- base=master
- label=v0.23
actions:
backport:
branches:
- v0.23
- name: v0.24 backport
conditions:
- base=master
- label=v0.24
actions:
backport:
branches:
- v0.24

View File

@ -1,42 +0,0 @@
os:
- osx
language: rust
rust:
- stable
install:
- source ci/rust-version.sh
script:
- source ci/env.sh
- ci/publish-tarball.sh
branches:
only:
- master
- /^v\d+\.\d+/
notifications:
slack:
on_success: change
secure: F4IjOE05MyaMOdPRL+r8qhs7jBvv4yDM3RmFKE1zNXnfUOqV4X38oQM1EI+YVsgpMQLj/pxnEB7wcTE4Bf86N6moLssEULCpvAuMVoXj4QbWdomLX+01WbFa6fLVeNQIg45NHrz2XzVBhoKOrMNnl+QI5mbR2AlS5oqsudHsXDnyLzZtd4Y5SDMdYG1zVWM01+oNNjgNfjcCGmOE/K0CnOMl6GPi3X9C34tJ19P2XT7MTDsz1/IfEF7fro2Q8DHEYL9dchJMoisXSkem5z7IDQkGzXsWdWT4NnndUvmd1MlTCE9qgoXDqRf95Qh8sB1Dz08HtvgfaosP2XjtNTfDI9BBYS15Ibw9y7PchAJE1luteNjF35EOy6OgmCLw/YpnweqfuNViBZz+yOPWXVC0kxnPIXKZ1wyH9ibeH6E4hr7a8o9SV/6SiWIlbYF+IR9jPXyTCLP/cc3sYljPWxDnhWFwFdRVIi3PbVAhVu7uWtVUO17Oc9gtGPgs/GrhOMkJfwQPXaudRJDpVZowxTX4x9kefNotlMAMRgq+Drbmgt4eEBiCNp0ITWgh17BiE1U09WS3myuduhoct85+FoVeaUkp1sxzHVtGsNQH0hcz7WcpZyOM+AwistJA/qzeEDQao5zi1eKWPbO2xAhi2rV1bDH6bPf/4lDBwLRqSiwvlWU=
deploy:
- provider: s3
access_key_id: $AWS_ACCESS_KEY_ID
secret_access_key: $AWS_SECRET_ACCESS_KEY
bucket: release.solana.com
region: us-west-1
skip_cleanup: true
acl: public_read
local_dir: travis-s3-upload
on:
all_branches: true
- provider: releases
api_key: $GITHUB_TOKEN
skip_cleanup: true
file_glob: true
file: travis-release-upload/*
on:
tags: true

View File

@ -1,249 +1,53 @@
# Solana Coding Guidelines
Solana Coding Guidelines
===
The goal of these guidelines is to improve developer productivity by allowing
developers to jump into any file in the codebase and not need to adapt to
inconsistencies in how the code is written. The codebase should appear as if it
had been authored by a single developer. If you don't agree with a convention,
submit a PR patching this document and let's discuss! Once the PR is accepted,
*all* code should be updated as soon as possible to reflect the new
The goal of these guidelines is to improve developer productivity by allowing developers to
jump any file in the codebase and not need to adapt to inconsistencies in how the code is
written. The codebase should appear as if it had been authored by a single developer. If you
don't agree with a convention, submit a PR patching this document and let's discuss! Once
the PR is accepted, *all* code should be updated as soon as possible to reflect the new
conventions.
## Pull Requests
Rust coding conventions
---
Small, frequent PRs are much preferred to large, infrequent ones. A large PR is
difficult to review, can block others from making progress, and can quickly get
its author into "rebase hell". A large PR oftentimes arises when one change
requires another, which requires another, and then another. When you notice
those dependencies, put the fix into a commit of its own, then checkout a new
branch, and cherry-pick it.
* All Rust code is formatted using the latest version of `rustfmt`. Once installed, it will be
updated automatically when you update the compiler with `rustup`.
```bash
$ git commit -am "Fix foo, needed by bar"
$ git checkout master
$ git checkout -b fix-foo
$ git cherry-pick fix-bar
$ git push --set-upstream origin fix-foo
```
* All Rust code is linted with Clippy. If you'd prefer to ignore its advice, do so explicitly:
Open a PR to start the review process and then jump back to your original
branch to keep making progress. Consider rebasing to make your fix the first
commit:
```bash
$ git checkout fix-bar
$ git rebase -i master <Move fix-foo to top>
```
Once the commit is merged, rebase the original branch to purge the
cherry-picked commit:
```bash
$ git pull --rebase upstream master
```
### How big is too big?
If there are no functional changes, PRs can be very large and that's no
problem. If, however, your changes are making meaningful changes or additions,
then about 1,000 lines of changes is about the most you should ask a Solana
maintainer to review.
### Should I send small PRs as I develop large, new components?
Add only code to the codebase that is ready to be deployed. If you are building
a large library, consider developing it in a separate git repository. When it
is ready to be integrated, the Solana maintainers will work with you to decide
on a path forward. Smaller libraries may be copied in whereas very large ones
may be pulled in with a package manager.
## Getting Pull Requests Merged
There is no single person assigned to watching GitHub PR queue and ushering you
through the process. Typically, you will ask the person that wrote a component
to review changes to it. You can find the author using `git blame` or asking on
Discord. When working to get your PR merged, it's most important to understand
that changing the code is your priority and not necessarily a priority of the
person you need an approval from. Also, while you may interact the most with
the component author, you should aim to be inclusive of others. Providing a
detailed problem description is the most effective means of engaging both the
component author and other potentially interested parties.
Consider opening all PRs as Draft Pull Requests first. Using a draft PR allows
you to kickstart the CI automation, which typically takes between 10 and 30
minutes to execute. Use that time to write a detailed problem description. Once
the description is written and CI succeeds, click the "Ready to Review" button
and add reviewers. Adding reviewers before CI succeeds is a fast path to losing
reviewer engagement. Not only will they be notified and see the PR is not yet
ready for them, they will also be bombarded them with additional notifications
each time you push a commit to get past CI or until they "mute" the PR. Once
muted, you'll need to reach out over some other medium, such as Discord, to
request they have another look. When you use draft PRs, no notifications are
sent when you push commits and edit the PR description. Use draft PRs
liberally. Don't bug the humans until you have gotten past the bots.
### What should be in my PR description?
Reviewing code is hard work and generally involves an attempt to guess the
author's intent at various levels. Please assume reviewer time is scarce and do
what you can to make your PR as consumable as possible. Inspired by techniques
for writing good whitepapers, the guidance here aims to maximize reviewer
engagement.
Assume the reviewer will spend no more than a few seconds reading the PR title.
If it doesn't describe a noteworthy change, don't expect the reviewer to click
to see more.
Next, like the abstract of a whitepaper, the reviewer will spend ~30 seconds
reading the PR problem description. If what is described there doesn't look
more important than competing issues, don't expect the reviewer to read on.
Next, the reviewer will read the proposed changes. At this point, the reviewer
needs to be convinced the proposed changes are a *good* solution to the problem
described above. If the proposed changes, not the code changes, generates
discussion, consider closing the PR and returning with a design proposal
instead.
Finally, once the reviewer understands the problem and agrees with the approach
to solving it, the reviewer will view the code changes. At this point, the
reviewer is simply looking to see if the implementation actually implements
what was proposed and if that implementation is maintainable. When a concise,
readable test for each new code path is present, the reviewer can safely ignore
the details of its implementation. When those tests are missing, expect to
either lose engagement or get a pile of review comments as the reviewer
attempts to consider every ambiguity in your implementation.
### The PR Title
The PR title should contain a brief summary of the change, from the perspective
of the user. Examples of good titles:
* Add rent to accounts
* Fix out-of-memory error in validator
* Clean up `process_message()` in runtime
The conventions here are all the same as a good git commit title:
* First word capitalized and in the imperative mood, not past tense ("add", not
"added")
* No trailing period
* What was done, whom it was done to, and in what context
### The PR Problem Statement
The git repo implements a product with various features. The problem statement
should describe how the product is missing a feature, how a feature is
incomplete, or how the implementation of a feature is somehow undesirable. If
an issue being fixed already describes the problem, go ahead and copy-paste it.
As mentioned above, reviewer time is scarce. Given a queue of PRs to review,
the reviewer may ignore PRs that expect them to click through links to see if
the PR warrants attention.
### The Proposed Changes
Typically the content under the "Proposed changes" section will be a bulleted
list of steps taken to solve the problem. Oftentimes, the list is identical to
the subject lines of the git commits contained in the PR. It's especially
generous (and not expected) to rebase or reword commits such that each change
matches the logical flow in your PR description.
### When will my PR be reviewed?
PRs are typically reviewed and merged in under 7 days. If your PR has been open
for longer, it's a strong indicator that the reviewers aren't confident the
change meets the quality standards of the codebase. You might consider closing
it and coming back with smaller PRs and longer descriptions detailing what
problem it solves and how it solves it. Old PRs will be marked stale and then
closed automatically 7 days later.
### How to manage review feedback?
After a reviewer provides feedback, you can quickly say "acknowledged, will
fix" using a thumb's up emoji. If you're confident your fix is exactly as
prescribed, add a reply "Fixed in COMMIT\_HASH" and mark the comment as
resolved. If you're not sure, reply "Is this what you had in mind?
COMMIT\_HASH" and if so, the reviewer will reply and mark the conversation as
resolved. Marking conversations as resolved is an excellent way to engage more
reviewers. Leaving conversations open may imply the PR is not yet ready for
additional review.
### When will my PR be re-reviewed?
Recall that once your PR is opened, a notification is sent every time you push
a commit. After a reviewer adds feedback, they won't be checking on the status
of that feedback after every new commit. Instead, directly mention the reviewer
when you feel your PR is ready for another pass.
## Draft Pull Requests
If you want early feedback on your PR, use GitHub's "Draft Pull Request"
mechanism. Draft PRs are a convenient way to collaborate with the Solana
maintainers without triggering notifications as you make changes. When you feel
your PR is ready for a broader audience, you can transition your draft PR to a
standard PR with the click of a button.
Do not add reviewers to draft PRs. GitHub doesn't automatically clear
approvals when you click "Ready for Review", so a review that meant "I approve
of the direction" suddenly has the appearance of "I approve of these changes."
Instead, add a comment that mentions the usernames that you would like a review
from. Ask explicitly what you would like feedback on.
## Rust coding conventions
* All Rust code is formatted using the latest version of `rustfmt`. Once
installed, it will be updated automatically when you update the compiler with
`rustup`.
* All Rust code is linted with Clippy. If you'd prefer to ignore its advice, do
so explicitly:
```rust #[allow(clippy::too_many_arguments)] ```
```rust
#[cfg_attr(feature = "cargo-clippy", allow(too_many_arguments))]
```
Note: Clippy defaults can be overridden in the top-level file `.clippy.toml`.
* For variable names, when in doubt, spell it out. The mapping from type names
to variable names is to lowercase the type name, putting an underscore before
each capital letter. Variable names should *not* be abbreviated unless being
used as closure arguments and the brevity improves readability. When a function
has multiple instances of the same type, qualify each with a prefix and
underscore (i.e. alice\_keypair) or a numeric suffix (i.e. tx0).
* For variable names, when in doubt, spell it out. The mapping from type names to variable names
is to lowercase the type name, putting an underscore before each capital letter. Variable names
should *not* be abbreviated unless being used as closure arguments and the brevity improves
readability. When a function has multiple instances of the same type, qualify each with a
prefix and underscore (i.e. alice_keypair) or a numeric suffix (i.e. tx0).
* For function and method names, use `<verb>_<subject>`. For unit tests, that
verb should always be `test` and for benchmarks the verb should always be
`bench`. Avoid namespacing function names with some arbitrary word. Avoid
abbreviating words in function names.
* For function and method names, use `<verb>_<subject>`. For unit tests, that verb should
always be `test` and for benchmarks the verb should always be `bench`. Avoid namespacing
function names with some arbitrary word. Avoid abreviating words in function names.
* As they say, "When in Rome, do as the Romans do." A good patch should
acknowledge the coding conventions of the code that surrounds it, even in the
case where that code has not yet been updated to meet the conventions described
here.
* As they say, "When in Rome, do as the Romans do." A good patch should acknowledge the coding
conventions of the code that surrounds it, even in the case where that code has not yet been
updated to meet the conventions described here.
## Terminology
Terminology
---
Inventing new terms is allowed, but should only be done when the term is widely
used and understood. Avoid introducing new 3-letter terms, which can be
confused with 3-letter acronyms.
Inventing new terms is allowed, but should only be done when the term is widely used and
understood. Avoid introducing new 3-letter terms, which can be confused with 3-letter acronyms.
[Terms currently in use](book/src/terminology.md)
Some terms we currently use regularly in the codebase:
* fullnode: n. A fully participating network node.
* hash: n. A SHA-256 Hash.
* keypair: n. A Ed25519 key-pair, containing a public and private key.
* pubkey: n. The public key of a Ed25519 key-pair.
* sigverify: v. To verify a Ed25519 digital signature.
## Design Proposals
Solana's architecture is described by a book generated from markdown files in
the `book/src/` directory, maintained by an *editor* (currently @garious). To
add a design proposal, you'll need to at least propose a change the content
under the [Accepted Design
Proposals](https://docs.solana.com/book/v/master/proposals) chapter. Here's
the full process:
1. Propose a design by creating a PR that adds a markdown document to the
directory `book/src/` and references it from the [table of
contents](book/src/SUMMARY.md). Add any relevant *maintainers* to the PR
review.
2. The PR being merged indicates your proposed change was accepted and that the
maintainers support your plan of attack.
3. Submit PRs that implement the proposal. When the implementation reveals the
need for tweaks to the proposal, be sure to update the proposal and have that
change reviewed by the same people as in step 1.
4. Once the implementation is complete, submit a PR that moves the link from
the Accepted Proposals to the Implemented Proposals section.

6483
Cargo.lock generated

File diff suppressed because it is too large Load Diff

View File

@ -1,63 +1,148 @@
[package]
name = "solana"
description = "Blockchain, Rebuilt for Scale"
version = "0.9.0"
documentation = "https://docs.rs/solana"
homepage = "http://solana.com/"
readme = "README.md"
repository = "https://github.com/solana-labs/solana"
authors = [
"Anatoly Yakovenko <anatoly@solana.com>",
"Greg Fitzgerald <greg@solana.com>",
"Stephen Akridge <stephen@solana.com>",
"Michael Vines <mvines@solana.com>",
"Rob Walker <rob@solana.com>",
"Pankaj Garg <pankaj@solana.com>",
"Tyera Eulberg <tyera@solana.com>",
]
license = "Apache-2.0"
[[bin]]
name = "solana-upload-perf"
path = "src/bin/upload-perf.rs"
[[bin]]
name = "solana-bench-streamer"
path = "src/bin/bench-streamer.rs"
[[bin]]
name = "solana-bench-tps"
path = "src/bin/bench-tps.rs"
[[bin]]
name = "solana-drone"
path = "src/bin/drone.rs"
[[bin]]
name = "solana-replicator"
path = "src/bin/replicator.rs"
[[bin]]
name = "solana-fullnode"
path = "src/bin/fullnode.rs"
[[bin]]
name = "solana-fullnode-config"
path = "src/bin/fullnode-config.rs"
[[bin]]
name = "solana-genesis"
path = "src/bin/genesis.rs"
[[bin]]
name = "solana-ledger-tool"
path = "src/bin/ledger-tool.rs"
[[bin]]
name = "solana-keygen"
path = "src/bin/keygen.rs"
[[bin]]
name = "solana-wallet"
path = "src/bin/wallet.rs"
[badges]
codecov = { repository = "solana-labs/solana", branch = "master", service = "github" }
[features]
unstable = []
ipv6 = []
cuda = []
erasure = []
test = []
[dependencies]
atty = "0.2"
bincode = "1.0.0"
bs58 = "0.2.0"
byteorder = "1.2.1"
bytes = "0.4"
chrono = { version = "0.4.0", features = ["serde"] }
clap = "2.31"
dirs = "1.0.2"
env_logger = "0.5.12"
generic-array = { version = "0.12.0", default-features = false, features = ["serde"] }
getopts = "0.2"
influx_db_client = "0.3.4"
solana-jsonrpc-core = "0.1"
solana-jsonrpc-http-server = "0.1"
solana-jsonrpc-macros = "0.1"
ipnetwork = "0.12.7"
itertools = "0.7.8"
libc = "0.2.43"
libloading = "0.5.0"
log = "0.4.2"
matches = "0.1.6"
nix = "0.11.0"
pnet_datalink = "0.21.0"
rand = "0.5.1"
rayon = "1.0.0"
reqwest = "0.9.0"
ring = "0.13.2"
sha2 = "0.7.0"
serde = "1.0.27"
serde_cbor = "0.9.0"
serde_derive = "1.0.27"
serde_json = "1.0.10"
socket2 = "0.3.8"
solana_program_interface = { path = "common" }
sys-info = "0.5.6"
tokio = "0.1"
tokio-codec = "0.1"
untrusted = "0.6.2"
[dev-dependencies]
noop = { path = "programs/noop" }
print = { path = "programs/print" }
move_funds = { path = "programs/move_funds" }
[[bench]]
name = "bank"
[[bench]]
name = "banking_stage"
[[bench]]
name = "ledger"
[[bench]]
name = "signature"
[[bench]]
name = "sigverify"
[workspace]
members = [
"bench-exchange",
"bench-streamer",
"bench-tps",
"banking-bench",
"chacha",
"chacha-cuda",
"chacha-sys",
"cli-config",
"client",
"core",
"faucet",
"perf",
"validator",
"genesis",
"genesis-programs",
"gossip",
"install",
"keygen",
"ledger",
"ledger-tool",
"local-cluster",
"logger",
"log-analyzer",
"merkle-tree",
"measure",
"metrics",
"net-shaper",
"programs/bpf_loader",
"programs/budget",
"programs/btc_spv",
"programs/btc_spv_bin",
"programs/config",
"programs/exchange",
"programs/failure",
".",
"common",
"programs/noop",
"programs/ownable",
"programs/stake",
"programs/storage",
"programs/vest",
"programs/vote",
"archiver",
"archiver-lib",
"archiver-utils",
"runtime",
"sdk",
"sdk-c",
"scripts",
"sys-tuner",
"upload-perf",
"net-utils",
"vote-signer",
"cli",
"rayon-threadlimit",
"watchtower",
"programs/print",
"programs/move_funds",
]
exclude = [
"programs/bpf",
"programs/move_loader",
"programs/librapay",
default-members = [
".",
"common",
"programs/noop",
"programs/print",
"programs/move_funds",
]

408
README.md
View File

@ -1,9 +1,9 @@
[![Solana crate](https://img.shields.io/crates/v/solana-core.svg)](https://crates.io/crates/solana-core)
[![Solana documentation](https://docs.rs/solana-core/badge.svg)](https://docs.rs/solana-core)
[![Build status](https://badge.buildkite.com/8cc350de251d61483db98bdfc895b9ea0ac8ffa4a32ee850ed.svg?branch=master)](https://buildkite.com/solana-labs/solana/builds?branch=master)
[![Solana crate](https://img.shields.io/crates/v/solana.svg)](https://crates.io/crates/solana)
[![Solana documentation](https://docs.rs/solana/badge.svg)](https://docs.rs/solana)
[![Build status](https://badge.buildkite.com/d4c4d7da9154e3a8fb7199325f430ccdb05be5fc1e92777e51.svg?branch=master)](https://solana-ci-gate.herokuapp.com/buildkite_public_log?https://buildkite.com/solana-labs/solana/builds/latest/master)
[![codecov](https://codecov.io/gh/solana-labs/solana/branch/master/graph/badge.svg)](https://codecov.io/gh/solana-labs/solana)
Blockchain Rebuilt for Scale
Blockchain, Rebuilt for Scale
===
Solana&trade; is a new blockchain architecture built from the ground up for scale. The architecture supports
@ -21,48 +21,246 @@ It's possible for a centralized database to process 710,000 transactions per sec
> Perhaps the most striking difference between algorithms obtained by our method and ones based upon timeout is that using timeout produces a traditional distributed algorithm in which the processes operate asynchronously, while our method produces a globally synchronous one in which every process does the same thing at (approximately) the same time. Our method seems to contradict the whole purpose of distributed processing, which is to permit different processes to operate independently and perform different functions. However, if a distributed system is really a single system, then the processes must be synchronized in some way. Conceptually, the easiest way to synchronize processes is to get them all to do the same thing at the same time. Therefore, our method is used to implement a kernel that performs the necessary synchronization--for example, making sure that two different processes do not try to modify a file at the same time. Processes might spend only a small fraction of their time executing the synchronizing kernel; the rest of the time, they can operate independently--e.g., accessing different files. This is an approach we have advocated even when fault-tolerance is not required. The method's basic simplicity makes it easier to understand the precise properties of a system, which is crucial if one is to know just how fault-tolerant the system is. [\[L.Lamport (1984)\]](http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.71.1078)
Furthermore, and much to our surprise, it can be implemented using a mechanism that has existed in Bitcoin since day one. The Bitcoin feature is called nLocktime and it can be used to postdate transactions using block height instead of a timestamp. As a Bitcoin client, you'd use block height instead of a timestamp if you don't trust the network. Block height turns out to be an instance of what's being called a Verifiable Delay Function in cryptography circles. It's a cryptographically secure way to say time has passed. In Solana, we use a far more granular verifiable delay function, a SHA 256 hash chain, to checkpoint the ledger and coordinate consensus. With it, we implement Optimistic Concurrency Control and are now well en route towards that theoretical limit of 710,000 transactions per second.
Furthermore, and much to our surprise, it can be implemented using a mechanism that has existed in Bitcoin since day one. The Bitcoin feature is called nLocktime and it can be used to postdate transactions using block height instead of a timestamp. As a Bitcoin client, you'd use block height instead of a timestamp if you don't trust the network. Block height turns out to be an instance of what's being called a Verifiable Delay Function in cryptography circles. It's a cryptographically secure way to say time has passed. In Solana, we use a far more granular verifiable delay function, a SHA 256 hash chain, to checkpoint the ledger and coordinate consensus. With it, we implement Optimistic Concurrency Control and are now well in route towards that theoretical limit of 710,000 transactions per second.
Architecture
Testnet Demos
===
Before you jump into the code, review the online book [Solana: Blockchain Rebuilt for Scale](https://docs.solana.com/book/).
The Solana repo contains all the scripts you might need to spin up your own
local testnet. Depending on what you're looking to achieve, you may want to
run a different variation, as the full-fledged, performance-enhanced
multinode testnet is considerably more complex to set up than a Rust-only,
singlenode testnode. If you are looking to develop high-level features, such
as experimenting with smart contracts, save yourself some setup headaches and
stick to the Rust-only singlenode demo. If you're doing performance optimization
of the transaction pipeline, consider the enhanced singlenode demo. If you're
doing consensus work, you'll need at least a Rust-only multinode demo. If you want
to reproduce our TPS metrics, run the enhanced multinode demo.
(The _latest_ development version of the online book is also [available here](https://docs.solana.com/book/v/master/).)
For all four variations, you'd need the latest Rust toolchain and the Solana
source code:
Release Binaries
===
Official release binaries are available at [Github Releases](https://github.com/solana-labs/solana/releases).
First, install Rust's package manager Cargo.
Additionally we provide pre-release binaries for the latest code on the edge and
beta channels. Note that these pre-release binaries may be less stable than an
official release.
```bash
$ curl https://sh.rustup.rs -sSf | sh
$ source $HOME/.cargo/env
```
### Edge channel
#### Linux (x86_64-unknown-linux-gnu)
* [solana.tar.bz2](http://release.solana.com/edge/solana-release-x86_64-unknown-linux-gnu.tar.bz2)
* [solana-install-init](http://release.solana.com/edge/solana-install-init-x86_64-unknown-linux-gnu) as a stand-alone executable
#### mac OS (x86_64-apple-darwin)
* [solana.tar.bz2](http://release.solana.com/edge/solana-release-x86_64-apple-darwin.tar.bz2)
* [solana-install-init](http://release.solana.com/edge/solana-install-init-x86_64-apple-darwin) as a stand-alone executable
#### Windows (x86_64-pc-windows-msvc)
* [solana.tar.bz2](http://release.solana.com/edge/solana-release-x86_64-pc-windows-msvc.tar.bz2)
* [solana-install-init.exe](http://release.solana.com/edge/solana-install-init-x86_64-pc-windows-msvc.exe) as a stand-alone executable
#### All platforms
* [solana-metrics.tar.bz2](http://release.solana.com.s3.amazonaws.com/edge/solana-metrics.tar.bz2)
Now checkout the code from github:
### Beta channel
#### Linux (x86_64-unknown-linux-gnu)
* [solana.tar.bz2](http://release.solana.com/beta/solana-release-x86_64-unknown-linux-gnu.tar.bz2)
* [solana-install-init](http://release.solana.com/beta/solana-install-init-x86_64-unknown-linux-gnu) as a stand-alone executable
#### mac OS (x86_64-apple-darwin)
* [solana.tar.bz2](http://release.solana.com/beta/solana-release-x86_64-apple-darwin.tar.bz2)
* [solana-install-init](http://release.solana.com/beta/solana-install-init-x86_64-apple-darwin) as a stand-alone executable
#### Windows (x86_64-pc-windows-msvc)
* [solana.tar.bz2](http://release.solana.com/beta/solana-release-x86_64-pc-windows-msvc.tar.bz2)
* [solana-install-init.exe](http://release.solana.com/beta/solana-install-init-x86_64-pc-windows-msvc.exe) as a stand-alone executable
#### All platforms
* [solana-metrics.tar.bz2](http://release.solana.com.s3.amazonaws.com/beta/solana-metrics.tar.bz2)
```bash
$ git clone https://github.com/solana-labs/solana.git
$ cd solana
```
The demo code is sometimes broken between releases as we add new low-level
features, so if this is your first time running the demo, you'll improve
your odds of success if you check out the
[latest release](https://github.com/solana-labs/solana/releases)
before proceeding:
```bash
$ git checkout v0.8.0
```
Configuration Setup
---
The network is initialized with a genesis ledger and leader/validator configuration files.
These files can be generated by running the following script.
```bash
$ ./multinode-demo/setup.sh
```
Drone
---
In order for the leader, client and validators to work, we'll need to
spin up a drone to give out some test tokens. The drone delivers Milton
Friedman-style "air drops" (free tokens to requesting clients) to be used in
test transactions.
Start the drone on the leader node with:
```bash
$ ./multinode-demo/drone.sh
```
Singlenode Testnet
---
Before you start a fullnode, make sure you know the IP address of the machine you
want to be the leader for the demo, and make sure that udp ports 8000-10000 are
open on all the machines you want to test with.
Now start the server in a separate shell:
```bash
$ ./multinode-demo/leader.sh
```
Wait a few seconds for the server to initialize. It will print "leader ready..." when it's ready to
receive transactions. The leader will request some tokens from the drone if it doesn't have any.
The drone does not need to be running for subsequent leader starts.
Multinode Testnet
---
To run a multinode testnet, after starting a leader node, spin up some validator nodes in
separate shells:
```bash
$ ./multinode-demo/validator.sh
```
To run a performance-enhanced leader or validator (on Linux),
[CUDA 9.2](https://developer.nvidia.com/cuda-downloads) must be installed on
your system:
```bash
$ ./fetch-perf-libs.sh
$ SOLANA_CUDA=1 ./multinode-demo/leader.sh
$ SOLANA_CUDA=1 ./multinode-demo/validator.sh
```
Testnet Client Demo
---
Now that your singlenode or multinode testnet is up and running let's send it
some transactions!
In a separate shell start the client:
```bash
$ ./multinode-demo/client.sh # runs against localhost by default
```
What just happened? The client demo spins up several threads to send 500,000 transactions
to the testnet as quickly as it can. The client then pings the testnet periodically to see
how many transactions it processed in that time. Take note that the demo intentionally
floods the network with UDP packets, such that the network will almost certainly drop a
bunch of them. This ensures the testnet has an opportunity to reach 710k TPS. The client
demo completes after it has convinced itself the testnet won't process any additional
transactions. You should see several TPS measurements printed to the screen. In the
multinode variation, you'll see TPS measurements for each validator node as well.
Public Testnet
--------------
In this example the client connects to our public testnet. To run validators on the testnet you would need to open udp ports `8000-10000`.
```bash
$ ./multinode-demo/client.sh --network $(dig +short testnet.solana.com):8001 --identity config-private/client-id.json --duration 60
```
You can observe the effects of your client's transactions on our [dashboard](https://metrics.solana.com:3000/d/testnet/testnet-hud?orgId=2&from=now-30m&to=now&refresh=5s&var-testnet=testnet)
Linux Snap
---
A Linux [Snap](https://snapcraft.io/) is available, which can be used to
easily get Solana running on supported Linux systems without building anything
from source. The `edge` Snap channel is updated daily with the latest
development from the `master` branch. To install:
```bash
$ sudo snap install solana --edge --devmode
```
(`--devmode` flag is required only for `solana.fullnode-cuda`)
Once installed the usual Solana programs will be available as `solona.*` instead
of `solana-*`. For example, `solana.fullnode` instead of `solana-fullnode`.
Update to the latest version at any time with:
```bash
$ snap info solana
$ sudo snap refresh solana --devmode
```
### Daemon support
The snap supports running a leader, validator or leader+drone node as a system
daemon.
Run `sudo snap get solana` to view the current daemon configuration. To view
daemon logs:
1. Run `sudo snap logs -n=all solana` to view the daemon initialization log
2. Runtime logging can be found under `/var/snap/solana/current/leader/`,
`/var/snap/solana/current/validator/`, or `/var/snap/solana/current/drone/` depending
on which `mode=` was selected. Within each log directory the file `current`
contains the latest log, and the files `*.s` (if present) contain older rotated
logs.
Disable the daemon at any time by running:
```bash
$ sudo snap set solana mode=
```
Runtime configuration files for the daemon can be found in
`/var/snap/solana/current/config`.
#### Leader daemon
```bash
$ sudo snap set solana mode=leader
```
If CUDA is available:
```bash
$ sudo snap set solana mode=leader enable-cuda=1
```
`rsync` must be configured and running on the leader.
1. Ensure rsync is installed with `sudo apt-get -y install rsync`
2. Edit `/etc/rsyncd.conf` to include the following
```
[config]
path = /var/snap/solana/current/config
hosts allow = *
read only = true
```
3. Run `sudo systemctl enable rsync; sudo systemctl start rsync`
4. Test by running `rsync -Pzravv rsync://<ip-address-of-leader>/config
solana-config` from another machine. **If the leader is running on a cloud
provider it may be necessary to configure the Firewall rules to permit ingress
to port tcp:873, tcp:9900 and the port range udp:8000-udp:10000**
To run both the Leader and Drone:
```bash
$ sudo snap set solana mode=leader+drone
```
#### Validator daemon
```bash
$ sudo snap set solana mode=validator
```
If CUDA is available:
```bash
$ sudo snap set solana mode=validator enable-cuda=1
```
By default the validator will connect to **testnet.solana.com**, override
the leader IP address by running:
```bash
$ sudo snap set solana mode=validator leader-address=127.0.0.1 #<-- change IP address
```
It's assumed that the leader will be running `rsync` configured as described in
the previous **Leader daemon** section.
Developing
===
@ -75,10 +273,10 @@ Install rustc, cargo and rustfmt:
```bash
$ curl https://sh.rustup.rs -sSf | sh
$ source $HOME/.cargo/env
$ rustup component add rustfmt
$ rustup component add rustfmt-preview
```
If your rustc version is lower than 1.39.0, please update it:
If your rustc version is lower than 1.26.1, please update it:
```bash
$ rustup update
@ -87,7 +285,7 @@ $ rustup update
On Linux systems you may need to install libssl-dev, pkg-config, zlib1g-dev, etc. On Ubuntu:
```bash
$ sudo apt-get install libssl-dev pkg-config zlib1g-dev llvm clang
$ sudo apt-get install libssl-dev pkg-config zlib1g-dev
```
Download the source code:
@ -97,17 +295,6 @@ $ git clone https://github.com/solana-labs/solana.git
$ cd solana
```
Build
```bash
$ cargo build
```
Then to run a minimal local cluster
```bash
$ ./run.sh
```
Testing
---
@ -117,91 +304,43 @@ Run the test suite:
$ cargo test
```
Local Testnet
To emulate all the tests that will run on a Pull Request, run:
```bash
$ ./ci/run-local.sh
```
Debugging
---
Start your own testnet locally, instructions are in the book [Solana: Blockchain Rebuild for Scale: Getting Started](https://docs.solana.com/book/getting-started).
There are some useful debug messages in the code, you can enable them on a per-module and per-level
basis. Before running a leader or validator set the normal RUST\_LOG environment variable.
Remote Testnets
---
For example, to enable info everywhere and debug only in the solana::banking_stage module:
We maintain several testnets:
```bash
$ export RUST_LOG=info,solana::banking_stage=debug
```
* `testnet` - public stable testnet accessible via testnet.solana.com. Runs 24/7
* `testnet-beta` - public beta channel testnet accessible via beta.testnet.solana.com. Runs 24/7
* `testnet-edge` - public edge channel testnet accessible via edge.testnet.solana.com. Runs 24/7
Generally we are using debug for infrequent debug messages, trace for potentially frequent
messages and info for performance-related logging.
## Deploy process
You can also attach to a running process with GDB. The leader's process is named
_solana-fullnode_:
They are deployed with the `ci/testnet-manager.sh` script through a list of [scheduled
buildkite jobs](https://buildkite.com/solana-labs/testnet-management/settings/schedules).
Each testnet can be manually manipulated from buildkite as well.
## How do I reset the testnet?
Manually trigger the [testnet-management](https://buildkite.com/solana-labs/testnet-management) pipeline
and when prompted select the desired testnet
## How can I scale the tx generation rate?
Increase the TX rate by increasing the number of cores on the client machine which is running
`bench-tps` or run multiple clients. Decrease by lowering cores or using the rayon env
variable `RAYON_NUM_THREADS=<xx>`
## How can I test a change on the testnet?
Currently, a merged PR is the only way to test a change on the testnet. But you
can run your own testnet using the scripts in the `net/` directory.
## Adjusting the number of clients or validators on the testnet
Edit `ci/testnet-manager.sh`
## Metrics Server Maintenance
Sometimes the dashboard becomes unresponsive. This happens due to glitch in the metrics server.
The current solution is to reset the metrics server. Use the following steps.
1. The server is hosted in a GCP VM instance. Check if the VM instance is down by trying to SSH
into it from the GCP console. The name of the VM is ```metrics-solana-com```.
2. If the VM is inaccessible, reset it from the GCP console.
3. Once VM is up (or, was already up), the metrics services can be restarted from build automation.
1. Navigate to https://buildkite.com/solana-labs/metrics-dot-solana-dot-com in your web browser
2. Click on ```New Build```
3. This will show a pop up dialog. Click on ```options``` drop down.
4. Type in ```FORCE_START=true``` in ```Environment Variables``` text box.
5. Click ```Create Build```
6. This will restart the metrics services, and the dashboards should be accessible afterwards.
## Debugging Testnet
Testnet may exhibit different symptoms of failures. Primary statistics to check are
1. Rise in Confirmation Time
2. Nodes are not voting
3. Panics, and OOM notifications
Check the following if there are any signs of failure.
1. Did testnet deployment fail?
1. View buildkite logs for the last deployment: https://buildkite.com/solana-labs/testnet-management
2. Use the relevant branch
3. If the deployment failed, look at the build logs. The build artifacts for each remote node is uploaded.
It's a good first step to triage from these logs.
2. You may have to log into remote node if the deployment succeeded, but something failed during runtime.
1. Get the private key for the testnet deployment from ```metrics-solana-com``` GCP instance.
2. SSH into ```metrics-solana-com``` using GCP console and do the following.
```bash
sudo bash
cd ~buildkite-agent/.ssh
ls
```
3. Copy the relevant private key to your local machine
4. Find the public IP address of the AWS instance for the remote node using AWS console
5. ```ssh -i <private key file> ubuntu@<ip address of remote node>```
6. The logs are in ```~solana\solana``` folder
```bash
$ sudo gdb
attach <PID>
set logging on
thread apply all bt
```
This will dump all the threads stack traces into gdb.txt
Benchmarking
---
First install the nightly build of rustc. `cargo bench` requires use of the
unstable features only available in the nightly build.
First install the nightly build of rustc. `cargo bench` requires unstable features:
```bash
$ rustup install nightly
@ -210,24 +349,33 @@ $ rustup install nightly
Run the benchmarks:
```bash
$ cargo +nightly bench
$ cargo +nightly bench --features="unstable"
```
Release Process
---
The release process for this project is described [here](RELEASE.md).
The release process for this project is described [here](rfcs/rfc-005-branches-tags-and-channels.md).
Code coverage
---
To generate code coverage statistics:
To generate code coverage statistics, install cargo-cov. Note: the tool currently only works
in Rust nightly.
```bash
$ scripts/coverage.sh
$ open target/cov/lcov-local/index.html
$ cargo +nightly install cargo-cov
```
Run cargo-cov and generate a report:
```bash
$ cargo +nightly cov test
$ cargo +nightly cov report --open
```
The coverage report will be written to `./target/cov/report/index.html`
Why coverage? While most see coverage as a code quality metric, we see it primarily as a developer
productivity metric. When a developer makes a change to the codebase, presumably it's a *solution* to

View File

@ -1,185 +1,32 @@
# Solana Release process
## Branches and Tags
## Introduction
```
========================= master branch (edge channel) =======================>
\ \ \
\___v0.7.0 tag \ \
\ \ v0.9.0 tag__\
\ v0.8.0 tag__\ \
v0.7.1 tag__\ \ v0.9 branch (beta channel)
\___v0.7.2 tag \___v0.8.1 tag
\ \
\ \
v0.7 branch v0.8 branch (stable channel)
Solana uses a channel-oriented, date-based branching process described [here](https://github.com/solana-labs/solana/blob/master/rfcs/rfc-005-branches-tags-and-channels.md).
```
## Release Steps
### master branch
All new development occurs on the `master` branch.
### Changing channels
Bug fixes that affect a `vX.Y` branch are first made on `master`. This is to
allow a fix some soak time on `master` before it is applied to one or more
stabilization branches.
When cutting a new channel branch these pre-steps are required:
Merging to `master` first also helps ensure that fixes applied to one release
are present for future releases. (Sometimes the joy of landing a critical
release blocker in a branch causes you to forget to propagate back to
`master`!)"
1. Pick your branch point for release on master.
2. Create the branch. The name should be "v" + the first 2 "version" fields from Cargo.toml. For example, a Cargo.toml with version = "0.9.0" implies the next branch name is "v0.9".
3. Update Cargo.toml to the next semantic version (e.g. 0.9.0 -> 0.10.0).
4. Push your new branch to solana.git
5. Land your Carto.toml change as a master PR.
Once the bug fix lands on `master` it is cherry-picked into the `vX.Y` branch
and potentially the `vX.Y-1` branch. The exception to this rule is when a bug
fix for `vX.Y` doesn't apply to `master` or `vX.Y-1`.
At this point, ci/channel-info.sh should show your freshly cut release branch as "BETA_CHANNEL" and the previous release branch as "STABLE_CHANNEL".
Immediately after a new stabilization branch is forged, the `Cargo.toml` minor
version (*Y*) in the `master` branch is incremented by the release engineer.
Incrementing the major version of the `master` branch is outside the scope of
this document.
### Updating channels (i.e. "making a release")
### v*X.Y* stabilization branches
These are stabilization branches for a given milestone. They are created off
the `master` branch as late as possible prior to the milestone release.
We use [github's Releases UI](https://github.com/solana-labs/solana/releases) for tagging a release.
### v*X.Y.Z* release tag
The release tags are created as desired by the owner of the given stabilization
branch, and cause that *X.Y.Z* release to be shipped to https://crates.io
Immediately after a new v*X.Y.Z* branch tag has been created, the `Cargo.toml`
patch version number (*Z*) of the stabilization branch is incremented by the
release engineer.
## Channels
Channels are used by end-users (humans and bots) to consume the branches
described in the previous section, so they may automatically update to the most
recent version matching their desired stability.
There are three release channels that map to branches as follows:
* edge - tracks the `master` branch, least stable.
* beta - tracks the largest (and latest) `vX.Y` stabilization branch, more stable.
* stable - tracks the second largest `vX.Y` stabilization branch, most stable.
## Steps to Create a Branch
### Create the new branch
1. Check out the latest commit on `master` branch:
```
git fetch --all
git checkout upstream/master
```
1. Determine the new branch name. The name should be "v" + the first 2 version fields
from Cargo.toml. For example, a Cargo.toml with version = "0.9.0" implies
the next branch name is "v0.9".
1. Create the new branch and push this branch to the `solana` repository:
```
git checkout -b <branchname>
git push -u origin <branchname>
```
### Update master branch with the next version
1. After the new branch has been created and pushed, update the Cargo.toml files on **master** to the next semantic version (e.g. 0.9.0 -> 0.10.0) with:
```
scripts/increment-cargo-version.sh minor
```
1. Rebuild to get an updated version of `Cargo.lock`:
```
cargo build
```
1. Push all the changed Cargo.toml and Cargo.lock files to the `master` branch with something like:
```
git co -b version_update
git ls-files -m | xargs git add
git commit -m 'Update Cargo.toml versions from X.Y to X.Y+1'
git push -u origin version_update
```
1. Confirm that your freshly cut release branch is shown as `BETA_CHANNEL` and the previous release branch as `STABLE_CHANNEL`:
```
ci/channel_info.sh
```
## Steps to Create a Release
### Create the Release Tag on GitHub
1. Go to [GitHub's Releases UI](https://github.com/solana-labs/solana/releases) for tagging a release.
1. Click "Draft new release". The release tag must exactly match the `version`
field in `/Cargo.toml` prefixed by `v`.
1. If the Cargo.toml verion field is **0.12.3**, then the release tag must be **v0.12.3**
1. Make sure the Target Branch field matches the branch you want to make a release on.
1. If you want to release v0.12.0, the target branch must be v0.12
1. If this is the first release on the branch (e.g. v0.13.**0**), paste in [this
template](https://raw.githubusercontent.com/solana-labs/solana/master/.github/RELEASE_TEMPLATE.md). Engineering Lead can provide summary contents for release notes if needed.
1. Click "Save Draft", then confirm the release notes look good and the tag name and branch are correct. Go back into edit the release and click "Publish release" when ready.
### Update release branch with the next patch version
1. After the new release has been tagged, update the Cargo.toml files on **release branch** to the next semantic version (e.g. 0.9.0 -> 0.9.1) with:
```
scripts/increment-cargo-version.sh patch
```
1. Rebuild to get an updated version of `Cargo.lock`:
```
cargo build
```
1. Push all the changed Cargo.toml and Cargo.lock files to the **release branch** with something like:
```
git co -b version_update
git ls-files -m | xargs git add
git commit -m 'Update Cargo.toml versions from X.Y.Z to X.Y.Z+1'
git push -u origin version_update
```
### Verify release automation success
1. Go to [Solana Releases](https://github.com/solana-labs/solana/releases) and click on the latest release that you just published. Verify that all of the build artifacts are present. This can take up to 90 minutes after creating the tag.
1. The `solana-secondary` Buildkite pipeline handles creating the binary tarballs and updated crates. Look for a job under the tag name of the release: https://buildkite.com/solana-labs/solana-secondary
1. [Crates.io](https://crates.io/crates/solana) should have an updated Solana version.
### Update documentation
TODO: Documentation update procedure is WIP as we move to gitbook
Document the new recommended version by updating `book/src/running-archiver.md` and `book/src/validator-testnet.md` on the release (beta) branch to point at the `solana-install` for the upcoming release version.
### Update software on testnet.solana.com
The testnet running on testnet.solana.com is set to use a fixed release tag
which is set in the Buildkite testnet-management pipeline.
This tag needs to be updated and the testnet restarted after a new release
tag is created.
#### Update testnet schedules
Go to https://buildkite.com/solana-labs and click through: Pipelines ->
testnet-management -> Pipeline Settings -> Schedules
Or just click here:
https://buildkite.com/solana-labs/testnet-management/settings/schedules
There are two scheduled jobs for testnet: a daily restart and an hourly sanity-or-restart. \
https://buildkite.com/solana-labs/testnet-management/settings/schedules/0efd7856-7143-4713-8817-47e6bdb05387
https://buildkite.com/solana-labs/testnet-management/settings/schedules/2a926646-d972-42b5-aeb9-bb6759592a53
On each schedule:
1. Set TESTNET_TAG environment variable to the desired release tag.
1. Example, TESTNET_TAG=v0.13.2
1. Set the Build Branch to the branch that TESTNET_TAG is from.
1. Example: v0.13
#### Restart the testnet
Trigger a TESTNET_OP=create-and-start to refresh the cluster with the new version
1. Go to https://buildkite.com/solana-labs/testnet-management
2. Click "New Build" and use the following settings, then click "Create Build"
1. Commit: HEAD
1. Branch: [channel branch as set in the schedules]
1. Environment Variables:
```
TESTNET=testnet
TESTNET_TAG=[same value as used in TESTNET_TAG in the schedules]
TESTNET_OP=create-and-start
```
### Alert the community
Notify Discord users on #validator-support that a new release for
testnet.solana.com is available
1. Go [there ;)](https://github.com/solana-labs/solana/releases).
2. Click "Draft new release".
3. If the first major release on the branch (e.g. v0.8.0), paste in [this template](https://raw.githubusercontent.com/solana-labs/solana/master/.github/RELEASE_TEMPLATE.md) and fill it in.
4. Test the release by generating a tag using semver's rules. First try at a release should be <branchname>.X-rc.0.
5. Verify release automation:
1. [Crates.io](https://crates.io/crates/solana) should have an updated Solana version.
2. ...
6. After testnet deployment, verify that testnets are running correct software. http://metrics.solana.com should show testnet running on a hash from your newly created branch.

View File

@ -1,39 +0,0 @@
[package]
name = "solana-archiver-lib"
version = "0.23.2"
description = "Solana Archiver Library"
authors = ["Solana Maintainers <maintainers@solana.com>"]
repository = "https://github.com/solana-labs/solana"
license = "Apache-2.0"
homepage = "https://solana.com/"
edition = "2018"
[dependencies]
bincode = "1.2.1"
crossbeam-channel = "0.3"
ed25519-dalek = "=1.0.0-pre.1"
log = "0.4.8"
rand = "0.6.5"
rand_chacha = "0.1.1"
solana-client = { path = "../client", version = "0.23.2" }
solana-storage-program = { path = "../programs/storage", version = "0.23.2" }
thiserror = "1.0"
serde = "1.0.104"
serde_json = "1.0.44"
serde_derive = "1.0.103"
solana-net-utils = { path = "../net-utils", version = "0.23.2" }
solana-chacha = { path = "../chacha", version = "0.23.2" }
solana-chacha-sys = { path = "../chacha-sys", version = "0.23.2" }
solana-ledger = { path = "../ledger", version = "0.23.2" }
solana-logger = { path = "../logger", version = "0.23.2" }
solana-perf = { path = "../perf", version = "0.23.2" }
solana-sdk = { path = "../sdk", version = "0.23.2" }
solana-core = { path = "../core", version = "0.23.2" }
solana-archiver-utils = { path = "../archiver-utils", version = "0.23.2" }
solana-metrics = { path = "../metrics", version = "0.23.2" }
[dev-dependencies]
hex = "0.4.0"
[lib]
name = "solana_archiver_lib"

View File

@ -1,952 +0,0 @@
use crate::result::ArchiverError;
use crossbeam_channel::unbounded;
use ed25519_dalek;
use rand::{thread_rng, Rng, SeedableRng};
use rand_chacha::ChaChaRng;
use solana_archiver_utils::sample_file;
use solana_chacha::chacha::{chacha_cbc_encrypt_ledger, CHACHA_BLOCK_SIZE};
use solana_client::{
rpc_client::RpcClient, rpc_request::RpcRequest, rpc_response::RpcStorageTurn,
thin_client::ThinClient,
};
use solana_core::{
cluster_info::{ClusterInfo, Node, VALIDATOR_PORT_RANGE},
contact_info::ContactInfo,
gossip_service::GossipService,
packet::{limited_deserialize, PACKET_DATA_SIZE},
repair_service,
repair_service::{RepairService, RepairSlotRange, RepairStrategy},
shred_fetch_stage::ShredFetchStage,
sigverify_stage::{DisabledSigVerifier, SigVerifyStage},
storage_stage::NUM_STORAGE_SAMPLES,
streamer::{receiver, responder, PacketReceiver},
window_service::WindowService,
};
use solana_ledger::{
blockstore::Blockstore, leader_schedule_cache::LeaderScheduleCache, shred::Shred,
};
use solana_net_utils::bind_in_range;
use solana_perf::packet::Packets;
use solana_perf::recycler::Recycler;
use solana_sdk::packet::Packet;
use solana_sdk::{
account_utils::StateMut,
client::{AsyncClient, SyncClient},
clock::{get_complete_segment_from_slot, get_segment_from_slot, Slot},
commitment_config::CommitmentConfig,
hash::Hash,
message::Message,
signature::{Keypair, KeypairUtil, Signature},
timing::timestamp,
transaction::Transaction,
transport::TransportError,
};
use solana_storage_program::{
storage_contract::StorageContract,
storage_instruction::{self, StorageAccountType},
};
use std::{
io::{self, ErrorKind},
net::{SocketAddr, UdpSocket},
path::{Path, PathBuf},
result,
sync::atomic::{AtomicBool, Ordering},
sync::mpsc::{channel, Receiver, Sender},
sync::{Arc, RwLock},
thread::{sleep, spawn, JoinHandle},
time::Duration,
};
type Result<T> = std::result::Result<T, ArchiverError>;
static ENCRYPTED_FILENAME: &str = "ledger.enc";
#[derive(Serialize, Deserialize)]
pub enum ArchiverRequest {
GetSlotHeight(SocketAddr),
}
pub struct Archiver {
thread_handles: Vec<JoinHandle<()>>,
exit: Arc<AtomicBool>,
}
// Shared Archiver Meta struct used internally
#[derive(Default)]
struct ArchiverMeta {
slot: Slot,
slots_per_segment: u64,
ledger_path: PathBuf,
signature: Signature,
ledger_data_file_encrypted: PathBuf,
sampling_offsets: Vec<u64>,
blockhash: Hash,
sha_state: Hash,
num_chacha_blocks: usize,
client_commitment: CommitmentConfig,
}
fn get_slot_from_signature(
signature: &ed25519_dalek::Signature,
storage_turn: u64,
slots_per_segment: u64,
) -> u64 {
let signature_vec = signature.to_bytes();
let mut segment_index = u64::from(signature_vec[0])
| (u64::from(signature_vec[1]) << 8)
| (u64::from(signature_vec[1]) << 16)
| (u64::from(signature_vec[2]) << 24);
let max_segment_index =
get_complete_segment_from_slot(storage_turn, slots_per_segment).unwrap();
segment_index %= max_segment_index as u64;
segment_index * slots_per_segment
}
fn create_request_processor(
socket: UdpSocket,
exit: &Arc<AtomicBool>,
slot_receiver: Receiver<u64>,
) -> Vec<JoinHandle<()>> {
let mut thread_handles = vec![];
let (s_reader, r_reader) = channel();
let (s_responder, r_responder) = channel();
let storage_socket = Arc::new(socket);
let recycler = Recycler::default();
let t_receiver = receiver(storage_socket.clone(), exit, s_reader, recycler, "archiver");
thread_handles.push(t_receiver);
let t_responder = responder("archiver-responder", storage_socket, r_responder);
thread_handles.push(t_responder);
let exit = exit.clone();
let t_processor = spawn(move || {
let slot = poll_for_slot(slot_receiver, &exit);
loop {
if exit.load(Ordering::Relaxed) {
break;
}
let packets = r_reader.recv_timeout(Duration::from_secs(1));
if let Ok(packets) = packets {
for packet in &packets.packets {
let req: result::Result<ArchiverRequest, Box<bincode::ErrorKind>> =
limited_deserialize(&packet.data[..packet.meta.size]);
match req {
Ok(ArchiverRequest::GetSlotHeight(from)) => {
let packet = Packet::from_data(&from, slot);
let _ = s_responder.send(Packets::new(vec![packet]));
}
Err(e) => {
info!("invalid request: {:?}", e);
}
}
}
}
}
});
thread_handles.push(t_processor);
thread_handles
}
fn poll_for_slot(receiver: Receiver<u64>, exit: &Arc<AtomicBool>) -> u64 {
loop {
let slot = receiver.recv_timeout(Duration::from_secs(1));
if let Ok(slot) = slot {
return slot;
}
if exit.load(Ordering::Relaxed) {
return 0;
}
}
}
impl Archiver {
/// Returns a Result that contains an archiver on success
///
/// # Arguments
/// * `ledger_path` - path to where the ledger will be stored.
/// Causes panic if none
/// * `node` - The archiver node
/// * `cluster_entrypoint` - ContactInfo representing an entry into the network
/// * `keypair` - Keypair for this archiver
#[allow(clippy::new_ret_no_self)]
pub fn new(
ledger_path: &Path,
node: Node,
cluster_entrypoint: ContactInfo,
keypair: Arc<Keypair>,
storage_keypair: Arc<Keypair>,
client_commitment: CommitmentConfig,
) -> Result<Self> {
let exit = Arc::new(AtomicBool::new(false));
info!("Archiver: id: {}", keypair.pubkey());
info!("Creating cluster info....");
let mut cluster_info = ClusterInfo::new(node.info.clone(), keypair.clone());
cluster_info.set_entrypoint(cluster_entrypoint.clone());
let cluster_info = Arc::new(RwLock::new(cluster_info));
// Note for now, this ledger will not contain any of the existing entries
// in the ledger located at ledger_path, and will only append on newly received
// entries after being passed to window_service
let blockstore = Arc::new(
Blockstore::open(ledger_path).expect("Expected to be able to open database ledger"),
);
let gossip_service = GossipService::new(
&cluster_info,
Some(blockstore.clone()),
None,
node.sockets.gossip,
&exit,
);
info!("Connecting to the cluster via {:?}", cluster_entrypoint);
let (nodes, _) =
match solana_core::gossip_service::discover_cluster(&cluster_entrypoint.gossip, 1) {
Ok(nodes_and_archivers) => nodes_and_archivers,
Err(e) => {
//shutdown services before exiting
exit.store(true, Ordering::Relaxed);
gossip_service.join()?;
return Err(e.into());
}
};
let client = solana_core::gossip_service::get_client(&nodes);
info!("Setting up mining account...");
if let Err(e) = Self::setup_mining_account(
&client,
&keypair,
&storage_keypair,
client_commitment.clone(),
) {
//shutdown services before exiting
exit.store(true, Ordering::Relaxed);
gossip_service.join()?;
return Err(e);
};
let repair_socket = Arc::new(node.sockets.repair);
let shred_sockets: Vec<Arc<UdpSocket>> =
node.sockets.tvu.into_iter().map(Arc::new).collect();
let shred_forward_sockets: Vec<Arc<UdpSocket>> = node
.sockets
.tvu_forwards
.into_iter()
.map(Arc::new)
.collect();
let (shred_fetch_sender, shred_fetch_receiver) = channel();
let fetch_stage = ShredFetchStage::new(
shred_sockets,
shred_forward_sockets,
repair_socket.clone(),
&shred_fetch_sender,
&exit,
);
let (slot_sender, slot_receiver) = channel();
let request_processor =
create_request_processor(node.sockets.storage.unwrap(), &exit, slot_receiver);
let t_archiver = {
let exit = exit.clone();
let node_info = node.info.clone();
let mut meta = ArchiverMeta {
ledger_path: ledger_path.to_path_buf(),
client_commitment,
..ArchiverMeta::default()
};
spawn(move || {
// setup archiver
let window_service = match Self::setup(
&mut meta,
cluster_info.clone(),
&blockstore,
&exit,
&node_info,
&storage_keypair,
repair_socket,
shred_fetch_receiver,
slot_sender,
) {
Ok(window_service) => window_service,
Err(e) => {
//shutdown services before exiting
error!("setup failed {:?}; archiver thread exiting...", e);
exit.store(true, Ordering::Relaxed);
request_processor
.into_iter()
.for_each(|t| t.join().unwrap());
fetch_stage.join().unwrap();
gossip_service.join().unwrap();
return;
}
};
info!("setup complete");
// run archiver
Self::run(
&mut meta,
&blockstore,
cluster_info,
&keypair,
&storage_keypair,
&exit,
);
// wait until exit
request_processor
.into_iter()
.for_each(|t| t.join().unwrap());
fetch_stage.join().unwrap();
gossip_service.join().unwrap();
window_service.join().unwrap()
})
};
Ok(Self {
thread_handles: vec![t_archiver],
exit,
})
}
fn run(
meta: &mut ArchiverMeta,
blockstore: &Arc<Blockstore>,
cluster_info: Arc<RwLock<ClusterInfo>>,
archiver_keypair: &Arc<Keypair>,
storage_keypair: &Arc<Keypair>,
exit: &Arc<AtomicBool>,
) {
// encrypt segment
Self::encrypt_ledger(meta, blockstore).expect("ledger encrypt not successful");
let enc_file_path = meta.ledger_data_file_encrypted.clone();
// do replicate
loop {
if exit.load(Ordering::Relaxed) {
break;
}
// TODO check if more segments are available - based on space constraints
Self::create_sampling_offsets(meta);
let sampling_offsets = &meta.sampling_offsets;
meta.sha_state =
match Self::sample_file_to_create_mining_hash(&enc_file_path, sampling_offsets) {
Ok(hash) => hash,
Err(err) => {
warn!("Error sampling file, exiting: {:?}", err);
break;
}
};
Self::submit_mining_proof(meta, &cluster_info, archiver_keypair, storage_keypair);
// TODO make this a lot more frequent by picking a "new" blockhash instead of picking a storage blockhash
// prep the next proof
let (storage_blockhash, _) = match Self::poll_for_blockhash_and_slot(
&cluster_info,
meta.slots_per_segment,
&meta.blockhash,
exit,
) {
Ok(blockhash_and_slot) => blockhash_and_slot,
Err(e) => {
warn!(
"Error couldn't get a newer blockhash than {:?}. {:?}",
meta.blockhash, e
);
break;
}
};
meta.blockhash = storage_blockhash;
Self::redeem_rewards(
&cluster_info,
archiver_keypair,
storage_keypair,
meta.client_commitment.clone(),
);
}
exit.store(true, Ordering::Relaxed);
}
fn redeem_rewards(
cluster_info: &Arc<RwLock<ClusterInfo>>,
archiver_keypair: &Arc<Keypair>,
storage_keypair: &Arc<Keypair>,
client_commitment: CommitmentConfig,
) {
let nodes = cluster_info.read().unwrap().tvu_peers();
let client = solana_core::gossip_service::get_client(&nodes);
if let Ok(Some(account)) =
client.get_account_with_commitment(&storage_keypair.pubkey(), client_commitment.clone())
{
if let Ok(StorageContract::ArchiverStorage { validations, .. }) = account.state() {
if !validations.is_empty() {
let ix = storage_instruction::claim_reward(
&archiver_keypair.pubkey(),
&storage_keypair.pubkey(),
);
let message =
Message::new_with_payer(vec![ix], Some(&archiver_keypair.pubkey()));
if let Err(e) = client.send_message(&[&archiver_keypair], message) {
error!("unable to redeem reward, tx failed: {:?}", e);
} else {
info!(
"collected mining rewards: Account balance {:?}",
client.get_balance_with_commitment(
&archiver_keypair.pubkey(),
client_commitment
)
);
}
}
}
} else {
info!("Redeem mining reward: No account data found");
}
}
// Find a segment to replicate and download it.
fn setup(
meta: &mut ArchiverMeta,
cluster_info: Arc<RwLock<ClusterInfo>>,
blockstore: &Arc<Blockstore>,
exit: &Arc<AtomicBool>,
node_info: &ContactInfo,
storage_keypair: &Arc<Keypair>,
repair_socket: Arc<UdpSocket>,
shred_fetch_receiver: PacketReceiver,
slot_sender: Sender<u64>,
) -> Result<WindowService> {
let slots_per_segment =
match Self::get_segment_config(&cluster_info, meta.client_commitment.clone()) {
Ok(slots_per_segment) => slots_per_segment,
Err(e) => {
error!("unable to get segment size configuration, exiting...");
//shutdown services before exiting
exit.store(true, Ordering::Relaxed);
return Err(e);
}
};
let (segment_blockhash, segment_slot) = match Self::poll_for_segment(
&cluster_info,
slots_per_segment,
&Hash::default(),
exit,
) {
Ok(blockhash_and_slot) => blockhash_and_slot,
Err(e) => {
//shutdown services before exiting
exit.store(true, Ordering::Relaxed);
return Err(e);
}
};
let signature = storage_keypair.sign(segment_blockhash.as_ref());
let slot = get_slot_from_signature(&signature, segment_slot, slots_per_segment);
info!("replicating slot: {}", slot);
slot_sender.send(slot)?;
meta.slot = slot;
meta.slots_per_segment = slots_per_segment;
meta.signature = Signature::new(&signature.to_bytes());
meta.blockhash = segment_blockhash;
let mut repair_slot_range = RepairSlotRange::default();
repair_slot_range.end = slot + slots_per_segment;
repair_slot_range.start = slot;
let (retransmit_sender, _) = channel();
let (verified_sender, verified_receiver) = unbounded();
let _sigverify_stage = SigVerifyStage::new(
shred_fetch_receiver,
verified_sender,
DisabledSigVerifier::default(),
);
let window_service = WindowService::new(
blockstore.clone(),
cluster_info.clone(),
verified_receiver,
retransmit_sender,
repair_socket,
&exit,
RepairStrategy::RepairRange(repair_slot_range),
&Arc::new(LeaderScheduleCache::default()),
|_, _, _, _| true,
);
info!("waiting for ledger download");
Self::wait_for_segment_download(
slot,
slots_per_segment,
&blockstore,
&exit,
&node_info,
cluster_info,
);
Ok(window_service)
}
fn wait_for_segment_download(
start_slot: Slot,
slots_per_segment: u64,
blockstore: &Arc<Blockstore>,
exit: &Arc<AtomicBool>,
node_info: &ContactInfo,
cluster_info: Arc<RwLock<ClusterInfo>>,
) {
info!(
"window created, waiting for ledger download starting at slot {:?}",
start_slot
);
let mut current_slot = start_slot;
'outer: loop {
while blockstore.is_full(current_slot) {
current_slot += 1;
info!("current slot: {}", current_slot);
if current_slot >= start_slot + slots_per_segment {
break 'outer;
}
}
if exit.load(Ordering::Relaxed) {
break;
}
sleep(Duration::from_secs(1));
}
info!("Done receiving entries from window_service");
// Remove archiver from the data plane
let mut contact_info = node_info.clone();
contact_info.tvu = "0.0.0.0:0".parse().unwrap();
contact_info.wallclock = timestamp();
// copy over the adopted shred_version from the entrypoint
contact_info.shred_version = cluster_info.read().unwrap().my_data().shred_version;
{
let mut cluster_info_w = cluster_info.write().unwrap();
cluster_info_w.insert_self(contact_info);
}
}
fn encrypt_ledger(meta: &mut ArchiverMeta, blockstore: &Arc<Blockstore>) -> Result<()> {
meta.ledger_data_file_encrypted = meta.ledger_path.join(ENCRYPTED_FILENAME);
{
let mut ivec = [0u8; 64];
ivec.copy_from_slice(&meta.signature.as_ref());
let num_encrypted_bytes = chacha_cbc_encrypt_ledger(
blockstore,
meta.slot,
meta.slots_per_segment,
&meta.ledger_data_file_encrypted,
&mut ivec,
)?;
meta.num_chacha_blocks = num_encrypted_bytes / CHACHA_BLOCK_SIZE;
}
info!(
"Done encrypting the ledger: {:?}",
meta.ledger_data_file_encrypted
);
Ok(())
}
fn create_sampling_offsets(meta: &mut ArchiverMeta) {
meta.sampling_offsets.clear();
let mut rng_seed = [0u8; 32];
rng_seed.copy_from_slice(&meta.blockhash.as_ref());
let mut rng = ChaChaRng::from_seed(rng_seed);
for _ in 0..NUM_STORAGE_SAMPLES {
meta.sampling_offsets
.push(rng.gen_range(0, meta.num_chacha_blocks) as u64);
}
}
fn sample_file_to_create_mining_hash(
enc_file_path: &Path,
sampling_offsets: &[u64],
) -> Result<Hash> {
let sha_state = sample_file(enc_file_path, sampling_offsets)?;
info!("sampled sha_state: {}", sha_state);
Ok(sha_state)
}
fn setup_mining_account(
client: &ThinClient,
keypair: &Keypair,
storage_keypair: &Keypair,
client_commitment: CommitmentConfig,
) -> Result<()> {
// make sure archiver has some balance
info!("checking archiver keypair...");
if client.poll_balance_with_timeout_and_commitment(
&keypair.pubkey(),
&Duration::from_millis(100),
&Duration::from_secs(5),
client_commitment.clone(),
)? == 0
{
return Err(ArchiverError::EmptyStorageAccountBalance);
}
info!("checking storage account keypair...");
// check if the storage account exists
let balance = client
.poll_get_balance_with_commitment(&storage_keypair.pubkey(), client_commitment.clone());
if balance.is_err() || balance.unwrap() == 0 {
let blockhash =
match client.get_recent_blockhash_with_commitment(client_commitment.clone()) {
Ok((blockhash, _)) => blockhash,
Err(e) => {
return Err(ArchiverError::TransportError(e));
}
};
let ix = storage_instruction::create_storage_account(
&keypair.pubkey(),
&keypair.pubkey(),
&storage_keypair.pubkey(),
1,
StorageAccountType::Archiver,
);
let tx = Transaction::new_signed_instructions(&[keypair], ix, blockhash);
let signature = client.async_send_transaction(tx)?;
client
.poll_for_signature_with_commitment(&signature, client_commitment)
.map_err(|err| match err {
TransportError::IoError(e) => e,
TransportError::TransactionError(_) => io::Error::new(
ErrorKind::Other,
"setup_mining_account: signature not found",
),
})?;
}
Ok(())
}
fn submit_mining_proof(
meta: &ArchiverMeta,
cluster_info: &Arc<RwLock<ClusterInfo>>,
archiver_keypair: &Arc<Keypair>,
storage_keypair: &Arc<Keypair>,
) {
// No point if we've got no storage account...
let nodes = cluster_info.read().unwrap().tvu_peers();
let client = solana_core::gossip_service::get_client(&nodes);
let storage_balance = client.poll_get_balance_with_commitment(
&storage_keypair.pubkey(),
meta.client_commitment.clone(),
);
if storage_balance.is_err() || storage_balance.unwrap() == 0 {
error!("Unable to submit mining proof, no storage account");
return;
}
// ...or no lamports for fees
let balance = client.poll_get_balance_with_commitment(
&archiver_keypair.pubkey(),
meta.client_commitment.clone(),
);
if balance.is_err() || balance.unwrap() == 0 {
error!("Unable to submit mining proof, insufficient Archiver Account balance");
return;
}
let blockhash =
match client.get_recent_blockhash_with_commitment(meta.client_commitment.clone()) {
Ok((blockhash, _)) => blockhash,
Err(_) => {
error!("unable to get recent blockhash, can't submit proof");
return;
}
};
let instruction = storage_instruction::mining_proof(
&storage_keypair.pubkey(),
meta.sha_state,
get_segment_from_slot(meta.slot, meta.slots_per_segment),
Signature::new(&meta.signature.as_ref()),
meta.blockhash,
);
let message = Message::new_with_payer(vec![instruction], Some(&archiver_keypair.pubkey()));
let mut transaction = Transaction::new(
&[archiver_keypair.as_ref(), storage_keypair.as_ref()],
message,
blockhash,
);
if let Err(err) = client.send_and_confirm_transaction(
&[&archiver_keypair, &storage_keypair],
&mut transaction,
10,
0,
) {
error!("Error: {:?}; while sending mining proof", err);
}
}
pub fn close(self) {
self.exit.store(true, Ordering::Relaxed);
self.join()
}
pub fn join(self) {
for handle in self.thread_handles {
handle.join().unwrap();
}
}
fn get_segment_config(
cluster_info: &Arc<RwLock<ClusterInfo>>,
client_commitment: CommitmentConfig,
) -> Result<u64> {
let rpc_peers = {
let cluster_info = cluster_info.read().unwrap();
cluster_info.all_rpc_peers()
};
debug!("rpc peers: {:?}", rpc_peers);
if !rpc_peers.is_empty() {
let rpc_client = {
let node_index = thread_rng().gen_range(0, rpc_peers.len());
RpcClient::new_socket(rpc_peers[node_index].rpc)
};
Ok(rpc_client
.send(
&RpcRequest::GetSlotsPerSegment,
serde_json::json!([client_commitment]),
0,
)
.map_err(|err| {
warn!("Error while making rpc request {:?}", err);
ArchiverError::ClientError(err)
})?
.as_u64()
.unwrap())
} else {
Err(ArchiverError::NoRpcPeers)
}
}
/// Waits until the first segment is ready, and returns the current segment
fn poll_for_segment(
cluster_info: &Arc<RwLock<ClusterInfo>>,
slots_per_segment: u64,
previous_blockhash: &Hash,
exit: &Arc<AtomicBool>,
) -> Result<(Hash, u64)> {
loop {
let (blockhash, turn_slot) = Self::poll_for_blockhash_and_slot(
cluster_info,
slots_per_segment,
previous_blockhash,
exit,
)?;
if get_complete_segment_from_slot(turn_slot, slots_per_segment).is_some() {
return Ok((blockhash, turn_slot));
}
}
}
/// Poll for a different blockhash and associated max_slot than `previous_blockhash`
fn poll_for_blockhash_and_slot(
cluster_info: &Arc<RwLock<ClusterInfo>>,
slots_per_segment: u64,
previous_blockhash: &Hash,
exit: &Arc<AtomicBool>,
) -> Result<(Hash, u64)> {
info!("waiting for the next turn...");
loop {
let rpc_peers = {
let cluster_info = cluster_info.read().unwrap();
cluster_info.all_rpc_peers()
};
debug!("rpc peers: {:?}", rpc_peers);
if !rpc_peers.is_empty() {
let rpc_client = {
let node_index = thread_rng().gen_range(0, rpc_peers.len());
RpcClient::new_socket(rpc_peers[node_index].rpc)
};
let response = rpc_client
.send(
&RpcRequest::GetStorageTurn,
serde_json::value::Value::Null,
0,
)
.map_err(|err| {
warn!("Error while making rpc request {:?}", err);
ArchiverError::ClientError(err)
})?;
let RpcStorageTurn {
blockhash: storage_blockhash,
slot: turn_slot,
} = serde_json::from_value::<RpcStorageTurn>(response)
.map_err(ArchiverError::JsonError)?;
let turn_blockhash = storage_blockhash.parse().map_err(|err| {
io::Error::new(
io::ErrorKind::Other,
format!(
"Blockhash parse failure: {:?} on {:?}",
err, storage_blockhash
),
)
})?;
if turn_blockhash != *previous_blockhash {
info!("turn slot: {}", turn_slot);
if get_segment_from_slot(turn_slot, slots_per_segment) != 0 {
return Ok((turn_blockhash, turn_slot));
}
}
}
if exit.load(Ordering::Relaxed) {
return Err(ArchiverError::IO(io::Error::new(
ErrorKind::Other,
"exit signalled...",
)));
}
sleep(Duration::from_secs(5));
}
}
/// Ask an archiver to populate a given blockstore with its segment.
/// Return the slot at the start of the archiver's segment
///
/// It is recommended to use a temporary blockstore for this since the download will not verify
/// shreds received and might impact the chaining of shreds across slots
pub fn download_from_archiver(
cluster_info: &Arc<RwLock<ClusterInfo>>,
archiver_info: &ContactInfo,
blockstore: &Arc<Blockstore>,
slots_per_segment: u64,
) -> Result<u64> {
// Create a client which downloads from the archiver and see that it
// can respond with shreds.
let start_slot = Self::get_archiver_segment_slot(archiver_info.storage_addr);
info!("Archiver download: start at {}", start_slot);
let exit = Arc::new(AtomicBool::new(false));
let (s_reader, r_reader) = channel();
let repair_socket = Arc::new(bind_in_range(VALIDATOR_PORT_RANGE).unwrap().1);
let t_receiver = receiver(
repair_socket.clone(),
&exit,
s_reader,
Recycler::default(),
"archiver_reeciver",
);
let id = cluster_info.read().unwrap().id();
info!(
"Sending repair requests from: {} to: {}",
cluster_info.read().unwrap().my_data().id,
archiver_info.gossip
);
let repair_slot_range = RepairSlotRange {
start: start_slot,
end: start_slot + slots_per_segment,
};
// try for upto 180 seconds //TODO needs tuning if segments are huge
for _ in 0..120 {
// Strategy used by archivers
let repairs = RepairService::generate_repairs_in_range(
blockstore,
repair_service::MAX_REPAIR_LENGTH,
&repair_slot_range,
);
//iter over the repairs and send them
if let Ok(repairs) = repairs {
let reqs: Vec<_> = repairs
.into_iter()
.filter_map(|repair_request| {
cluster_info
.read()
.unwrap()
.map_repair_request(&repair_request)
.map(|result| ((archiver_info.gossip, result), repair_request))
.ok()
})
.collect();
for ((to, req), repair_request) in reqs {
if let Ok(local_addr) = repair_socket.local_addr() {
datapoint_info!(
"archiver_download",
("repair_request", format!("{:?}", repair_request), String),
("to", to.to_string(), String),
("from", local_addr.to_string(), String),
("id", id.to_string(), String)
);
}
repair_socket
.send_to(&req, archiver_info.gossip)
.unwrap_or_else(|e| {
error!("{} repair req send_to({}) error {:?}", id, to, e);
0
});
}
}
let res = r_reader.recv_timeout(Duration::new(1, 0));
if let Ok(mut packets) = res {
while let Ok(mut more) = r_reader.try_recv() {
packets.packets.append_pinned(&mut more.packets);
}
let shreds: Vec<Shred> = packets
.packets
.into_iter()
.filter_map(|p| Shred::new_from_serialized_shred(p.data.to_vec()).ok())
.collect();
blockstore.insert_shreds(shreds, None, false)?;
}
// check if all the slots in the segment are complete
if Self::segment_complete(start_slot, slots_per_segment, blockstore) {
break;
}
sleep(Duration::from_millis(500));
}
exit.store(true, Ordering::Relaxed);
t_receiver.join().unwrap();
// check if all the slots in the segment are complete
if !Self::segment_complete(start_slot, slots_per_segment, blockstore) {
return Err(ArchiverError::SegmentDownloadError);
}
Ok(start_slot)
}
fn segment_complete(
start_slot: Slot,
slots_per_segment: u64,
blockstore: &Arc<Blockstore>,
) -> bool {
for slot in start_slot..(start_slot + slots_per_segment) {
if !blockstore.is_full(slot) {
return false;
}
}
true
}
fn get_archiver_segment_slot(to: SocketAddr) -> u64 {
let (_port, socket) = bind_in_range(VALIDATOR_PORT_RANGE).unwrap();
socket
.set_read_timeout(Some(Duration::from_secs(5)))
.unwrap();
let req = ArchiverRequest::GetSlotHeight(socket.local_addr().unwrap());
let serialized_req = bincode::serialize(&req).unwrap();
for _ in 0..10 {
socket.send_to(&serialized_req, to).unwrap();
let mut buf = [0; 1024];
if let Ok((size, _addr)) = socket.recv_from(&mut buf) {
// Ignore bad packet and try again
if let Ok(slot) = bincode::config()
.limit(PACKET_DATA_SIZE as u64)
.deserialize(&buf[..size])
{
return slot;
}
}
sleep(Duration::from_millis(500));
}
panic!("Couldn't get segment slot from archiver!");
}
}

View File

@ -1,11 +0,0 @@
#[macro_use]
extern crate log;
#[macro_use]
extern crate serde_derive;
#[macro_use]
extern crate solana_metrics;
pub mod archiver;
mod result;

View File

@ -1,48 +0,0 @@
use serde_json;
use solana_client::client_error;
use solana_ledger::blockstore;
use solana_sdk::transport;
use std::any::Any;
use thiserror::Error;
#[derive(Error, Debug)]
pub enum ArchiverError {
#[error("IO error")]
IO(#[from] std::io::Error),
#[error("blockstore error")]
BlockstoreError(#[from] blockstore::BlockstoreError),
#[error("crossbeam error")]
CrossbeamSendError(#[from] crossbeam_channel::SendError<u64>),
#[error("send error")]
SendError(#[from] std::sync::mpsc::SendError<u64>),
#[error("join error")]
JoinError(Box<dyn Any + Send + 'static>),
#[error("transport error")]
TransportError(#[from] transport::TransportError),
#[error("client error")]
ClientError(#[from] client_error::ClientError),
#[error("Json parsing error")]
JsonError(#[from] serde_json::error::Error),
#[error("Storage account has no balance")]
EmptyStorageAccountBalance,
#[error("No RPC peers..")]
NoRpcPeers,
#[error("Couldn't download full segment")]
SegmentDownloadError,
}
impl std::convert::From<Box<dyn Any + Send + 'static>> for ArchiverError {
fn from(e: Box<dyn Any + Send + 'static>) -> ArchiverError {
ArchiverError::JoinError(e)
}
}

View File

@ -1,26 +0,0 @@
[package]
name = "solana-archiver-utils"
version = "0.23.2"
description = "Solana Archiver Utils"
authors = ["Solana Maintainers <maintainers@solana.com>"]
repository = "https://github.com/solana-labs/solana"
license = "Apache-2.0"
homepage = "https://solana.com/"
edition = "2018"
[dependencies]
log = "0.4.8"
rand = "0.6.5"
rand_chacha = "0.1.1"
solana-chacha = { path = "../chacha", version = "0.23.2" }
solana-chacha-sys = { path = "../chacha-sys", version = "0.23.2" }
solana-ledger = { path = "../ledger", version = "0.23.2" }
solana-logger = { path = "../logger", version = "0.23.2" }
solana-perf = { path = "../perf", version = "0.23.2" }
solana-sdk = { path = "../sdk", version = "0.23.2" }
[dev-dependencies]
hex = "0.4.0"
[lib]
name = "solana_archiver_utils"

View File

@ -1,120 +0,0 @@
#[macro_use]
extern crate log;
use solana_sdk::hash::{Hash, Hasher};
use std::fs::File;
use std::io::{self, BufReader, ErrorKind, Read, Seek, SeekFrom};
use std::mem::size_of;
use std::path::Path;
pub fn sample_file(in_path: &Path, sample_offsets: &[u64]) -> io::Result<Hash> {
let in_file = File::open(in_path)?;
let metadata = in_file.metadata()?;
let mut buffer_file = BufReader::new(in_file);
let mut hasher = Hasher::default();
let sample_size = size_of::<Hash>();
let sample_size64 = sample_size as u64;
let mut buf = vec![0; sample_size];
let file_len = metadata.len();
if file_len < sample_size64 {
return Err(io::Error::new(ErrorKind::Other, "file too short!"));
}
for offset in sample_offsets {
if *offset > (file_len - sample_size64) / sample_size64 {
return Err(io::Error::new(ErrorKind::Other, "offset too large"));
}
buffer_file.seek(SeekFrom::Start(*offset * sample_size64))?;
trace!("sampling @ {} ", *offset);
match buffer_file.read(&mut buf) {
Ok(size) => {
assert_eq!(size, buf.len());
hasher.hash(&buf);
}
Err(e) => {
warn!("Error sampling file");
return Err(e);
}
}
}
Ok(hasher.result())
}
#[cfg(test)]
mod tests {
use super::*;
use rand::{thread_rng, Rng};
use std::fs::{create_dir_all, remove_file};
use std::io::Write;
use std::path::PathBuf;
extern crate hex;
fn tmp_file_path(name: &str) -> PathBuf {
use std::env;
let out_dir = env::var("FARF_DIR").unwrap_or_else(|_| "farf".to_string());
let mut rand_bits = [0u8; 32];
thread_rng().fill(&mut rand_bits[..]);
let mut path = PathBuf::new();
path.push(out_dir);
path.push("tmp");
create_dir_all(&path).unwrap();
path.push(format!("{}-{:?}", name, hex::encode(rand_bits)));
println!("path: {:?}", path);
path
}
#[test]
fn test_sample_file() {
solana_logger::setup();
let in_path = tmp_file_path("test_sample_file_input.txt");
let num_strings = 4096;
let string = "12foobar";
{
let mut in_file = File::create(&in_path).unwrap();
for _ in 0..num_strings {
in_file.write(string.as_bytes()).unwrap();
}
}
let num_samples = (string.len() * num_strings / size_of::<Hash>()) as u64;
let samples: Vec<_> = (0..num_samples).collect();
let res = sample_file(&in_path, samples.as_slice());
let ref_hash: Hash = Hash::new(&[
173, 251, 182, 165, 10, 54, 33, 150, 133, 226, 106, 150, 99, 192, 179, 1, 230, 144,
151, 126, 18, 191, 54, 67, 249, 140, 230, 160, 56, 30, 170, 52,
]);
let res = res.unwrap();
assert_eq!(res, ref_hash);
// Sample just past the end
assert!(sample_file(&in_path, &[num_samples]).is_err());
remove_file(&in_path).unwrap();
}
#[test]
fn test_sample_file_invalid_offset() {
let in_path = tmp_file_path("test_sample_file_invalid_offset_input.txt");
{
let mut in_file = File::create(&in_path).unwrap();
for _ in 0..4096 {
in_file.write("123456foobar".as_bytes()).unwrap();
}
}
let samples = [0, 200000];
let res = sample_file(&in_path, &samples);
assert!(res.is_err());
remove_file(in_path).unwrap();
}
#[test]
fn test_sample_file_missing_file() {
let in_path = tmp_file_path("test_sample_file_that_doesnt_exist.txt");
let samples = [0, 5];
let res = sample_file(&in_path, &samples);
assert!(res.is_err());
}
}

2
archiver/.gitignore vendored
View File

@ -1,2 +0,0 @@
/target/
/farf/

View File

@ -1,20 +0,0 @@
[package]
authors = ["Solana Maintainers <maintainers@solana.com>"]
edition = "2018"
name = "solana-archiver"
version = "0.23.2"
repository = "https://github.com/solana-labs/solana"
license = "Apache-2.0"
homepage = "https://solana.com/"
[dependencies]
clap = "2.33.0"
console = "0.9.1"
solana-clap-utils = { path = "../clap-utils", version = "0.23.2" }
solana-core = { path = "../core", version = "0.23.2" }
solana-logger = { path = "../logger", version = "0.23.2" }
solana-metrics = { path = "../metrics", version = "0.23.2" }
solana-archiver-lib = { path = "../archiver-lib", version = "0.23.2" }
solana-net-utils = { path = "../net-utils", version = "0.23.2" }
solana-sdk = { path = "../sdk", version = "0.23.2" }

View File

@ -1,147 +0,0 @@
use clap::{crate_description, crate_name, App, Arg};
use console::style;
use solana_archiver_lib::archiver::Archiver;
use solana_clap_utils::{
input_validators::is_keypair,
keypair::{
self, keypair_input, KeypairWithSource, ASK_SEED_PHRASE_ARG,
SKIP_SEED_PHRASE_VALIDATION_ARG,
},
};
use solana_core::{
cluster_info::{Node, VALIDATOR_PORT_RANGE},
contact_info::ContactInfo,
};
use solana_sdk::{commitment_config::CommitmentConfig, signature::KeypairUtil};
use std::{net::SocketAddr, path::PathBuf, process::exit, sync::Arc};
fn main() {
solana_logger::setup();
let matches = App::new(crate_name!())
.about(crate_description!())
.version(solana_clap_utils::version!())
.arg(
Arg::with_name("identity_keypair")
.short("i")
.long("identity-keypair")
.value_name("PATH")
.takes_value(true)
.validator(is_keypair)
.help("File containing an identity (keypair)"),
)
.arg(
Arg::with_name("entrypoint")
.short("n")
.long("entrypoint")
.value_name("HOST:PORT")
.takes_value(true)
.required(true)
.validator(solana_net_utils::is_host_port)
.help("Rendezvous with the cluster at this entry point"),
)
.arg(
Arg::with_name("ledger")
.short("l")
.long("ledger")
.value_name("DIR")
.takes_value(true)
.required(true)
.help("use DIR as persistent ledger location"),
)
.arg(
Arg::with_name("storage_keypair")
.short("s")
.long("storage-keypair")
.value_name("PATH")
.takes_value(true)
.validator(is_keypair)
.help("File containing the storage account keypair"),
)
.arg(
Arg::with_name(ASK_SEED_PHRASE_ARG.name)
.long(ASK_SEED_PHRASE_ARG.long)
.value_name("KEYPAIR NAME")
.multiple(true)
.takes_value(true)
.possible_values(&["identity-keypair", "storage-keypair"])
.help(ASK_SEED_PHRASE_ARG.help),
)
.arg(
Arg::with_name(SKIP_SEED_PHRASE_VALIDATION_ARG.name)
.long(SKIP_SEED_PHRASE_VALIDATION_ARG.long)
.requires(ASK_SEED_PHRASE_ARG.name)
.help(SKIP_SEED_PHRASE_VALIDATION_ARG.help),
)
.get_matches();
let ledger_path = PathBuf::from(matches.value_of("ledger").unwrap());
let identity_keypair = keypair_input(&matches, "identity_keypair")
.unwrap_or_else(|err| {
eprintln!("Identity keypair input failed: {}", err);
exit(1);
})
.keypair;
let KeypairWithSource {
keypair: storage_keypair,
source: storage_keypair_source,
} = keypair_input(&matches, "storage_keypair").unwrap_or_else(|err| {
eprintln!("Storage keypair input failed: {}", err);
exit(1);
});
if storage_keypair_source == keypair::Source::Generated {
clap::Error::with_description(
"The `storage-keypair` argument was not found",
clap::ErrorKind::ArgumentNotFound,
)
.exit();
}
let entrypoint_addr = matches
.value_of("entrypoint")
.map(|entrypoint| {
solana_net_utils::parse_host_port(entrypoint)
.expect("failed to parse entrypoint address")
})
.unwrap();
let gossip_addr = {
let ip = solana_net_utils::get_public_ip_addr(&entrypoint_addr).unwrap();
let mut addr = SocketAddr::new(ip, 0);
addr.set_ip(solana_net_utils::get_public_ip_addr(&entrypoint_addr).unwrap());
addr
};
let node = Node::new_archiver_with_external_ip(
&identity_keypair.pubkey(),
&gossip_addr,
VALIDATOR_PORT_RANGE,
);
println!(
"{} version {} (branch={}, commit={})",
style(crate_name!()).bold(),
solana_clap_utils::version!(),
option_env!("CI_BRANCH").unwrap_or("unknown"),
option_env!("CI_COMMIT").unwrap_or("unknown")
);
solana_metrics::set_host_id(identity_keypair.pubkey().to_string());
println!(
"replicating the data with identity_keypair={:?} gossip_addr={:?}",
identity_keypair.pubkey(),
gossip_addr
);
let entrypoint_info = ContactInfo::new_gossip_entry_point(&entrypoint_addr);
let archiver = Archiver::new(
&ledger_path,
node,
entrypoint_info,
Arc::new(identity_keypair),
Arc::new(storage_keypair),
CommitmentConfig::recent(),
)
.unwrap();
archiver.join();
}

View File

@ -1,2 +0,0 @@
/target/
/farf/

View File

@ -1,20 +0,0 @@
[package]
authors = ["Solana Maintainers <maintainers@solana.com>"]
edition = "2018"
name = "solana-banking-bench"
version = "0.23.2"
repository = "https://github.com/solana-labs/solana"
license = "Apache-2.0"
homepage = "https://solana.com/"
[dependencies]
log = "0.4.6"
rayon = "1.2.0"
solana-core = { path = "../core", version = "0.23.2" }
solana-ledger = { path = "../ledger", version = "0.23.2" }
solana-logger = { path = "../logger", version = "0.23.2" }
solana-runtime = { path = "../runtime", version = "0.23.2" }
solana-measure = { path = "../measure", version = "0.23.2" }
solana-sdk = { path = "../sdk", version = "0.23.2" }
rand = "0.6.5"
crossbeam-channel = "0.3"

View File

@ -1,306 +0,0 @@
use crossbeam_channel::unbounded;
use log::*;
use rand::{thread_rng, Rng};
use rayon::prelude::*;
use solana_core::banking_stage::{create_test_recorder, BankingStage};
use solana_core::cluster_info::ClusterInfo;
use solana_core::cluster_info::Node;
use solana_core::genesis_utils::{create_genesis_config, GenesisConfigInfo};
use solana_core::packet::to_packets_chunked;
use solana_core::poh_recorder::PohRecorder;
use solana_core::poh_recorder::WorkingBankEntry;
use solana_ledger::bank_forks::BankForks;
use solana_ledger::{blockstore::Blockstore, get_tmp_ledger_path};
use solana_measure::measure::Measure;
use solana_runtime::bank::Bank;
use solana_sdk::hash::Hash;
use solana_sdk::pubkey::Pubkey;
use solana_sdk::signature::Keypair;
use solana_sdk::signature::Signature;
use solana_sdk::system_transaction;
use solana_sdk::timing::{duration_as_us, timestamp};
use solana_sdk::transaction::Transaction;
use std::sync::atomic::Ordering;
use std::sync::mpsc::Receiver;
use std::sync::{Arc, Mutex, RwLock};
use std::thread::sleep;
use std::time::{Duration, Instant};
fn check_txs(
receiver: &Arc<Receiver<WorkingBankEntry>>,
ref_tx_count: usize,
poh_recorder: &Arc<Mutex<PohRecorder>>,
) -> bool {
let mut total = 0;
let now = Instant::now();
let mut no_bank = false;
loop {
if let Ok((_bank, (entry, _tick_height))) = receiver.recv_timeout(Duration::from_millis(10))
{
total += entry.transactions.len();
}
if total >= ref_tx_count {
break;
}
if now.elapsed().as_secs() > 60 {
break;
}
if poh_recorder.lock().unwrap().bank().is_none() {
trace!("no bank");
no_bank = true;
break;
}
}
if !no_bank {
assert!(total >= ref_tx_count);
}
no_bank
}
fn make_accounts_txs(txes: usize, mint_keypair: &Keypair, hash: Hash) -> Vec<Transaction> {
let to_pubkey = Pubkey::new_rand();
let dummy = system_transaction::transfer(mint_keypair, &to_pubkey, 1, hash);
(0..txes)
.into_par_iter()
.map(|_| {
let mut new = dummy.clone();
let sig: Vec<u8> = (0..64).map(|_| thread_rng().gen()).collect();
new.message.account_keys[0] = Pubkey::new_rand();
new.message.account_keys[1] = Pubkey::new_rand();
new.signatures = vec![Signature::new(&sig[0..64])];
new
})
.collect()
}
struct Config {
packets_per_batch: usize,
chunk_len: usize,
num_threads: usize,
}
impl Config {
fn get_transactions_index(&self, chunk_index: usize) -> usize {
chunk_index * (self.chunk_len / self.num_threads) * self.packets_per_batch
}
}
fn bytes_as_usize(bytes: &[u8]) -> usize {
bytes[0] as usize | (bytes[1] as usize) << 8
}
fn main() {
solana_logger::setup();
let num_threads = BankingStage::num_threads() as usize;
// a multiple of packet chunk duplicates to avoid races
const CHUNKS: usize = 8 * 2;
const PACKETS_PER_BATCH: usize = 192;
let txes = PACKETS_PER_BATCH * num_threads * CHUNKS;
let mint_total = 1_000_000_000_000;
let GenesisConfigInfo {
genesis_config,
mint_keypair,
..
} = create_genesis_config(mint_total);
let (verified_sender, verified_receiver) = unbounded();
let (vote_sender, vote_receiver) = unbounded();
let bank0 = Bank::new(&genesis_config);
let mut bank_forks = BankForks::new(0, bank0);
let mut bank = bank_forks.working_bank();
info!("threads: {} txs: {}", num_threads, txes);
let mut transactions = make_accounts_txs(txes, &mint_keypair, genesis_config.hash());
// fund all the accounts
transactions.iter().for_each(|tx| {
let fund = system_transaction::transfer(
&mint_keypair,
&tx.message.account_keys[0],
mint_total / txes as u64,
genesis_config.hash(),
);
let x = bank.process_transaction(&fund);
x.unwrap();
});
//sanity check, make sure all the transactions can execute sequentially
transactions.iter().for_each(|tx| {
let res = bank.process_transaction(&tx);
assert!(res.is_ok(), "sanity test transactions");
});
bank.clear_signatures();
//sanity check, make sure all the transactions can execute in parallel
let res = bank.process_transactions(&transactions);
for r in res {
assert!(r.is_ok(), "sanity parallel execution");
}
bank.clear_signatures();
let mut verified: Vec<_> = to_packets_chunked(&transactions.clone(), PACKETS_PER_BATCH);
let ledger_path = get_tmp_ledger_path!();
{
let blockstore = Arc::new(
Blockstore::open(&ledger_path).expect("Expected to be able to open database ledger"),
);
let (exit, poh_recorder, poh_service, signal_receiver) =
create_test_recorder(&bank, &blockstore, None);
let cluster_info = ClusterInfo::new_with_invalid_keypair(Node::new_localhost().info);
let cluster_info = Arc::new(RwLock::new(cluster_info));
let banking_stage = BankingStage::new(
&cluster_info,
&poh_recorder,
verified_receiver,
vote_receiver,
None,
);
poh_recorder.lock().unwrap().set_bank(&bank);
let chunk_len = verified.len() / CHUNKS;
let mut start = 0;
// This is so that the signal_receiver does not go out of scope after the closure.
// If it is dropped before poh_service, then poh_service will error when
// calling send() on the channel.
let signal_receiver = Arc::new(signal_receiver);
let mut total_us = 0;
let mut tx_total_us = 0;
let mut txs_processed = 0;
let mut root = 1;
let collector = Pubkey::new_rand();
const ITERS: usize = 1_000;
let config = Config {
packets_per_batch: PACKETS_PER_BATCH,
chunk_len,
num_threads,
};
let mut total_sent = 0;
for _ in 0..ITERS {
let now = Instant::now();
let mut sent = 0;
for (i, v) in verified[start..start + chunk_len]
.chunks(chunk_len / num_threads)
.enumerate()
{
let mut byte = 0;
let index = config.get_transactions_index(start + i);
if index < transactions.len() {
byte = bytes_as_usize(transactions[index].signatures[0].as_ref());
}
trace!(
"sending... {}..{} {} v.len: {} sig: {} transactions.len: {} index: {}",
start + i,
start + chunk_len,
timestamp(),
v.len(),
byte,
transactions.len(),
index,
);
for xv in v {
sent += xv.packets.len();
}
verified_sender.send(v.to_vec()).unwrap();
}
let start_tx_index = config.get_transactions_index(start);
let end_tx_index = config.get_transactions_index(start + chunk_len);
for tx in &transactions[start_tx_index..end_tx_index] {
loop {
if bank.get_signature_status(&tx.signatures[0]).is_some() {
break;
}
if poh_recorder.lock().unwrap().bank().is_none() {
break;
}
sleep(Duration::from_millis(5));
}
}
if check_txs(&signal_receiver, txes / CHUNKS, &poh_recorder) {
debug!(
"resetting bank {} tx count: {} txs_proc: {}",
bank.slot(),
bank.transaction_count(),
txs_processed
);
assert!(txs_processed < bank.transaction_count());
txs_processed = bank.transaction_count();
tx_total_us += duration_as_us(&now.elapsed());
let mut poh_time = Measure::start("poh_time");
poh_recorder.lock().unwrap().reset(
bank.last_blockhash(),
bank.slot(),
Some((bank.slot(), bank.slot() + 1)),
);
poh_time.stop();
let mut new_bank_time = Measure::start("new_bank");
let new_bank = Bank::new_from_parent(&bank, &collector, bank.slot() + 1);
new_bank_time.stop();
let mut insert_time = Measure::start("insert_time");
bank_forks.insert(new_bank);
bank = bank_forks.working_bank();
insert_time.stop();
poh_recorder.lock().unwrap().set_bank(&bank);
assert!(poh_recorder.lock().unwrap().bank().is_some());
if bank.slot() > 32 {
bank_forks.set_root(root, &None);
root += 1;
}
debug!(
"new_bank_time: {}us insert_time: {}us poh_time: {}us",
new_bank_time.as_us(),
insert_time.as_us(),
poh_time.as_us(),
);
} else {
tx_total_us += duration_as_us(&now.elapsed());
}
// This signature clear may not actually clear the signatures
// in this chunk, but since we rotate between CHUNKS then
// we should clear them by the time we come around again to re-use that chunk.
bank.clear_signatures();
total_us += duration_as_us(&now.elapsed());
debug!(
"time: {} us checked: {} sent: {}",
duration_as_us(&now.elapsed()),
txes / CHUNKS,
sent,
);
total_sent += sent;
if bank.slot() > 0 && bank.slot() % 16 == 0 {
for tx in transactions.iter_mut() {
tx.message.recent_blockhash = bank.last_blockhash();
let sig: Vec<u8> = (0..64).map(|_| thread_rng().gen()).collect();
tx.signatures[0] = Signature::new(&sig[0..64]);
}
verified = to_packets_chunked(&transactions.clone(), PACKETS_PER_BATCH);
}
start += chunk_len;
start %= verified.len();
}
eprintln!(
"{{'name': 'banking_bench_total', 'median': '{}'}}",
(1000.0 * 1000.0 * total_sent as f64) / (total_us as f64),
);
eprintln!(
"{{'name': 'banking_bench_tx_total', 'median': '{}'}}",
(1000.0 * 1000.0 * total_sent as f64) / (tx_total_us as f64),
);
drop(verified_sender);
drop(vote_sender);
exit.store(true, Ordering::Relaxed);
banking_stage.join().unwrap();
debug!("waited for banking_stage");
poh_service.join().unwrap();
sleep(Duration::from_secs(1));
debug!("waited for poh_service");
}
let _unused = Blockstore::destroy(&ledger_path);
}

View File

@ -1,4 +0,0 @@
/target/
/config/
/config-local/
/farf/

View File

@ -1,41 +0,0 @@
[package]
authors = ["Solana Maintainers <maintainers@solana.com>"]
edition = "2018"
name = "solana-bench-exchange"
version = "0.23.2"
repository = "https://github.com/solana-labs/solana"
license = "Apache-2.0"
homepage = "https://solana.com/"
publish = false
[dependencies]
bincode = "1.2.1"
bs58 = "0.3.0"
clap = "2.32.0"
env_logger = "0.7.1"
itertools = "0.8.2"
log = "0.4.8"
num-derive = "0.3"
num-traits = "0.2"
rand = "0.6.5"
rayon = "1.2.0"
serde = "1.0.104"
serde_derive = "1.0.103"
serde_json = "1.0.44"
serde_yaml = "0.8.11"
solana-clap-utils = { path = "../clap-utils", version = "0.23.2" }
solana-core = { path = "../core", version = "0.23.2" }
solana-genesis = { path = "../genesis", version = "0.23.2" }
solana-client = { path = "../client", version = "0.23.2" }
solana-faucet = { path = "../faucet", version = "0.23.2" }
solana-exchange-program = { path = "../programs/exchange", version = "0.23.2" }
solana-logger = { path = "../logger", version = "0.23.2" }
solana-metrics = { path = "../metrics", version = "0.23.2" }
solana-net-utils = { path = "../net-utils", version = "0.23.2" }
solana-runtime = { path = "../runtime", version = "0.23.2" }
solana-sdk = { path = "../sdk", version = "0.23.2" }
untrusted = "0.7.0"
ws = "0.9.1"
[dev-dependencies]
solana-local-cluster = { path = "../local-cluster", version = "0.23.2" }

View File

@ -1,479 +0,0 @@
# token-exchange
Solana Token Exchange Bench
If you can't wait; jump to [Running the exchange](#Running-the-exchange) to
learn how to start and interact with the exchange.
### Table of Contents
[Overview](#Overview)<br>
[Premise](#Premise)<br>
[Exchange startup](#Exchange-startup)<br>
[Order Requests](#Trade-requests)<br>
[Order Cancellations](#Trade-cancellations)<br>
[Trade swap](#Trade-swap)<br>
[Exchange program operations](#Exchange-program-operations)<br>
[Quotes and OHLCV](#Quotes-and-OHLCV)<br>
[Investor strategies](#Investor-strategies)<br>
[Running the exchange](#Running-the-exchange)<br>
## Overview
An exchange is a marketplace where one asset can be traded for another. This
demo demonstrates one way to host an exchange on the Solana blockchain by
emulating a currency exchange.
The assets are virtual tokens held by investors who may post order requests to
the exchange. A Matcher monitors the exchange and posts swap requests for
matching orders. All the transactions can execute concurrently.
## Premise
- Exchange
- An exchange is a marketplace where one asset can be traded for another.
The exchange in this demo is the on-chain program that implements the
tokens and the policies for trading those tokens.
- Token
- A virtual asset that can be owned, traded, and holds virtual intrinsic value
compared to other assets. There are four types of tokens in this demo, A,
B, C, D. Each one may be traded for another.
- Token account
- An account owned by the exchange that holds a quantity of one type of token.
- Account request
- A request to create a token account
- Token request
- A request to deposit tokens of a particular type into a token account.
- Asset pair
- A struct with fields Base and Quote, representing the two assets which make up a
trading pair, which themselves are Tokens. The Base or 'primary' asset is the
numerator and the Quote is the denominator for pricing purposes.
- Order side
- Describes which side of the market an investor wants to place a trade on. Options
are "Bid" or "Ask", where a bid represents an offer to purchase the Base asset of
the AssetPair for a sum of the Quote Asset and an Ask is an offer to sell Base asset
for the Quote asset.
- Price ratio
- An expression of the relative prices of two tokens. Calculated with the Base
Asset as the numerator and the Quote Asset as the denominator. Ratios are
represented as fixed point numbers. The fixed point scaler is defined in
[exchange_state.rs](https://github.com/solana-labs/solana/blob/c2fdd1362a029dcf89c8907c562d2079d977df11/programs/exchange_api/src/exchange_state.rs#L7)
- Order request
- A Solana transaction sent by a trader to the exchange to submit an order.
Order requests are made up of the token pair, the order side (bid or ask),
quantity of the primary token, the price ratio, and the two token accounts
to be credited/deducted. An example trade request looks like "T AB 5 2"
which reads "Exchange 5 A tokens to B tokens at a price ratio of 1:2" A fulfilled trade would result in 5 A tokens
deducted and 10 B tokens credited to the trade initiator's token accounts.
Successful order requests result in an order.
- Order
- The result of a successful order request. orders are stored in
accounts owned by the submitter of the order request. They can only be
canceled by their owner but can be used by anyone in a trade swap. They
contain the same information as the order request.
- Price spread
- The difference between the two matching orders. The spread is the
profit of the Matcher initiating the swap request.
- Match requirements
- Policies that result in a successful trade swap.
- Match request
- A request to fill two complementary orders (bid/ask), resulting if successful,
in a trade being created.
- Trade
- A successful trade is created from two matching orders that meet
swap requirements which are submitted in a Match Request by a Matcher and
executed by the exchange. A trade may not wholly satisfy one or both of the
orders in which case the orders are adjusted appropriately. Upon execution,
tokens are distributed to the traders' accounts and any overlap or
"negative spread" between orders is deposited into the Matcher's profit
account. All successful trades are recorded in the data of a new solana
account for posterity.
- Investor
- Individual investors who hold a number of tokens and wish to trade them on
the exchange. Investors operate as Solana thin clients who own a set of
accounts containing tokens and/or order requests. Investors post
transactions to the exchange in order to request tokens and post or cancel
order requests.
- Matcher
- An agent who facilitates trading between investors. Matchers operate as
Solana thin clients who monitor all the orders looking for a trade
match. Once found, the Matcher issues a swap request to the exchange.
Matchers are the engine of the exchange and are rewarded for their efforts by
accumulating the price spreads of the swaps they initiate. Matchers also
provide current bid/ask price and OHLCV (Open, High, Low, Close, Volume)
information on demand via a public network port.
- Transaction fees
- Solana transaction fees are paid for by the transaction submitters who are
the Investors and Matchers.
## Exchange startup
The exchange is up and running when it reaches a state where it can take
investors' trades and Matchers' match requests. To achieve this state the
following must occur in order:
- Start the Solana blockchain
- Start the thin-client
- The Matcher subscribes to change notifications for all the accounts owned by
the exchange program id. The subscription is managed via Solana's JSON RPC
interface.
- The Matcher starts responding to queries for bid/ask price and OHLCV
The Matcher responding successfully to price and OHLCV requests is the signal to
the investors that trades submitted after that point will be analyzed. <!--This
is not ideal, and instead investors should be able to submit trades at any time,
and the Matcher could come and go without missing a trade. One way to achieve
this is for the Matcher to read the current state of all accounts looking for all
open orders.-->
Investors will initially query the exchange to discover their current balance
for each type of token. If the investor does not already have an account for
each type of token, they will submit account requests. Matcher as well will
request accounts to hold the tokens they earn by initiating trade swaps.
```rust
/// Supported token types
pub enum Token {
A,
B,
C,
D,
}
/// Supported token pairs
pub enum TokenPair {
AB,
AC,
AD,
BC,
BD,
CD,
}
pub enum ExchangeInstruction {
/// New token account
/// key 0 - Signer
/// key 1 - New token account
AccountRequest,
}
/// Token accounts are populated with this structure
pub struct TokenAccountInfo {
/// Investor who owns this account
pub owner: Pubkey,
/// Current number of tokens this account holds
pub tokens: Tokens,
}
```
For this demo investors or Matcher can request more tokens from the exchange at
any time by submitting token requests. In non-demos, an exchange of this type
would provide another way to exchange a 3rd party asset into tokens.
To request tokens, investors submit transfer requests:
```rust
pub enum ExchangeInstruction {
/// Transfer tokens between two accounts
/// key 0 - Account to transfer tokens to
/// key 1 - Account to transfer tokens from. This can be the exchange program itself,
/// the exchange has a limitless number of tokens it can transfer.
TransferRequest(Token, u64),
}
```
## Order Requests
When an investor decides to exchange a token of one type for another, they
submit a transaction to the Solana Blockchain containing an order request, which,
if successful, is turned into an order. orders do not expire but are
cancellable. <!-- orders should have a timestamp to enable trade
expiration --> When an order is created, tokens are deducted from a token
account and the order acts as an escrow. The tokens are held until the
order is fulfilled or canceled. If the direction is `To`, then the number
of `tokens` are deducted from the primary account, if `From` then `tokens`
multiplied by `price` are deducted from the secondary account. orders are
no longer valid when the number of `tokens` goes to zero, at which point they
can no longer be used. <!-- Could support refilling orders, so order
accounts are refilled rather than accumulating -->
```rust
/// Direction of the exchange between two tokens in a pair
pub enum Direction {
/// Trade first token type (primary) in the pair 'To' the second
To,
/// Trade first token type in the pair 'From' the second (secondary)
From,
}
pub struct OrderRequestInfo {
/// Direction of trade
pub direction: Direction,
/// Token pair to trade
pub pair: TokenPair,
/// Number of tokens to exchange; refers to the primary or the secondary depending on the direction
pub tokens: u64,
/// The price ratio the primary price over the secondary price. The primary price is fixed
/// and equal to the variable `SCALER`.
pub price: u64,
/// Token account to deposit tokens on successful swap
pub dst_account: Pubkey,
}
pub enum ExchangeInstruction {
/// order request
/// key 0 - Signer
/// key 1 - Account in which to record the swap
/// key 2 - Token account associated with this trade
TradeRequest(TradeRequestInfo),
}
/// Trade accounts are populated with this structure
pub struct TradeOrderInfo {
/// Owner of the order
pub owner: Pubkey,
/// Direction of the exchange
pub direction: Direction,
/// Token pair indicating two tokens to exchange, first is primary
pub pair: TokenPair,
/// Number of tokens to exchange; primary or secondary depending on direction
pub tokens: u64,
/// Scaled price of the secondary token given the primary is equal to the scale value
/// If scale is 1 and price is 2 then ratio is 1:2 or 1 primary token for 2 secondary tokens
pub price: u64,
/// account which the tokens were source from. The trade account holds the tokens in escrow
/// until either one or more part of a swap or the trade is canceled.
pub src_account: Pubkey,
/// account which the tokens the tokens will be deposited into on a successful trade
pub dst_account: Pubkey,
}
```
## Order cancellations
An investor may cancel a trade at anytime, but only trades they own. If the
cancellation is successful, any tokens held in escrow are returned to the
account from which they came.
```rust
pub enum ExchangeInstruction {
/// order cancellation
/// key 0 - Signer
/// key 1 -order to cancel
TradeCancellation,
}
```
## Trade swaps
The Matcher is monitoring the accounts assigned to the exchange program and
building a trade-order table. The order table is used to identify
matching orders which could be fulfilled. When a match is found the
Matcher should issue a swap request. Swap requests may not satisfy the entirety
of either order, but the exchange will greedily fulfill it. Any leftover tokens
in either account will keep the order valid for further swap requests in
the future.
Matching orders are defined by the following swap requirements:
- Opposite polarity (one `To` and one `From`)
- Operate on the same token pair
- The price ratio of the `From` order is greater than or equal to the `To` order
- There are sufficient tokens to perform the trade
Orders can be written in the following format:
`investor direction pair quantity price-ratio`
For example:
- `1 T AB 2 1`
- Investor 1 wishes to exchange 2 A tokens to B tokens at a ratio of 1 A to 1
B
- `2 F AC 6 1.2`
- Investor 2 wishes to exchange A tokens from 6 B tokens at a ratio of 1 A
from 1.2 B
An order table could look something like the following. Notice how the columns
are sorted low to high and high to low, respectively. Prices are dramatic and
whole for clarity.
|Row| To | From |
|---|-------------|------------|
| 1 | 1 T AB 2 4 | 2 F AB 2 8 |
| 2 | 1 T AB 1 4 | 2 F AB 2 8 |
| 3 | 1 T AB 6 6 | 2 F AB 2 7 |
| 4 | 1 T AB 2 8 | 2 F AB 3 6 |
| 5 | 1 T AB 2 10 | 2 F AB 1 5 |
As part of a successful swap request, the exchange will credit tokens to the
Matcher's account equal to the difference in the price ratios or the two orders.
These tokens are considered the Matcher's profit for initiating the trade.
The Matcher would initiate the following swap on the order table above:
- Row 1, To: Investor 1 trades 2 A tokens to 8 B tokens
- Row 1, From: Investor 2 trades 2 A tokens from 8 B tokens
- Matcher takes 8 B tokens as profit
Both row 1 trades are fully realized, table becomes:
|Row| To | From |
|---|-------------|------------|
| 1 | 1 T AB 1 4 | 2 F AB 2 8 |
| 2 | 1 T AB 6 6 | 2 F AB 2 7 |
| 3 | 1 T AB 2 8 | 2 F AB 3 6 |
| 4 | 1 T AB 2 10 | 2 F AB 1 5 |
The Matcher would initiate the following swap:
- Row 1, To: Investor 1 trades 1 A token to 4 B tokens
- Row 1, From: Investor 2 trades 1 A token from 4 B tokens
- Matcher takes 4 B tokens as profit
Row 1 From is not fully realized, table becomes:
|Row| To | From |
|---|-------------|------------|
| 1 | 1 T AB 6 6 | 2 F AB 1 8 |
| 2 | 1 T AB 2 8 | 2 F AB 2 7 |
| 3 | 1 T AB 2 10 | 2 F AB 3 6 |
| 4 | | 2 F AB 1 5 |
The Matcher would initiate the following swap:
- Row 1, To: Investor 1 trades 1 A token to 6 B tokens
- Row 1, From: Investor 2 trades 1 A token from 6 B tokens
- Matcher takes 2 B tokens as profit
Row 1 To is now fully realized, table becomes:
|Row| To | From |
|---|-------------|------------|
| 1 | 1 T AB 5 6 | 2 F AB 2 7 |
| 2 | 1 T AB 2 8 | 2 F AB 3 5 |
| 3 | 1 T AB 2 10 | 2 F AB 1 5 |
The Matcher would initiate the following last swap:
- Row 1, To: Investor 1 trades 2 A token to 12 B tokens
- Row 1, From: Investor 2 trades 2 A token from 12 B tokens
- Matcher takes 2 B tokens as profit
Table becomes:
|Row| To | From |
|---|-------------|------------|
| 1 | 1 T AB 3 6 | 2 F AB 3 5 |
| 2 | 1 T AB 2 8 | 2 F AB 1 5 |
| 3 | 1 T AB 2 10 | |
At this point the lowest To's price is larger than the largest From's price so
no more swaps would be initiated until new orders came in.
```rust
pub enum ExchangeInstruction {
/// Trade swap request
/// key 0 - Signer
/// key 1 - Account in which to record the swap
/// key 2 - 'To' order
/// key 3 - `From` order
/// key 4 - Token account associated with the To Trade
/// key 5 - Token account associated with From trade
/// key 6 - Token account in which to deposit the Matcher profit from the swap.
SwapRequest,
}
/// Swap accounts are populated with this structure
pub struct TradeSwapInfo {
/// Pair swapped
pub pair: TokenPair,
/// `To` order
pub to_trade_order: Pubkey,
/// `From` order
pub from_trade_order: Pubkey,
/// Number of primary tokens exchanged
pub primary_tokens: u64,
/// Price the primary tokens were exchanged for
pub primary_price: u64,
/// Number of secondary tokens exchanged
pub secondary_tokens: u64,
/// Price the secondary tokens were exchanged for
pub secondary_price: u64,
}
```
## Exchange program operations
Putting all the commands together from above, the following operations will be
supported by the on-chain exchange program:
```rust
pub enum ExchangeInstruction {
/// New token account
/// key 0 - Signer
/// key 1 - New token account
AccountRequest,
/// Transfer tokens between two accounts
/// key 0 - Account to transfer tokens to
/// key 1 - Account to transfer tokens from. This can be the exchange program itself,
/// the exchange has a limitless number of tokens it can transfer.
TransferRequest(Token, u64),
/// order request
/// key 0 - Signer
/// key 1 - Account in which to record the swap
/// key 2 - Token account associated with this trade
TradeRequest(TradeRequestInfo),
/// order cancellation
/// key 0 - Signer
/// key 1 -order to cancel
TradeCancellation,
/// Trade swap request
/// key 0 - Signer
/// key 1 - Account in which to record the swap
/// key 2 - 'To' order
/// key 3 - `From` order
/// key 4 - Token account associated with the To Trade
/// key 5 - Token account associated with From trade
/// key 6 - Token account in which to deposit the Matcher profit from the swap.
SwapRequest,
}
```
## Quotes and OHLCV
The Matcher will provide current bid/ask price quotes based on trade actively and
also provide OHLCV based on some time window. The details of how the bid/ask
price quotes are calculated are yet to be decided.
## Investor strategies
To make a compelling demo, the investors needs to provide interesting trade
behavior. Something as simple as a randomly twiddled baseline would be a
minimum starting point.
## Running the exchange
The exchange bench posts trades and swaps matches as fast as it can.
You might want to bump the duration up
to 60 seconds and the batch size to 1000 for better numbers. You can modify those
in client_demo/src/demo.rs::test_exchange_local_cluster.
The following command runs the bench:
```bash
$ RUST_LOG=solana_bench_exchange=info cargo test --release -- --nocapture test_exchange_local_cluster
```
To also see the cluster messages:
```bash
$ RUST_LOG=solana_bench_exchange=info,solana=info cargo test --release -- --nocapture test_exchange_local_cluster
```

File diff suppressed because it is too large Load Diff

View File

@ -1,220 +0,0 @@
use clap::{crate_description, crate_name, value_t, App, Arg, ArgMatches};
use solana_core::gen_keys::GenKeys;
use solana_faucet::faucet::FAUCET_PORT;
use solana_sdk::signature::{read_keypair_file, Keypair, KeypairUtil};
use std::net::SocketAddr;
use std::process::exit;
use std::time::Duration;
pub struct Config {
pub entrypoint_addr: SocketAddr,
pub faucet_addr: SocketAddr,
pub identity: Keypair,
pub threads: usize,
pub num_nodes: usize,
pub duration: Duration,
pub transfer_delay: u64,
pub fund_amount: u64,
pub batch_size: usize,
pub chunk_size: usize,
pub account_groups: usize,
pub client_ids_and_stake_file: String,
pub write_to_client_file: bool,
pub read_from_client_file: bool,
}
impl Default for Config {
fn default() -> Self {
Self {
entrypoint_addr: SocketAddr::from(([127, 0, 0, 1], 8001)),
faucet_addr: SocketAddr::from(([127, 0, 0, 1], FAUCET_PORT)),
identity: Keypair::new(),
num_nodes: 1,
threads: 4,
duration: Duration::new(u64::max_value(), 0),
transfer_delay: 0,
fund_amount: 100_000,
batch_size: 100,
chunk_size: 100,
account_groups: 100,
client_ids_and_stake_file: String::new(),
write_to_client_file: false,
read_from_client_file: false,
}
}
}
pub fn build_args<'a, 'b>(version: &'b str) -> App<'a, 'b> {
App::new(crate_name!())
.about(crate_description!())
.version(version)
.arg(
Arg::with_name("entrypoint")
.short("n")
.long("entrypoint")
.value_name("HOST:PORT")
.takes_value(true)
.required(false)
.default_value("127.0.0.1:8001")
.help("Cluster entry point; defaults to 127.0.0.1:8001"),
)
.arg(
Arg::with_name("faucet")
.short("d")
.long("faucet")
.value_name("HOST:PORT")
.takes_value(true)
.required(false)
.default_value("127.0.0.1:9900")
.help("Location of the faucet; defaults to 127.0.0.1:9900"),
)
.arg(
Arg::with_name("identity")
.short("i")
.long("identity")
.value_name("PATH")
.takes_value(true)
.help("File containing a client identity (keypair)"),
)
.arg(
Arg::with_name("threads")
.long("threads")
.value_name("<threads>")
.takes_value(true)
.required(false)
.default_value("1")
.help("Number of threads submitting transactions"),
)
.arg(
Arg::with_name("num-nodes")
.long("num-nodes")
.value_name("NUM")
.takes_value(true)
.required(false)
.default_value("1")
.help("Wait for NUM nodes to converge"),
)
.arg(
Arg::with_name("duration")
.long("duration")
.value_name("SECS")
.takes_value(true)
.default_value("60")
.help("Seconds to run benchmark, then exit; default is forever"),
)
.arg(
Arg::with_name("transfer-delay")
.long("transfer-delay")
.value_name("<delay>")
.takes_value(true)
.required(false)
.default_value("0")
.help("Delay between each chunk"),
)
.arg(
Arg::with_name("fund-amount")
.long("fund-amount")
.value_name("<fund>")
.takes_value(true)
.required(false)
.default_value("100000")
.help("Number of lamports to fund to each signer"),
)
.arg(
Arg::with_name("batch-size")
.long("batch-size")
.value_name("<batch>")
.takes_value(true)
.required(false)
.default_value("1000")
.help("Number of transactions before the signer rolls over"),
)
.arg(
Arg::with_name("chunk-size")
.long("chunk-size")
.value_name("<cunk>")
.takes_value(true)
.required(false)
.default_value("500")
.help("Number of transactions to generate and send at a time"),
)
.arg(
Arg::with_name("account-groups")
.long("account-groups")
.value_name("<groups>")
.takes_value(true)
.required(false)
.default_value("10")
.help("Number of account groups to cycle for each batch"),
)
.arg(
Arg::with_name("write-client-keys")
.long("write-client-keys")
.value_name("FILENAME")
.takes_value(true)
.help("Generate client keys and stakes and write the list to YAML file"),
)
.arg(
Arg::with_name("read-client-keys")
.long("read-client-keys")
.value_name("FILENAME")
.takes_value(true)
.help("Read client keys and stakes from the YAML file"),
)
}
pub fn extract_args<'a>(matches: &ArgMatches<'a>) -> Config {
let mut args = Config::default();
args.entrypoint_addr = solana_net_utils::parse_host_port(
matches.value_of("entrypoint").unwrap(),
)
.unwrap_or_else(|e| {
eprintln!("failed to parse entrypoint address: {}", e);
exit(1)
});
args.faucet_addr = solana_net_utils::parse_host_port(matches.value_of("faucet").unwrap())
.unwrap_or_else(|e| {
eprintln!("failed to parse faucet address: {}", e);
exit(1)
});
if matches.is_present("identity") {
args.identity = read_keypair_file(matches.value_of("identity").unwrap())
.expect("can't read client identity");
} else {
args.identity = {
let seed = [42_u8; 32];
let mut rnd = GenKeys::new(seed);
rnd.gen_keypair()
};
}
args.threads = value_t!(matches.value_of("threads"), usize).expect("Failed to parse threads");
args.num_nodes =
value_t!(matches.value_of("num-nodes"), usize).expect("Failed to parse num-nodes");
let duration = value_t!(matches.value_of("duration"), u64).expect("Failed to parse duration");
args.duration = Duration::from_secs(duration);
args.transfer_delay =
value_t!(matches.value_of("transfer-delay"), u64).expect("Failed to parse transfer-delay");
args.fund_amount =
value_t!(matches.value_of("fund-amount"), u64).expect("Failed to parse fund-amount");
args.batch_size =
value_t!(matches.value_of("batch-size"), usize).expect("Failed to parse batch-size");
args.chunk_size =
value_t!(matches.value_of("chunk-size"), usize).expect("Failed to parse chunk-size");
args.account_groups = value_t!(matches.value_of("account-groups"), usize)
.expect("Failed to parse account-groups");
if let Some(s) = matches.value_of("write-client-keys") {
args.write_to_client_file = true;
args.client_ids_and_stake_file = s.to_string();
}
if let Some(s) = matches.value_of("read-client-keys") {
assert!(!args.write_to_client_file);
args.read_from_client_file = true;
args.client_ids_and_stake_file = s.to_string();
}
args
}

View File

@ -1,3 +0,0 @@
pub mod bench;
pub mod cli;
mod order_book;

View File

@ -1,83 +0,0 @@
pub mod bench;
mod cli;
pub mod order_book;
use crate::bench::{airdrop_lamports, create_client_accounts_file, do_bench_exchange, Config};
use log::*;
use solana_core::gossip_service::{discover_cluster, get_multi_client};
use solana_sdk::signature::KeypairUtil;
fn main() {
solana_logger::setup();
solana_metrics::set_panic_hook("bench-exchange");
let matches = cli::build_args(solana_clap_utils::version!()).get_matches();
let cli_config = cli::extract_args(&matches);
let cli::Config {
entrypoint_addr,
faucet_addr,
identity,
threads,
num_nodes,
duration,
transfer_delay,
fund_amount,
batch_size,
chunk_size,
account_groups,
client_ids_and_stake_file,
write_to_client_file,
read_from_client_file,
..
} = cli_config;
let config = Config {
identity,
threads,
duration,
transfer_delay,
fund_amount,
batch_size,
chunk_size,
account_groups,
client_ids_and_stake_file,
read_from_client_file,
};
if write_to_client_file {
create_client_accounts_file(
&config.client_ids_and_stake_file,
config.batch_size,
config.account_groups,
config.fund_amount,
);
} else {
info!("Connecting to the cluster");
let (nodes, _archivers) =
discover_cluster(&entrypoint_addr, num_nodes).unwrap_or_else(|_| {
panic!("Failed to discover nodes");
});
let (client, num_clients) = get_multi_client(&nodes);
info!("{} nodes found", num_clients);
if num_clients < num_nodes {
panic!("Error: Insufficient nodes discovered");
}
if !read_from_client_file {
info!("Funding keypair: {}", config.identity.pubkey());
let accounts_in_groups = batch_size * account_groups;
const NUM_SIGNERS: u64 = 2;
airdrop_lamports(
&client,
&faucet_addr,
&config.identity,
fund_amount * (accounts_in_groups + 1) as u64 * NUM_SIGNERS,
);
}
do_bench_exchange(vec![client], config);
}
}

View File

@ -1,134 +0,0 @@
use itertools::EitherOrBoth::{Both, Left, Right};
use itertools::Itertools;
use log::*;
use solana_exchange_program::exchange_state::*;
use solana_sdk::pubkey::Pubkey;
use std::cmp::Ordering;
use std::collections::BinaryHeap;
use std::{error, fmt};
#[derive(Clone, Debug, Eq, PartialEq)]
pub struct ToOrder {
pub pubkey: Pubkey,
pub info: OrderInfo,
}
impl Ord for ToOrder {
fn cmp(&self, other: &Self) -> Ordering {
other.info.price.cmp(&self.info.price)
}
}
impl PartialOrd for ToOrder {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
Some(self.cmp(other))
}
}
#[derive(Clone, Debug, Eq, PartialEq)]
pub struct FromOrder {
pub pubkey: Pubkey,
pub info: OrderInfo,
}
impl Ord for FromOrder {
fn cmp(&self, other: &Self) -> Ordering {
self.info.price.cmp(&other.info.price)
}
}
impl PartialOrd for FromOrder {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
Some(self.cmp(other))
}
}
#[derive(Default)]
pub struct OrderBook {
// TODO scale to x token types
to_ab: BinaryHeap<ToOrder>,
from_ab: BinaryHeap<FromOrder>,
}
impl fmt::Display for OrderBook {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
writeln!(
f,
"+-Order Book--------------------------+-------------------------------------+"
)?;
for (i, it) in self
.to_ab
.iter()
.zip_longest(self.from_ab.iter())
.enumerate()
{
match it {
Both(to, from) => writeln!(
f,
"| T AB {:8} for {:8}/{:8} | F AB {:8} for {:8}/{:8} |{}",
to.info.tokens,
SCALER,
to.info.price,
from.info.tokens,
SCALER,
from.info.price,
i
)?,
Left(to) => writeln!(
f,
"| T AB {:8} for {:8}/{:8} | |{}",
to.info.tokens, SCALER, to.info.price, i
)?,
Right(from) => writeln!(
f,
"| | F AB {:8} for {:8}/{:8} |{}",
from.info.tokens, SCALER, from.info.price, i
)?,
}
}
write!(
f,
"+-------------------------------------+-------------------------------------+"
)?;
Ok(())
}
}
impl OrderBook {
// TODO
// pub fn cancel(&mut self, pubkey: Pubkey) -> Result<(), Box<dyn error::Error>> {
// Ok(())
// }
pub fn push(&mut self, pubkey: Pubkey, info: OrderInfo) -> Result<(), Box<dyn error::Error>> {
check_trade(info.side, info.tokens, info.price)?;
match info.side {
OrderSide::Ask => {
self.to_ab.push(ToOrder { pubkey, info });
}
OrderSide::Bid => {
self.from_ab.push(FromOrder { pubkey, info });
}
}
Ok(())
}
pub fn pop(&mut self) -> Option<(ToOrder, FromOrder)> {
if let Some(pair) = Self::pop_pair(&mut self.to_ab, &mut self.from_ab) {
return Some(pair);
}
None
}
pub fn get_num_outstanding(&self) -> (usize, usize) {
(self.to_ab.len(), self.from_ab.len())
}
fn pop_pair(
to_ab: &mut BinaryHeap<ToOrder>,
from_ab: &mut BinaryHeap<FromOrder>,
) -> Option<(ToOrder, FromOrder)> {
let to = to_ab.peek()?;
let from = from_ab.peek()?;
if from.info.price < to.info.price {
debug!("Trade not viable");
return None;
}
let to = to_ab.pop()?;
let from = from_ab.pop()?;
Some((to, from))
}
}

View File

@ -1,102 +0,0 @@
use log::*;
use solana_bench_exchange::bench::{airdrop_lamports, do_bench_exchange, Config};
use solana_core::gossip_service::{discover_cluster, get_multi_client};
use solana_core::validator::ValidatorConfig;
use solana_exchange_program::exchange_processor::process_instruction;
use solana_exchange_program::id;
use solana_exchange_program::solana_exchange_program;
use solana_faucet::faucet::run_local_faucet;
use solana_local_cluster::local_cluster::{ClusterConfig, LocalCluster};
use solana_runtime::bank::Bank;
use solana_runtime::bank_client::BankClient;
use solana_sdk::genesis_config::create_genesis_config;
use solana_sdk::signature::{Keypair, KeypairUtil};
use std::process::exit;
use std::sync::mpsc::channel;
use std::time::Duration;
#[test]
fn test_exchange_local_cluster() {
solana_logger::setup();
const NUM_NODES: usize = 1;
let mut config = Config::default();
config.identity = Keypair::new();
config.duration = Duration::from_secs(1);
config.fund_amount = 100_000;
config.threads = 1;
config.transfer_delay = 20; // 15
config.batch_size = 100; // 1000;
config.chunk_size = 10; // 200;
config.account_groups = 1; // 10;
let Config {
fund_amount,
batch_size,
account_groups,
..
} = config;
let accounts_in_groups = batch_size * account_groups;
let cluster = LocalCluster::new(&ClusterConfig {
node_stakes: vec![100_000; NUM_NODES],
cluster_lamports: 100_000_000_000_000,
validator_configs: vec![ValidatorConfig::default(); NUM_NODES],
native_instruction_processors: [solana_exchange_program!()].to_vec(),
..ClusterConfig::default()
});
let faucet_keypair = Keypair::new();
cluster.transfer(
&cluster.funding_keypair,
&faucet_keypair.pubkey(),
2_000_000_000_000,
);
let (addr_sender, addr_receiver) = channel();
run_local_faucet(faucet_keypair, addr_sender, Some(1_000_000_000_000));
let faucet_addr = addr_receiver.recv_timeout(Duration::from_secs(2)).unwrap();
info!("Connecting to the cluster");
let (nodes, _) =
discover_cluster(&cluster.entry_point_info.gossip, NUM_NODES).unwrap_or_else(|err| {
error!("Failed to discover {} nodes: {:?}", NUM_NODES, err);
exit(1);
});
let (client, num_clients) = get_multi_client(&nodes);
info!("clients: {}", num_clients);
assert!(num_clients >= NUM_NODES);
const NUM_SIGNERS: u64 = 2;
airdrop_lamports(
&client,
&faucet_addr,
&config.identity,
fund_amount * (accounts_in_groups + 1) as u64 * NUM_SIGNERS,
);
do_bench_exchange(vec![client], config);
}
#[test]
fn test_exchange_bank_client() {
solana_logger::setup();
let (genesis_config, identity) = create_genesis_config(100_000_000_000_000);
let mut bank = Bank::new(&genesis_config);
bank.add_instruction_processor(id(), process_instruction);
let clients = vec![BankClient::new(bank)];
let mut config = Config::default();
config.identity = identity;
config.duration = Duration::from_secs(1);
config.fund_amount = 100_000;
config.threads = 1;
config.transfer_delay = 20; // 0;
config.batch_size = 100; // 1500;
config.chunk_size = 10; // 1500;
config.account_groups = 1; // 50;
do_bench_exchange(clients, config);
}

View File

@ -1,2 +0,0 @@
/target/
/farf/

View File

@ -1,15 +0,0 @@
[package]
authors = ["Solana Maintainers <maintainers@solana.com>"]
edition = "2018"
name = "solana-bench-streamer"
version = "0.23.2"
repository = "https://github.com/solana-labs/solana"
license = "Apache-2.0"
homepage = "https://solana.com/"
[dependencies]
clap = "2.33.0"
solana-clap-utils = { path = "../clap-utils", version = "0.23.2" }
solana-core = { path = "../core", version = "0.23.2" }
solana-logger = { path = "../logger", version = "0.23.2" }
solana-net-utils = { path = "../net-utils", version = "0.23.2" }

View File

@ -1,4 +0,0 @@
/target/
/config/
/config-local/
/farf/

View File

@ -1,39 +0,0 @@
[package]
authors = ["Solana Maintainers <maintainers@solana.com>"]
edition = "2018"
name = "solana-bench-tps"
version = "0.23.2"
repository = "https://github.com/solana-labs/solana"
license = "Apache-2.0"
homepage = "https://solana.com/"
[dependencies]
bincode = "1.2.1"
clap = "2.33.0"
log = "0.4.8"
rayon = "1.2.0"
serde = "1.0.104"
serde_derive = "1.0.103"
serde_json = "1.0.44"
serde_yaml = "0.8.11"
solana-clap-utils = { path = "../clap-utils", version = "0.23.2" }
solana-core = { path = "../core", version = "0.23.2" }
solana-genesis = { path = "../genesis", version = "0.23.2" }
solana-client = { path = "../client", version = "0.23.2" }
solana-faucet = { path = "../faucet", version = "0.23.2" }
solana-librapay = { path = "../programs/librapay", version = "0.23.2", optional = true }
solana-logger = { path = "../logger", version = "0.23.2" }
solana-metrics = { path = "../metrics", version = "0.23.2" }
solana-measure = { path = "../measure", version = "0.23.2" }
solana-net-utils = { path = "../net-utils", version = "0.23.2" }
solana-runtime = { path = "../runtime", version = "0.23.2" }
solana-sdk = { path = "../sdk", version = "0.23.2" }
solana-move-loader-program = { path = "../programs/move_loader", version = "0.23.2", optional = true }
[dev-dependencies]
serial_test = "0.3.2"
serial_test_derive = "0.3.1"
solana-local-cluster = { path = "../local-cluster", version = "0.23.2" }
[features]
move = ["solana-librapay", "solana-move-loader-program"]

File diff suppressed because it is too large Load Diff

View File

@ -1,263 +0,0 @@
use clap::{crate_description, crate_name, App, Arg, ArgMatches};
use solana_faucet::faucet::FAUCET_PORT;
use solana_sdk::fee_calculator::FeeCalculator;
use solana_sdk::signature::{read_keypair_file, Keypair, KeypairUtil};
use std::{net::SocketAddr, process::exit, time::Duration};
const NUM_LAMPORTS_PER_ACCOUNT_DEFAULT: u64 = solana_sdk::native_token::LAMPORTS_PER_SOL;
/// Holds the configuration for a single run of the benchmark
pub struct Config {
pub entrypoint_addr: SocketAddr,
pub faucet_addr: SocketAddr,
pub id: Keypair,
pub threads: usize,
pub num_nodes: usize,
pub duration: Duration,
pub tx_count: usize,
pub keypair_multiplier: usize,
pub thread_batch_sleep_ms: usize,
pub sustained: bool,
pub client_ids_and_stake_file: String,
pub write_to_client_file: bool,
pub read_from_client_file: bool,
pub target_lamports_per_signature: u64,
pub multi_client: bool,
pub use_move: bool,
pub num_lamports_per_account: u64,
}
impl Default for Config {
fn default() -> Config {
Config {
entrypoint_addr: SocketAddr::from(([127, 0, 0, 1], 8001)),
faucet_addr: SocketAddr::from(([127, 0, 0, 1], FAUCET_PORT)),
id: Keypair::new(),
threads: 4,
num_nodes: 1,
duration: Duration::new(std::u64::MAX, 0),
tx_count: 50_000,
keypair_multiplier: 8,
thread_batch_sleep_ms: 1000,
sustained: false,
client_ids_and_stake_file: String::new(),
write_to_client_file: false,
read_from_client_file: false,
target_lamports_per_signature: FeeCalculator::default().target_lamports_per_signature,
multi_client: true,
use_move: false,
num_lamports_per_account: NUM_LAMPORTS_PER_ACCOUNT_DEFAULT,
}
}
}
/// Defines and builds the CLI args for a run of the benchmark
pub fn build_args<'a, 'b>(version: &'b str) -> App<'a, 'b> {
App::new(crate_name!()).about(crate_description!())
.version(version)
.arg(
Arg::with_name("entrypoint")
.short("n")
.long("entrypoint")
.value_name("HOST:PORT")
.takes_value(true)
.help("Rendezvous with the cluster at this entry point; defaults to 127.0.0.1:8001"),
)
.arg(
Arg::with_name("faucet")
.short("d")
.long("faucet")
.value_name("HOST:PORT")
.takes_value(true)
.help("Location of the faucet; defaults to entrypoint:FAUCET_PORT"),
)
.arg(
Arg::with_name("identity")
.short("i")
.long("identity")
.value_name("PATH")
.takes_value(true)
.help("File containing a client identity (keypair)"),
)
.arg(
Arg::with_name("num-nodes")
.short("N")
.long("num-nodes")
.value_name("NUM")
.takes_value(true)
.help("Wait for NUM nodes to converge"),
)
.arg(
Arg::with_name("threads")
.short("t")
.long("threads")
.value_name("NUM")
.takes_value(true)
.help("Number of threads"),
)
.arg(
Arg::with_name("duration")
.long("duration")
.value_name("SECS")
.takes_value(true)
.help("Seconds to run benchmark, then exit; default is forever"),
)
.arg(
Arg::with_name("sustained")
.long("sustained")
.help("Use sustained performance mode vs. peak mode. This overlaps the tx generation with transfers."),
)
.arg(
Arg::with_name("use-move")
.long("use-move")
.help("Use Move language transactions to perform transfers."),
)
.arg(
Arg::with_name("no-multi-client")
.long("no-multi-client")
.help("Disable multi-client support, only transact with the entrypoint."),
)
.arg(
Arg::with_name("tx_count")
.long("tx_count")
.value_name("NUM")
.takes_value(true)
.help("Number of transactions to send per batch")
)
.arg(
Arg::with_name("keypair_multiplier")
.long("keypair-multiplier")
.value_name("NUM")
.takes_value(true)
.help("Multiply by transaction count to determine number of keypairs to create")
)
.arg(
Arg::with_name("thread-batch-sleep-ms")
.short("z")
.long("thread-batch-sleep-ms")
.value_name("NUM")
.takes_value(true)
.help("Per-thread-per-iteration sleep in ms"),
)
.arg(
Arg::with_name("write-client-keys")
.long("write-client-keys")
.value_name("FILENAME")
.takes_value(true)
.help("Generate client keys and stakes and write the list to YAML file"),
)
.arg(
Arg::with_name("read-client-keys")
.long("read-client-keys")
.value_name("FILENAME")
.takes_value(true)
.help("Read client keys and stakes from the YAML file"),
)
.arg(
Arg::with_name("target_lamports_per_signature")
.long("target-lamports-per-signature")
.value_name("LAMPORTS")
.takes_value(true)
.help(
"The cost in lamports that the cluster will charge for signature \
verification when the cluster is operating at target-signatures-per-slot",
),
)
.arg(
Arg::with_name("num_lamports_per_account")
.long("num-lamports-per-account")
.value_name("LAMPORTS")
.takes_value(true)
.help(
"Number of lamports per account.",
),
)
}
/// Parses a clap `ArgMatches` structure into a `Config`
/// # Arguments
/// * `matches` - command line arguments parsed by clap
/// # Panics
/// Panics if there is trouble parsing any of the arguments
pub fn extract_args<'a>(matches: &ArgMatches<'a>) -> Config {
let mut args = Config::default();
if let Some(addr) = matches.value_of("entrypoint") {
args.entrypoint_addr = solana_net_utils::parse_host_port(addr).unwrap_or_else(|e| {
eprintln!("failed to parse entrypoint address: {}", e);
exit(1)
});
}
if let Some(addr) = matches.value_of("faucet") {
args.faucet_addr = solana_net_utils::parse_host_port(addr).unwrap_or_else(|e| {
eprintln!("failed to parse faucet address: {}", e);
exit(1)
});
}
if matches.is_present("identity") {
args.id = read_keypair_file(matches.value_of("identity").unwrap())
.expect("can't read client identity");
}
if let Some(t) = matches.value_of("threads") {
args.threads = t.to_string().parse().expect("can't parse threads");
}
if let Some(n) = matches.value_of("num-nodes") {
args.num_nodes = n.to_string().parse().expect("can't parse num-nodes");
}
if let Some(duration) = matches.value_of("duration") {
args.duration = Duration::new(
duration.to_string().parse().expect("can't parse duration"),
0,
);
}
if let Some(s) = matches.value_of("tx_count") {
args.tx_count = s.to_string().parse().expect("can't parse tx_count");
}
if let Some(s) = matches.value_of("keypair_multiplier") {
args.keypair_multiplier = s
.to_string()
.parse()
.expect("can't parse keypair-multiplier");
assert!(args.keypair_multiplier >= 2);
}
if let Some(t) = matches.value_of("thread-batch-sleep-ms") {
args.thread_batch_sleep_ms = t
.to_string()
.parse()
.expect("can't parse thread-batch-sleep-ms");
}
args.sustained = matches.is_present("sustained");
if let Some(s) = matches.value_of("write-client-keys") {
args.write_to_client_file = true;
args.client_ids_and_stake_file = s.to_string();
}
if let Some(s) = matches.value_of("read-client-keys") {
assert!(!args.write_to_client_file);
args.read_from_client_file = true;
args.client_ids_and_stake_file = s.to_string();
}
if let Some(v) = matches.value_of("target_lamports_per_signature") {
args.target_lamports_per_signature = v.to_string().parse().expect("can't parse lamports");
}
args.use_move = matches.is_present("use-move");
args.multi_client = !matches.is_present("no-multi-client");
if let Some(v) = matches.value_of("num_lamports_per_account") {
args.num_lamports_per_account = v.to_string().parse().expect("can't parse lamports");
}
args
}

View File

@ -1,2 +0,0 @@
pub mod bench;
pub mod cli;

View File

@ -1,137 +0,0 @@
use log::*;
use solana_bench_tps::bench::{do_bench_tps, generate_and_fund_keypairs, generate_keypairs};
use solana_bench_tps::cli;
use solana_core::gossip_service::{discover_cluster, get_client, get_multi_client};
use solana_genesis::Base64Account;
use solana_sdk::fee_calculator::FeeCalculator;
use solana_sdk::signature::{Keypair, KeypairUtil};
use solana_sdk::system_program;
use std::{collections::HashMap, fs::File, io::prelude::*, path::Path, process::exit, sync::Arc};
/// Number of signatures for all transactions in ~1 week at ~100K TPS
pub const NUM_SIGNATURES_FOR_TXS: u64 = 100_000 * 60 * 60 * 24 * 7;
fn main() {
solana_logger::setup_with_default("solana=info");
solana_metrics::set_panic_hook("bench-tps");
let matches = cli::build_args(solana_clap_utils::version!()).get_matches();
let cli_config = cli::extract_args(&matches);
let cli::Config {
entrypoint_addr,
faucet_addr,
id,
num_nodes,
tx_count,
keypair_multiplier,
client_ids_and_stake_file,
write_to_client_file,
read_from_client_file,
target_lamports_per_signature,
use_move,
multi_client,
num_lamports_per_account,
..
} = &cli_config;
let keypair_count = *tx_count * keypair_multiplier;
if *write_to_client_file {
info!("Generating {} keypairs", keypair_count);
let (keypairs, _) = generate_keypairs(&id, keypair_count as u64);
let num_accounts = keypairs.len() as u64;
let max_fee =
FeeCalculator::new(*target_lamports_per_signature, 0).max_lamports_per_signature;
let num_lamports_per_account = (num_accounts - 1 + NUM_SIGNATURES_FOR_TXS * max_fee)
/ num_accounts
+ num_lamports_per_account;
let mut accounts = HashMap::new();
keypairs.iter().for_each(|keypair| {
accounts.insert(
serde_json::to_string(&keypair.to_bytes().to_vec()).unwrap(),
Base64Account {
balance: num_lamports_per_account,
executable: false,
owner: system_program::id().to_string(),
data: String::new(),
},
);
});
info!("Writing {}", client_ids_and_stake_file);
let serialized = serde_yaml::to_string(&accounts).unwrap();
let path = Path::new(&client_ids_and_stake_file);
let mut file = File::create(path).unwrap();
file.write_all(&serialized.into_bytes()).unwrap();
return;
}
info!("Connecting to the cluster");
let (nodes, _archivers) =
discover_cluster(&entrypoint_addr, *num_nodes).unwrap_or_else(|err| {
eprintln!("Failed to discover {} nodes: {:?}", num_nodes, err);
exit(1);
});
let client = if *multi_client {
let (client, num_clients) = get_multi_client(&nodes);
if nodes.len() < num_clients {
eprintln!(
"Error: Insufficient nodes discovered. Expecting {} or more",
num_nodes
);
exit(1);
}
Arc::new(client)
} else {
Arc::new(get_client(&nodes))
};
let (keypairs, move_keypairs) = if *read_from_client_file && !use_move {
let path = Path::new(&client_ids_and_stake_file);
let file = File::open(path).unwrap();
info!("Reading {}", client_ids_and_stake_file);
let accounts: HashMap<String, Base64Account> = serde_yaml::from_reader(file).unwrap();
let mut keypairs = vec![];
let mut last_balance = 0;
accounts
.into_iter()
.for_each(|(keypair, primordial_account)| {
let bytes: Vec<u8> = serde_json::from_str(keypair.as_str()).unwrap();
keypairs.push(Keypair::from_bytes(&bytes).unwrap());
last_balance = primordial_account.balance;
});
if keypairs.len() < keypair_count {
eprintln!(
"Expected {} accounts in {}, only received {} (--tx_count mismatch?)",
keypair_count,
client_ids_and_stake_file,
keypairs.len(),
);
exit(1);
}
// Sort keypairs so that do_bench_tps() uses the same subset of accounts for each run.
// This prevents the amount of storage needed for bench-tps accounts from creeping up
// across multiple runs.
keypairs.sort_by(|x, y| x.pubkey().to_string().cmp(&y.pubkey().to_string()));
(keypairs, None)
} else {
generate_and_fund_keypairs(
client.clone(),
Some(*faucet_addr),
&id,
keypair_count,
*num_lamports_per_account,
*use_move,
)
.unwrap_or_else(|e| {
eprintln!("Error could not fund keys: {:?}", e);
exit(1);
})
};
do_bench_tps(client, cli_config, keypairs, move_keypairs);
}

View File

@ -1,86 +0,0 @@
use serial_test_derive::serial;
use solana_bench_tps::bench::{do_bench_tps, generate_and_fund_keypairs};
use solana_bench_tps::cli::Config;
use solana_client::thin_client::create_client;
use solana_core::cluster_info::VALIDATOR_PORT_RANGE;
use solana_core::validator::ValidatorConfig;
use solana_faucet::faucet::run_local_faucet;
use solana_local_cluster::local_cluster::{ClusterConfig, LocalCluster};
#[cfg(feature = "move")]
use solana_sdk::move_loader::solana_move_loader_program;
use solana_sdk::signature::{Keypair, KeypairUtil};
use std::sync::{mpsc::channel, Arc};
use std::time::Duration;
fn test_bench_tps_local_cluster(config: Config) {
#[cfg(feature = "move")]
let native_instruction_processors = vec![solana_move_loader_program()];
#[cfg(not(feature = "move"))]
let native_instruction_processors = vec![];
solana_logger::setup();
const NUM_NODES: usize = 1;
let cluster = LocalCluster::new(&ClusterConfig {
node_stakes: vec![999_990; NUM_NODES],
cluster_lamports: 200_000_000,
validator_configs: vec![ValidatorConfig::default(); NUM_NODES],
native_instruction_processors,
..ClusterConfig::default()
});
let faucet_keypair = Keypair::new();
cluster.transfer(
&cluster.funding_keypair,
&faucet_keypair.pubkey(),
100_000_000,
);
let client = Arc::new(create_client(
(cluster.entry_point_info.rpc, cluster.entry_point_info.tpu),
VALIDATOR_PORT_RANGE,
));
let (addr_sender, addr_receiver) = channel();
run_local_faucet(faucet_keypair, addr_sender, None);
let faucet_addr = addr_receiver.recv_timeout(Duration::from_secs(2)).unwrap();
let lamports_per_account = 100;
let keypair_count = config.tx_count * config.keypair_multiplier;
let (keypairs, move_keypairs) = generate_and_fund_keypairs(
client.clone(),
Some(faucet_addr),
&config.id,
keypair_count,
lamports_per_account,
config.use_move,
)
.unwrap();
let _total = do_bench_tps(client, config, keypairs, move_keypairs);
#[cfg(not(debug_assertions))]
assert!(_total > 100);
}
#[test]
#[serial]
fn test_bench_tps_local_cluster_solana() {
let mut config = Config::default();
config.tx_count = 100;
config.duration = Duration::from_secs(10);
test_bench_tps_local_cluster(config);
}
#[test]
#[serial]
fn test_bench_tps_local_cluster_move() {
let mut config = Config::default();
config.tx_count = 100;
config.duration = Duration::from_secs(10);
config.use_move = true;
test_bench_tps_local_cluster(config);
}

55
benches/bank.rs Normal file
View File

@ -0,0 +1,55 @@
#![feature(test)]
extern crate bincode;
extern crate rayon;
extern crate solana;
extern crate test;
use bincode::serialize;
use rayon::prelude::*;
use solana::bank::*;
use solana::hash::hash;
use solana::mint::Mint;
use solana::signature::{Keypair, KeypairUtil};
use solana::system_transaction::SystemTransaction;
use solana::transaction::Transaction;
use test::Bencher;
#[bench]
fn bench_process_transaction(bencher: &mut Bencher) {
let mint = Mint::new(100_000_000);
let bank = Bank::new(&mint);
// Create transactions between unrelated parties.
let transactions: Vec<_> = (0..4096)
.into_par_iter()
.map(|i| {
// Seed the 'from' account.
let rando0 = Keypair::new();
let tx = Transaction::system_move(
&mint.keypair(),
rando0.pubkey(),
10_000,
mint.last_id(),
0,
);
assert!(bank.process_transaction(&tx).is_ok());
// Seed the 'to' account and a cell for its signature.
let last_id = hash(&serialize(&i).unwrap()); // Unique hash
bank.register_entry_id(&last_id);
let rando1 = Keypair::new();
let tx = Transaction::system_move(&rando0, rando1.pubkey(), 1, last_id, 0);
assert!(bank.process_transaction(&tx).is_ok());
// Finally, return the transaction to the benchmark.
tx
}).collect();
bencher.iter(|| {
// Since benchmarker runs this multiple times, we need to clear the signatures.
bank.clear_signatures();
let results = bank.process_transactions(&transactions);
assert!(results.iter().all(Result::is_ok));
})
}

110
benches/banking_stage.rs Normal file
View File

@ -0,0 +1,110 @@
#![feature(test)]
extern crate bincode;
extern crate rand;
extern crate rayon;
extern crate solana;
extern crate solana_program_interface;
extern crate test;
use rand::{thread_rng, Rng};
use rayon::prelude::*;
use solana::bank::Bank;
use solana::banking_stage::{BankingStage, NUM_THREADS};
use solana::entry::Entry;
use solana::mint::Mint;
use solana::packet::to_packets_chunked;
use solana::signature::{KeypairUtil, Signature};
use solana::system_transaction::SystemTransaction;
use solana::transaction::Transaction;
use solana_program_interface::pubkey::Pubkey;
use std::iter;
use std::sync::mpsc::{channel, Receiver};
use std::sync::Arc;
use std::time::Duration;
use test::Bencher;
fn check_txs(receiver: &Receiver<Vec<Entry>>, ref_tx_count: usize) {
let mut total = 0;
loop {
let entries = receiver.recv_timeout(Duration::new(1, 0));
if let Ok(entries) = entries {
for entry in &entries {
total += entry.transactions.len();
}
} else {
break;
}
if total >= ref_tx_count {
break;
}
}
assert_eq!(total, ref_tx_count);
}
#[bench]
fn bench_banking_stage_multi_accounts(bencher: &mut Bencher) {
let txes = 1000 * NUM_THREADS;
let mint_total = 1_000_000_000_000;
let mint = Mint::new(mint_total);
let (verified_sender, verified_receiver) = channel();
let bank = Arc::new(Bank::new(&mint));
let dummy = Transaction::system_move(
&mint.keypair(),
mint.keypair().pubkey(),
1,
mint.last_id(),
0,
);
let transactions: Vec<_> = (0..txes)
.into_par_iter()
.map(|_| {
let mut new = dummy.clone();
let from: Vec<u8> = (0..64).map(|_| thread_rng().gen()).collect();
let to: Vec<u8> = (0..64).map(|_| thread_rng().gen()).collect();
let sig: Vec<u8> = (0..64).map(|_| thread_rng().gen()).collect();
new.keys[0] = Pubkey::new(&from[0..32]);
new.keys[1] = Pubkey::new(&to[0..32]);
new.signature = Signature::new(&sig[0..64]);
new
}).collect();
// fund all the accounts
transactions.iter().for_each(|tx| {
let fund = Transaction::system_move(
&mint.keypair(),
tx.keys[0],
mint_total / txes as i64,
mint.last_id(),
0,
);
assert!(bank.process_transaction(&fund).is_ok());
});
//sanity check, make sure all the transactions can execute sequentially
transactions.iter().for_each(|tx| {
let res = bank.process_transaction(&tx);
assert!(res.is_ok(), "sanity test transactions");
});
bank.clear_signatures();
//sanity check, make sure all the transactions can execute in parallel
let res = bank.process_transactions(&transactions);
for r in res {
assert!(r.is_ok(), "sanity parallel execution");
}
bank.clear_signatures();
let verified: Vec<_> = to_packets_chunked(&transactions.clone(), 192)
.into_iter()
.map(|x| {
let len = x.read().unwrap().packets.len();
(x, iter::repeat(1).take(len).collect())
}).collect();
let (_stage, signal_receiver) = BankingStage::new(&bank, verified_receiver, Default::default());
bencher.iter(move || {
for v in verified.chunks(verified.len() / NUM_THREADS) {
verified_sender.send(v.to_vec()).unwrap();
}
check_txs(&signal_receiver, txes);
bank.clear_signatures();
// make sure the tx last id is still registered
bank.register_entry_id(&mint.last_id());
});
}

25
benches/ledger.rs Normal file
View File

@ -0,0 +1,25 @@
#![feature(test)]
extern crate solana;
extern crate test;
use solana::hash::{hash, Hash};
use solana::ledger::{next_entries, reconstruct_entries_from_blobs, Block};
use solana::signature::{Keypair, KeypairUtil};
use solana::system_transaction::SystemTransaction;
use solana::transaction::Transaction;
use test::Bencher;
#[bench]
fn bench_block_to_blobs_to_block(bencher: &mut Bencher) {
let zero = Hash::default();
let one = hash(&zero.as_ref());
let keypair = Keypair::new();
let tx0 = Transaction::system_move(&keypair, keypair.pubkey(), 1, one, 0);
let transactions = vec![tx0; 10];
let entries = next_entries(&zero, 1, transactions);
bencher.iter(|| {
let blobs = entries.to_blobs();
assert_eq!(reconstruct_entries_from_blobs(blobs).unwrap(), entries);
});
}

View File

@ -1,8 +1,8 @@
#![feature(test)]
extern crate solana;
extern crate test;
use solana_core::gen_keys::GenKeys;
use solana::signature::GenKeys;
use test::Bencher;
#[bench]

23
benches/sigverify.rs Normal file
View File

@ -0,0 +1,23 @@
#![feature(test)]
extern crate bincode;
extern crate rayon;
extern crate solana;
extern crate test;
use solana::packet::to_packets;
use solana::sigverify;
use solana::system_transaction::test_tx;
use test::Bencher;
#[bench]
fn bench_sigverify(bencher: &mut Bencher) {
let tx = test_tx();
// generate packet vector
let batches = to_packets(&vec![tx; 128]);
// verify packets
bencher.iter(|| {
let _ans = sigverify::ed25519_verify(&batches);
})
}

1
book/.gitattributes vendored
View File

@ -1 +0,0 @@
theme/highlight.js binary

View File

@ -1,26 +0,0 @@
Building the Solana book
---
Install the book's dependnecies, build, and test the book:
```bash
$ ./build.sh
```
Run any Rust tests in the markdown:
```bash
$ make test
```
Render markdown as HTML:
```bash
$ make build
```
Render and view the book:
```bash
$ make open
```

View File

@ -1,19 +0,0 @@
+------------------------------------------------------------------+
| |
| +-----------------+ Neighborhood 0 +-----------------+ |
| | +--------------------->+ | |
| | Validator 1 | | Validator 2 | |
| | +<---------------------+ | |
| +--------+-+------+ +------+-+--------+ |
| | | | | |
| | +-----------------------------+ | | |
| | +------------------------+------+ | |
| | | | | |
+------------------------------------------------------------------+
| | | |
v v v v
+---------+------+---+ +-+--------+---------+
| | | |
| Neighborhood 1 | | Neighborhood 2 |
| | | |
+--------------------+ +--------------------+

View File

@ -1,25 +0,0 @@
+---------------------------------------------------------------------------------------------------------+
| Neighborhood Above |
| |
| +----------------+ +----------------+ +----------------+ +----------------+ |
| | +------>+ +------>+ +------>+ | |
| | Neighbor 1 | | Neighbor 2 | | Neighbor 3 | | Neighbor 4 | |
| | +<------+ +<------+ +<------+ | |
| +--+-------------+ +--+-------------+ +-----+----------+ +--+-------------+ |
| | | | | |
+---------------------------------------------------------------------------------------------------------+
| | | |
| | | |
| | | |
| | | |
| | | |
+---------------------------------------------------------------------------------------------------------+
| | | Neighborhood Below | | |
| v v v v |
| +--+-------------+ +--+-------------+ +-----+----------+ +--+-------------+ |
| | +------>+ +------>+ +------>+ | |
| | Neighbor 1 | | Neighbor 2 | | Neighbor 3 | | Neighbor 4 | |
| | +<------+ +<------+ +<------+ | |
| +----------------+ +----------------+ +----------------+ +----------------+ |
| |
+---------------------------------------------------------------------------------------------------------+

View File

@ -1,15 +0,0 @@
+--------------+
| |
+------------+ Leader +------------+
| | | |
| +--------------+ |
v v
+------------+----------------------------------------+------------+
| |
| +-----------------+ Neighborhood 0 +-----------------+ |
| | +--------------------->+ | |
| | Validator 1 | | Validator 2 | |
| | +<---------------------+ | |
| +-----------------+ +-----------------+ |
| |
+------------------------------------------------------------------+

View File

@ -1,18 +0,0 @@
+--------------------+
| |
+--------+ Neighborhood 0 +----------+
| | | |
| +--------------------+ |
v v
+---------+----------+ +----------+---------+
| | | |
| Neighborhood 1 | | Neighborhood 2 |
| | | |
+---+-----+----------+ +----------+-----+---+
| | | |
v v v v
+------------------+-+ +-+------------------+ +------------------+-+ +-+------------------+
| | | | | | | |
| Neighborhood 3 | | Neighborhood 4 | | Neighborhood 5 | | Neighborhood 6 |
| | | | | | | |
+--------------------+ +--------------------+ +--------------------+ +--------------------+

View File

@ -1,13 +0,0 @@
validator action
+----+ ----------------
| | L1 | E1
| +----+ / \ vote(E1)
| | L2 | E2 x
| +----+ / \ / \ vote(E2)
time | | L3 | E3 x E3' x
| +----+ / \ / \ / \ / \ slash(E3)
| | L4 | x x E4 x x x x x
| +----+ | | | | | | | | vote(E4)
v | L5 | xx xx xx E5 xx xx xx xx
+----+ hang on to E4 and E5 for more...

View File

@ -1,9 +0,0 @@
1
|
2
/|
/ |
| |
| 4
|
5

View File

@ -1,11 +0,0 @@
1
|
3
|\
| \
| |
| |
| |
6 |
|
7

View File

@ -1,13 +0,0 @@
1
|\
2 \
/| |
/ | 3
| | |\
| 4 | \
| | |
5 | |
| |
6 |
|
7

View File

@ -1,30 +0,0 @@
msc {
hscale="2.2";
VoteSigner,
Validator,
Cluster,
StakerX,
StakerY;
|||;
Validator box Validator [label="boot.."];
VoteSigner <:> Validator [label="register\n\n(optional)"];
Validator => Cluster [label="VoteState::Initialize(VoteSigner)"];
StakerX => Cluster [label="StakeState::Delegate(Validator)"];
StakerY => Cluster [label="StakeState::Delegate(Validator)"];
|||;
Validator box Cluster [label="\nvalidate\n"];
Validator => VoteSigner [label="sign(vote)"];
VoteSigner >> Validator [label="signed vote"];
Validator => Cluster [label="gossip(vote)"];
...;
... ;
Validator abox Validator [label="\nmax\nlockout\n"];
|||;
Cluster box Cluster [label="credits redeemed (at epoch)"];
}

View File

@ -1,10 +0,0 @@
.------------. .-----------. .---------------. .--------------. .-----------------------.
| PoH verify +---> | sigverify +--->| lock accounts +--->| validate fee +--->| allocate new accounts +--->
| TVU | `-----------` `---------------` `--------------` `-----------------------`
`------------`
.---------------. .---------. .------------. .-----------------. .-----------------.
--->| load accounts +--->| execute +--->| PoH record +--->| commit accounts +-->| unlock accounts |
`---------------` `---------` | TPU | `-----------------` `-----------------`
`------------`

View File

@ -1,20 +0,0 @@
.----------------------------------------.
| Solana Runtime |
| |
| .------------. .------------. |
| | | | | |
.-------->| Verifier +-->| Accounts | |
| | | | | | |
.----------. | | `------------` `------------` |
| +--------` | ^ |
| Client | | LoadAccounts | |
| +--------. | .----------------` |
`----------` | | | |
| | .------+-----. .-------------. |
| | | | | | |
`-------->| Loader +-->| Interpreter | |
| | | | | |
| `------------` `-------------` |
| |
`----------------------------------------`

View File

@ -1,19 +0,0 @@
+----------+
| Bank-Hash|
+----------+
^
|
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~+
: :
: +--------------+ +-------------+ :
: Hash( | Accounts-Hash| + | Block-Merkle| ) :
: +--------------+ +-------------+ :
: ^ :
+~~~~~~~~~~~~~ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~+
|
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~+
: +---------------+ +---------------+ +---------------+ :
: Hash( | Hash(Account1)| + | Hash(Account2)| + ... + | Hash(AccountN)| ) :
: +---------------+ +---------------+ +---------------+ :
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~+

View File

@ -1,19 +0,0 @@
+---------------+
| Block-Merkle |
+---------------+
^ ^
/ \
+-------------+ +-------------+
| Entry-Merkle| | Entry-Merkle|
+-------------+ +-------------+
^ ^
/ \
+-------+ +-------+
| Hash | | Hash |
+-------+ +-------+
^ ^ ^ ^
/ | | \
+-----------------+ +-----------------+ +-----------------+ +---+
| Hash(T1, status)| | Hash(T2, status)| | Hash(T3, status)| | 0 |
+-----------------+ +-----------------+ +-----------------+ +---+

View File

@ -1,19 +0,0 @@
.-------------.
| PoH Service |
`--------+----`
^ |
.------------------------------|----|--------------------.
| TPU | v |
| .-------. .-----------. .-+-------. .-----------. | .------------.
.---------. | | Fetch | | SigVerify | | Banking | | Broadcast | | | Downstream |
| Clients |--->| Stage |->| Stage |->| Stage |->| Stage |---->| Validators |
`---------` | | | | | | | | | | | |
| `-------` `-----------` `----+----` `-----------` | `------------`
| | |
`---------------------------------|----------------------`
|
v
.------.
| Bank |
`------`

View File

@ -1,22 +0,0 @@
.--------.
| Leader |
`--------`
^
|
.------------------------------------|--------------------.
| TVU | |
| | |
| .-------. .------------. .----+---. .---------. |
.------------. | | Shred | | Retransmit | | Replay | | Storage | |
| Upstream +----->| Fetch +-->| Stage +-->| Stage +-->| Stage | |
| Validators | | | Stage | | | | | | | |
`------------` | `-------` `----+-------` `----+---` `---------` |
| ^ | | |
| | | | |
`--------|----------|----------------|--------------------`
| | |
| V v
.+-----------. .------.
| Gossip | | Bank |
| Service | `------`
`------------`

View File

@ -1,60 +0,0 @@
.------------.
| Upstream |
| Validators |
`----+-------`
|
|
.-----------------------------------.
| Validator | |
| v |
| .-----------. .------------. |
.--------. | | Fetch | | Repair | |
| Client +---->| Stage | | Stage | |
`--------` | `---+-------` `----+-------` |
| | | |
| v v |
| .-----------. .------------. |
| | TPU |<-->| Blockstore | |
| | | | | |
| `-----------` `----+-------` |
| | |
| v |
| .------------. |
| | Multicast | |
| | Stage | |
| `----+-------` |
| | |
`-----------------------------------`
|
v
.------------.
| Downstream |
| Validators |
`------------`
.------------.
| PoH |
| Service |
`-------+----`
^ |
| |
.-----------------------------------.
| TPU | | |
| | v |
.-------. | .-----------. .---+--------. | .------------.
| Fetch +---->| SigVerify +--->| Banking |<--->| Blockstore |
| Stage | | | Stage | | Stage | | | |
`-------` | `-----------` `-----+------` | `------------`
| | |
| | |
`-----------------------------------`
|
v
.------------.
| Banktree |
| |
`------------`

View File

@ -1,30 +0,0 @@
.---------------------------------------.
| Validator |
| |
.--------. | .-------------------. |
| |---->| | |
| Client | | | JSON RPC Service | |
| |<----| | |
`----+---` | `-------------------` |
| | ^ |
| | | .----------------. | .------------------.
| | | | Gossip Service |<-----------| Validators |
| | | `----------------` | | |
| | | ^ | | |
| | | | | | .------------. |
| | .---+---. .----+---. .------------. | | | | |
| | | Bank |<-+ Replay | | ShredFetch |<------+ Upstream | |
| | | Forks | | Stage | | Stage | | | | Validators | |
| | `-------` `--------` `--+---------` | | | | |
| | ^ ^ | | | `------------` |
| | | | v | | |
| | | .--+---------. | | |
| | | | Blockstore | | | |
| | | `------------` | | .------------. |
| | | ^ | | | | |
| | | | | | | Downstream | |
| | .--+--. .-------+---. | | | Validators | |
`-------->| TPU +---->| Broadcast +---------------->| | |
| `-----` | Stage | | | `------------` |
| `-----------` | `------------------`
`---------------------------------------`

View File

@ -1,10 +0,0 @@
[book]
title = "Solana: Blockchain Rebuilt for Scale"
authors = ["The Solana Team"]
[build]
build-dir = "html"
create-missing = false
[output.html]
theme = "theme"

View File

@ -1,34 +0,0 @@
#!/usr/bin/env bash
set -e
cd "$(dirname "$0")"
usage=$(cargo -q run -p solana-cli -- -C ~/.foo --help | sed 's|'"$HOME"'|~|g')
out=${1:-src/cli/usage.md}
cat src/cli/.usage.md.header > "$out"
section() {
declare mark=${2:-"###"}
declare section=$1
read -r name rest <<<"$section"
printf '%s %s
' "$mark" "$name"
printf '```text
%s
```
' "$section"
}
section "$usage" >> "$out"
in_subcommands=0
while read -r subcommand rest; do
[[ $subcommand == "SUBCOMMANDS:" ]] && in_subcommands=1 && continue
if ((in_subcommands)); then
section "$(cargo -q run -p solana-cli -- help "$subcommand" | sed 's|'"$HOME"'|~|g')" "####" >> "$out"
fi
done <<<"$usage">>"$out"

View File

@ -1,16 +0,0 @@
#!/usr/bin/env bash
set -e
cd "$(dirname "$0")"
# md check
find src -name '*.md' -a \! -name SUMMARY.md |
while read -r file; do
if ! grep -q '('"${file#src/}"')' src/SUMMARY.md; then
echo "Error: $file missing from SUMMARY.md"
exit 1
fi
done
make -j"$(nproc)" test

View File

@ -1,43 +0,0 @@
BOB_SRCS=$(wildcard art/*.bob)
MSC_SRCS=$(wildcard art/*.msc)
MD_SRCS=$(wildcard src/*.md src/*/*.md)
SVG_IMGS=$(BOB_SRCS:art/%.bob=src/.gitbook/assets/%.svg) $(MSC_SRCS:art/%.msc=src/.gitbook/assets/%.svg)
TARGET=html/index.html
TEST_STAMP=src/tests.ok
all: $(TARGET)
svg: $(SVG_IMGS)
test: $(TEST_STAMP)
open: $(TEST_STAMP)
mdbook build --open
watch: $(SVG_IMGS)
mdbook watch
src/.gitbook/assets/%.svg: art/%.bob
@mkdir -p $(@D)
svgbob < $< > $@
src/.gitbook/assets/%.svg: art/%.msc
@mkdir -p $(@D)
mscgen -T svg -i $< -o $@
src/%.md: %.md
@mkdir -p $(@D)
@cp $< $@
$(TEST_STAMP): $(TARGET)
mdbook test
touch $@
$(TARGET): $(SVG_IMGS) $(MD_SRCS)
mdbook build
clean:
rm -f $(SVG_IMGS) src/tests.ok
rm -rf html

Binary file not shown.

Before

Width:  |  Height:  |  Size: 542 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 256 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 269 KiB

View File

@ -1,91 +0,0 @@
# Table of contents
* [Introduction](introduction.md)
* [Using Solana from the Command-line](cli/README.md)
* [Command-line Usage](cli/usage.md)
* [Paper Wallet](paper-wallet/README.md)
* [Installation](paper-wallet/installation.md)
* [Paper Wallet Usage](paper-wallet/usage.md)
* [Offline Signing](offline-signing/README.md)
* [Durable Transaction Nonces](offline-signing/durable-nonce.md)
* [Developing Applications](apps/README.md)
* [Example: Web Wallet](apps/webwallet.md)
* [Example: Tic-Tac-Toe](apps/tictactoe.md)
* [Drones](apps/drones.md)
* [Anatomy of a Transaction](transaction.md)
* [JSON RPC API](apps/jsonrpc-api.md)
* [JavaScript API](apps/javascript-api.md)
* [Running a Validator](running-validator/README.md)
* [Validator Requirements](running-validator/validator-reqs.md)
* [Choosing a Testnet](running-validator/validator-testnet.md)
* [Installing the Validator Software](running-validator/validator-software.md)
* [Starting a Validator](running-validator/validator-start.md)
* [Staking](running-validator/validator-stake.md)
* [Monitoring a Validator](running-validator/validator-monitor.md)
* [Publishing Validator Info](running-validator/validator-info.md)
* [Troubleshooting](running-validator/validator-troubleshoot.md)
* [Running an Archiver](running-archiver.md)
* [Understanding Solana's Architecture](cluster/README.md)
* [Synchronization](cluster/synchronization.md)
* [Leader Rotation](cluster/leader-rotation.md)
* [Fork Generation](cluster/fork-generation.md)
* [Managing Forks](cluster/managing-forks.md)
* [Turbine Block Propagation](cluster/turbine-block-propagation.md)
* [Ledger Replication](cluster/ledger-replication.md)
* [Secure Vote Signing](cluster/vote-signing.md)
* [Stake Delegation and Rewards](cluster/stake-delegation-and-rewards.md)
* [Performance Metrics](cluster/performance-metrics.md)
* [Anatomy of a Validator](validator/README.md)
* [TPU](validator/tpu.md)
* [TVU](validator/tvu.md)
* [Blockstore](validator/blockstore.md)
* [Gossip Service](validator/gossip.md)
* [The Runtime](validator/runtime.md)
* [Building from Source](building-from-source.md)
* [Terminology](terminology.md)
* [Implemented Design Proposals](implemented-proposals/README.md)
* [Cluster Software Installation and Updates](implemented-proposals/installer.md)
* [Cluster Economics](implemented-proposals/ed_overview/README.md)
* [Validation-client Economics](implemented-proposals/ed_overview/ed_validation_client_economics/README.md)
* [State-validation Protocol-based Rewards](implemented-proposals/ed_overview/ed_validation_client_economics/ed_vce_state_validation_protocol_based_rewards.md)
* [State-validation Transaction Fees](implemented-proposals/ed_overview/ed_validation_client_economics/ed_vce_state_validation_transaction_fees.md)
* [Replication-validation Transaction Fees](implemented-proposals/ed_overview/ed_validation_client_economics/ed_vce_replication_validation_transaction_fees.md)
* [Validation Stake Delegation](implemented-proposals/ed_overview/ed_validation_client_economics/ed_vce_validation_stake_delegation.md)
* [Replication-client Economics](implemented-proposals/ed_overview/ed_replication_client_economics/README.md)
* [Storage-replication Rewards](implemented-proposals/ed_overview/ed_replication_client_economics/ed_rce_storage_replication_rewards.md)
* [Replication-client Reward Auto-delegation](implemented-proposals/ed_overview/ed_replication_client_economics/ed_rce_replication_client_reward_auto_delegation.md)
* [Storage Rent Economics](implemented-proposals/ed_overview/ed_storage_rent_economics.md)
* [Economic Sustainability](implemented-proposals/ed_overview/ed_economic_sustainability.md)
* [Attack Vectors](implemented-proposals/ed_overview/ed_attack_vectors.md)
* [Economic Design MVP](implemented-proposals/ed_overview/ed_mvp.md)
* [References](implemented-proposals/ed_overview/ed_references.md)
* [Deterministic Transaction Fees](implemented-proposals/transaction-fees.md)
* [Tower BFT](implemented-proposals/tower-bft.md)
* [Leader-to-Leader Transition](implemented-proposals/leader-leader-transition.md)
* [Leader-to-Validator Transition](implemented-proposals/leader-validator-transition.md)
* [Persistent Account Storage](implemented-proposals/persistent-account-storage.md)
* [Reliable Vote Transmission](implemented-proposals/reliable-vote-transmission.md)
* [Repair Service](implemented-proposals/repair-service.md)
* [Testing Programs](implemented-proposals/testing-programs.md)
* [Credit-only Accounts](implemented-proposals/readonly-accounts.md)
* [Embedding the Move Langauge](implemented-proposals/embedding-move.md)
* [Staking Rewards](implemented-proposals/staking-rewards.md)
* [Rent](implemented-proposals/rent.md)
* [Durable Transaction Nonces](implemented-proposals/durable-tx-nonces.md)
* [Validator Timestamp Oracle](implemented-proposals/validator-timestamp-oracle.md)
* [Commitment](implemented-proposals/commitment.md)
* [Snapshot Verification](implemented-proposals/snapshot-verification.md)
* [Accepted Design Proposals](proposals/README.md)
* [Ledger Replication](proposals/ledger-replication-to-implement.md)
* [Secure Vote Signing](proposals/vote-signing-to-implement.md)
* [Cluster Test Framework](proposals/cluster-test-framework.md)
* [Validator](proposals/validator-proposal.md)
* [Simple Payment and State Verification](proposals/simple-payment-and-state-verification.md)
* [Cross-Program Invocation](proposals/cross-program-invocation.md)
* [Inter-chain Transaction Verification](proposals/interchain-transaction-verification.md)
* [Snapshot Verification](proposals/snapshot-verification.md)
* [Bankless Leader](proposals/bankless-leader.md)
* [Slashing](proposals/slashing.md)
* [Tick Verification](proposals/tick-verification.md)
* [Block Confirmation](proposals/block-confirmation.md)
* [ABI Management](proposals/abi-management.md)

View File

@ -1,44 +0,0 @@
# Programming Model
An _app_ interacts with a Solana cluster by sending it _transactions_ with one or more _instructions_. The Solana _runtime_ passes those instructions to user-contributed _programs_. An instruction might, for example, tell a program to transfer _lamports_ from one _account_ to another or create an interactive contract that governs how lamports are transfered. Instructions are executed sequentially and atomically. If any instruction is invalid, any changes made within the transaction are discarded.
### Accounts and Signatures
Each transaction explicitly lists all account public keys referenced by the transaction's instructions. A subset of those public keys are each accompanied by a transaction signature. Those signatures signal on-chain programs that the account holder has authorized the transaction. Typically, the program uses the authorization to permit debiting the account or modifying its data.
The transaction also marks some accounts as _read-only accounts_. The runtime permits read-only accounts to be read concurrently. If a program attempts to modify a read-only account, the transaction is rejected by the runtime.
### Recent Blockhash
A Transaction includes a recent blockhash to prevent duplication and to give transactions lifetimes. Any transaction that is completely identical to a previous one is rejected, so adding a newer blockhash allows multiple transactions to repeat the exact same action. Transactions also have lifetimes that are defined by the blockhash, as any transaction whose blockhash is too old will be rejected.
### Instructions
Each instruction specifies a single program account \(which must be marked executable\), a subset of the transaction's accounts that should be passed to the program, and a data byte array instruction that is passed to the program. The program interprets the data array and operates on the accounts specified by the instructions. The program can return successfully, or with an error code. An error return causes the entire transaction to fail immediately.
## Deploying Programs to a Cluster
![SDK tools](../.gitbook/assets/sdk-tools.svg)
As shown in the diagram above a client creates a program and compiles it to an ELF shared object containing BPF bytecode and sends it to the Solana cluster. The cluster stores the program locally and makes it available to clients via a _program ID_. The program ID is a _public key_ generated by the client and is used to reference the program in subsequent transactions.
A program may be written in any programming language that can target the Berkley Packet Filter \(BPF\) safe execution environment. The Solana SDK offers the best support for C programs, which is compiled to BPF using the [LLVM compiler infrastructure](https://llvm.org).
## Storing State between Transactions
If the program needs to store state between transactions, it does so using _accounts_. Accounts are similar to files in operating systems such as Linux. Like a file, an account may hold arbitrary data and that data persists beyond the lifetime of a program. Also like a file, an account includes metadata that tells the runtime who is allowed to access the data and how. Unlike a file, the account includes metadata for the lifetime of the file. That lifetime is expressed in "tokens", which is a number of fractional native tokens, called _lamports_. Accounts are held in validator memory and pay "rent" to stay there. Each validator periodically scan all accounts and collects rent. Any account that drops to zero lamports is purged.
If an account is marked "executable", it will only be used by a _loader_ to run programs. For example, a BPF-compiled program is marked executable and loaded by the BPF loader. No program is allowed to modify the contents of an executable account.
An account also includes "owner" metadata. The owner is a program ID. The runtime grants the program write access to the account if its ID matches the owner. If an account is not owned by a program, the program is permitted to read its data and credit the account.
In the same way that a Linux user uses a path to look up a file, a Solana client uses public keys to look up accounts. To create an account, the client generates a _keypair_ and registers its public key using the `CreateAccount` instruction. The account created by `CreateAccount` is called a _system account_ and is owned by a built-in program called the System program. The System program allows clients to transfer lamports and assign account ownership.
The runtime only permits the owner to debit the account or modify its data. The program then defines additional rules for whether the client can modify accounts it owns. In the case of the System program, it allows users to transfer lamports by recognizing transaction signatures. If it sees the client signed the transaction using the keypair's _private key_, it knows the client authorized the token transfer.
After the runtime executes each of the transaction's instructions, it uses the account metadata to verify that none of the access rules were violated. If a program violates an access rule, the runtime discards all account changes made by all instructions and marks the transaction as failed.
## Smart Contracts
Programs don't always require transaction signatures, as the System program does. Instead, the program may manage _smart contracts_. A smart contract is a set of constraints that once satisfied, signal to a program that a token transfer or account update is permitted. For example, one could use the Budget program to create a smart contract that authorizes a token transfer only after some date. Once evidence that the date has past, the contract progresses, and token transfer completes.

View File

@ -1,44 +0,0 @@
# Drones
This chapter defines an off-chain service called a _drone_, which acts as custodian of a user's private key. In its simplest form, it can be used to create _airdrop_ transactions, a token transfer from the drone's account to a client's account.
## Signing Service
A drone is a simple signing service. It listens for requests to sign _transaction data_. Once received, the drone validates the request however it sees fit. It may, for example, only accept transaction data with a `SystemInstruction::Transfer` instruction transferring only up to a certain amount of tokens. If the drone accepts the transaction, it returns an `Ok(Signature)` where `Signature` is a signature of the transaction data using the drone's private key. If it rejects the transaction data, it returns a `DroneError` describing why.
## Examples
### Granting access to an on-chain game
Creator of on-chain game tic-tac-toe hosts a drone that responds to airdrop requests containing an `InitGame` instruction. The drone signs the transaction data in the request and returns it, thereby authorizing its account to pay the transaction fee and as well as seeding the game's account with enough tokens to play it. The user then creates a transaction for its transaction data and the drones signature and submits it to the Solana cluster. Each time the user interacts with the game, the game pays the user enough tokens to pay the next transaction fee to advance the game. At that point, the user may choose to keep the tokens instead of advancing the game. If the creator wants to defend against that case, they could require the user to return to the drone to sign each instruction.
### Worldwide airdrop of a new token
Creator of a new on-chain token \(ERC-20 interface\), may wish to do a worldwide airdrop to distribute its tokens to millions of users over just a few seconds. That drone cannot spend resources interacting with the Solana cluster. Instead, the drone should only verify the client is unique and human, and then return the signature. It may also want to listen to the Solana cluster for recent entry IDs to support client retries and to ensure the airdrop is targeting the desired cluster.
Note: the Solana cluster will not parallelize transactions funded by the same fee-paying account. This means that the max throughput of a single fee-paying account is limited to the number of _ticks_ processed per second by the current leader. Add additional fee-paying accounts to improve throughput.
## Attack vectors
### Invalid recent\_blockhash
The drone may prefer its airdrops only target a particular Solana cluster. To do that, it listens to the cluster for new entry IDs and ensure any requests reference a recent one.
Note: to listen for new entry IDs assumes the drone is either a validator or a _light_ client. At the time of this writing, light clients have not been implemented and no proposal describes them. This document assumes one of the following approaches be taken:
1. Define and implement a light client
2. Embed a validator
3. Query the jsonrpc API for the latest last id at a rate slightly faster than
ticks are produced.
### Double spends
A client may request multiple airdrops before the first has been submitted to the ledger. The client may do this maliciously or simply because it thinks the first request was dropped. The drone should not simply query the cluster to ensure the client has not already received an airdrop. Instead, it should use `recent_blockhash` to ensure the previous request is expired before signing another. Note that the Solana cluster will reject any transaction with a `recent_blockhash` beyond a certain _age_.
### Denial of Service
If the transaction data size is smaller than the size of the returned signature \(or descriptive error\), a single client can flood the network. Considering that a simple `Transfer` operation requires two public keys \(each 32 bytes\) and a `fee` field, and that the returned signature is 64 bytes \(and a byte to indicate `Ok`\), consideration for this attack may not be required.
In the current design, the drone accepts TCP connections. This allows clients to DoS the service by simply opening lots of idle connections. Switching to UDP may be preferred. The transaction data will be smaller than a UDP packet since the transaction sent to the Solana cluster is already pinned to using UDP.

View File

@ -1,4 +0,0 @@
# JavaScript API
See [solana-web3](https://solana-labs.github.io/solana-web3.js/).

File diff suppressed because it is too large Load Diff

View File

@ -1,22 +0,0 @@
# Example: Tic-Tac-Toe
[Click here to play Tic-Tac-Toe](https://solana-example-tictactoe.herokuapp.com/) on the Solana testnet. Open the link and wait for another player to join, or open the link in a second browser tab to play against yourself. You will see that every move a player makes stores a transaction on the ledger.
## Build and run Tic-Tac-Toe locally
First fetch the latest release of the example code:
```bash
$ git clone https://github.com/solana-labs/example-tictactoe.git
$ cd example-tictactoe
$ TAG=$(git describe --tags $(git rev-list --tags
--max-count=1))
$ git checkout $TAG
```
Next, follow the steps in the git repository's [README](https://github.com/solana-labs/example-tictactoe/blob/master/README.md).
## Getting lamports to users
You may have noticed you interacted with the Solana cluster without first needing to acquire lamports to pay transaction fees. Under the hood, the web app creates a new ephemeral identity and sends a request to an off-chain service for a signed transaction authorizing a user to start a new game. The service is called a _drone_. When the app sends the signed transaction to the Solana cluster, the drone's lamports are spent to pay the transaction fee and start the game. In a real world app, the drone might request the user watch an ad or pass a CAPTCHA before signing over its lamports.

View File

@ -1,16 +0,0 @@
# Example Client: Web Wallet
## Build and run a web wallet locally
First fetch the example code:
```bash
$ git clone https://github.com/solana-labs/example-webwallet.git
$ cd example-webwallet
$ TAG=$(git describe --tags $(git rev-list --tags
--max-count=1))
$ git checkout $TAG
```
Next, follow the steps in the git repository's [README](https://github.com/solana-labs/example-webwallet/blob/master/README.md).

View File

@ -1,160 +0,0 @@
# Building from Source
The Solana git repository contains all the scripts you might need to spin up your own local testnet. Depending on what you're looking to achieve, you may want to run a different variation, as the full-fledged, performance-enhanced multinode testnet is considerably more complex to set up than a Rust-only, singlenode testnode. If you are looking to develop high-level features, such as experimenting with smart contracts, save yourself some setup headaches and stick to the Rust-only singlenode demo. If you're doing performance optimization of the transaction pipeline, consider the enhanced singlenode demo. If you're doing consensus work, you'll need at least a Rust-only multinode demo. If you want to reproduce our TPS metrics, run the enhanced multinode demo.
For all four variations, you'd need the latest Rust toolchain and the Solana source code:
First, install Rust's package manager Cargo.
```bash
$ curl https://sh.rustup.rs -sSf | sh
$ source $HOME/.cargo/env
```
Now checkout the code from github:
```bash
$ git clone https://github.com/solana-labs/solana.git
$ cd solana
```
The demo code is sometimes broken between releases as we add new low-level features, so if this is your first time running the demo, you'll improve your odds of success if you check out the [latest release](https://github.com/solana-labs/solana/releases) before proceeding:
```bash
$ TAG=$(git describe --tags $(git rev-list --tags --max-count=1))
$ git checkout $TAG
```
### Configuration Setup
Ensure important programs such as the vote program are built before any nodes are started. Note that we are using the release build here for good performance.
If you want the debug build, use just `cargo build` and omit the `NDEBUG=1` part of the command.
```bash
$ cargo build --release
```
The network is initialized with a genesis ledger generated by running the following script.
```bash
$ NDEBUG=1 ./multinode-demo/setup.sh
```
### Drone
In order for the validators and clients to work, we'll need to spin up a faucet to give out some test tokens. The faucet delivers Milton Friedman-style "air drops" \(free tokens to requesting clients\) to be used in test transactions.
Start the faucet with:
```bash
$ NDEBUG=1 ./multinode-demo/faucet.sh
```
### Singlenode Testnet
Before you start a validator, make sure you know the IP address of the machine you want to be the bootstrap validator for the demo, and make sure that udp ports 8000-10000 are open on all the machines you want to test with.
Now start the bootstrap validator in a separate shell:
```bash
$ NDEBUG=1 ./multinode-demo/bootstrap-validator.sh
```
Wait a few seconds for the server to initialize. It will print "leader ready..." when it's ready to receive transactions. The leader will request some tokens from the faucet if it doesn't have any. The faucet does not need to be running for subsequent leader starts.
### Multinode Testnet
To run a multinode testnet, after starting a leader node, spin up some additional validators in separate shells:
```bash
$ NDEBUG=1 ./multinode-demo/validator-x.sh
```
To run a performance-enhanced validator on Linux, [CUDA 10.0](https://developer.nvidia.com/cuda-downloads) must be installed on your system:
```bash
$ ./fetch-perf-libs.sh
$ NDEBUG=1 SOLANA_CUDA=1 ./multinode-demo/bootstrap-validator.sh
$ NDEBUG=1 SOLANA_CUDA=1 ./multinode-demo/validator.sh
```
### Testnet Client Demo
Now that your singlenode or multinode testnet is up and running let's send it some transactions!
In a separate shell start the client:
```bash
$ NDEBUG=1 ./multinode-demo/bench-tps.sh # runs against localhost by default
```
What just happened? The client demo spins up several threads to send 500,000 transactions to the testnet as quickly as it can. The client then pings the testnet periodically to see how many transactions it processed in that time. Take note that the demo intentionally floods the network with UDP packets, such that the network will almost certainly drop a bunch of them. This ensures the testnet has an opportunity to reach 710k TPS. The client demo completes after it has convinced itself the testnet won't process any additional transactions. You should see several TPS measurements printed to the screen. In the multinode variation, you'll see TPS measurements for each validator node as well.
### Testnet Debugging
There are some useful debug messages in the code, you can enable them on a per-module and per-level basis. Before running a leader or validator set the normal RUST\_LOG environment variable.
For example
* To enable `info` everywhere and `debug` only in the solana::banking\_stage module:
```bash
$ export RUST_LOG=solana=info,solana::banking_stage=debug
```
* To enable BPF program logging:
```bash
$ export RUST_LOG=solana_bpf_loader=trace
```
Generally we are using `debug` for infrequent debug messages, `trace` for potentially frequent messages and `info` for performance-related logging.
You can also attach to a running process with GDB. The leader's process is named _solana-validator_:
```bash
$ sudo gdb
attach <PID>
set logging on
thread apply all bt
```
This will dump all the threads stack traces into gdb.txt
### Blockstreamer
Solana supports a node type called an _blockstreamer_. This validator variation is intended for applications that need to observe the data plane without participating in transaction validation or ledger replication.
A blockstreamer runs without a vote signer, and can optionally stream ledger entries out to a Unix domain socket as they are processed. The JSON-RPC service still functions as on any other node.
To run a blockstreamer, include the argument `no-signer` and \(optional\) `blockstream` socket location:
```bash
$ NDEBUG=1 ./multinode-demo/validator-x.sh --no-signer --blockstream <SOCKET>
```
The stream will output a series of JSON objects:
* An Entry event JSON object is sent when each ledger entry is processed, with the following fields:
* `dt`, the system datetime, as RFC3339-formatted string
* `t`, the event type, always "entry"
* `s`, the slot height, as unsigned 64-bit integer
* `h`, the tick height, as unsigned 64-bit integer
* `entry`, the entry, as JSON object
* A Block event JSON object is sent when a block is complete, with the following fields:
* `dt`, the system datetime, as RFC3339-formatted string
* `t`, the event type, always "block"
* `s`, the slot height, as unsigned 64-bit integer
* `h`, the tick height, as unsigned 64-bit integer
* `l`, the slot leader id, as base-58 encoded string
* `hash`, the [blockhash](terminology.md#blockhash), as base-58 encoded string
## Public Testnet
In this example the client connects to our public testnet. To run validators on the testnet you would need to open udp ports `8000-10000`.
```bash
$ NDEBUG=1 ./multinode-demo/bench-tps.sh --entrypoint testnet.solana.com:8001 --faucet testnet.solana.com:9900 --duration 60 --tx_count 50
```
You can observe the effects of your client's transactions on our [dashboard](https://metrics.solana.com:3000/d/testnet/testnet-hud?orgId=2&from=now-30m&to=now&refresh=5s&var-testnet=testnet)

View File

@ -1,177 +0,0 @@
# solana CLI
The [solana-cli crate](https://crates.io/crates/solana-cli) provides a command-line interface tool for Solana
## Examples
### Get Pubkey
```bash
// Command
$ solana address
// Return
<PUBKEY>
```
### Airdrop SOL/Lamports
```bash
// Command
$ solana airdrop 2
// Return
"2.00000000 SOL"
// Command
$ solana airdrop 123 --lamports
// Return
"123 lamports"
```
### Get Balance
```bash
// Command
$ solana balance
// Return
"3.00050001 SOL"
```
### Confirm Transaction
```bash
// Command
$ solana confirm <TX_SIGNATURE>
// Return
"Confirmed" / "Not found" / "Transaction failed with error <ERR>"
```
### Deploy program
```bash
// Command
$ solana deploy <PATH>
// Return
<PROGRAM_ID>
```
### Unconditional Immediate Transfer
```bash
// Command
$ solana pay <PUBKEY> 123
// Return
<TX_SIGNATURE>
```
### Post-Dated Transfer
```bash
// Command
$ solana pay <PUBKEY> 123 \
--after 2018-12-24T23:59:00 --require-timestamp-from <PUBKEY>
// Return
{signature: <TX_SIGNATURE>, processId: <PROCESS_ID>}
```
_`require-timestamp-from` is optional. If not provided, the transaction will expect a timestamp signed by this wallet's private key_
### Authorized Transfer
A third party must send a signature to unlock the lamports.
```bash
// Command
$ solana pay <PUBKEY> 123 \
--require-signature-from <PUBKEY>
// Return
{signature: <TX_SIGNATURE>, processId: <PROCESS_ID>}
```
### Post-Dated and Authorized Transfer
```bash
// Command
$ solana pay <PUBKEY> 123 \
--after 2018-12-24T23:59 --require-timestamp-from <PUBKEY> \
--require-signature-from <PUBKEY>
// Return
{signature: <TX_SIGNATURE>, processId: <PROCESS_ID>}
```
### Multiple Witnesses
```bash
// Command
$ solana pay <PUBKEY> 123 \
--require-signature-from <PUBKEY> \
--require-signature-from <PUBKEY>
// Return
{signature: <TX_SIGNATURE>, processId: <PROCESS_ID>}
```
### Cancelable Transfer
```bash
// Command
$ solana pay <PUBKEY> 123 \
--require-signature-from <PUBKEY> \
--cancelable
// Return
{signature: <TX_SIGNATURE>, processId: <PROCESS_ID>}
```
### Cancel Transfer
```bash
// Command
$ solana cancel <PROCESS_ID>
// Return
<TX_SIGNATURE>
```
### Send Signature
```bash
// Command
$ solana send-signature <PUBKEY> <PROCESS_ID>
// Return
<TX_SIGNATURE>
```
### Indicate Elapsed Time
Use the current system time:
```bash
// Command
$ solana send-timestamp <PUBKEY> <PROCESS_ID>
// Return
<TX_SIGNATURE>
```
Or specify some other arbitrary timestamp:
```bash
// Command
$ solana send-timestamp <PUBKEY> <PROCESS_ID> --date 2018-12-24T23:59:00
// Return
<TX_SIGNATURE>
```
## Usage

View File

@ -1,5 +0,0 @@
# Using Solana from the Command-line
This chapter describes the command-line tools for interacting with Solana. One
could use these tools to send payments, stake validators, and check account
balances.

File diff suppressed because it is too large Load Diff

View File

@ -1,40 +0,0 @@
# A Solana Cluster
A Solana cluster is a set of validators working together to serve client transactions and maintain the integrity of the ledger. Many clusters may coexist. When two clusters share a common genesis block, they attempt to converge. Otherwise, they simply ignore the existence of the other. Transactions sent to the wrong one are quietly rejected. In this chapter, we'll discuss how a cluster is created, how nodes join the cluster, how they share the ledger, how they ensure the ledger is replicated, and how they cope with buggy and malicious nodes.
## Creating a Cluster
Before starting any validators, one first needs to create a _genesis config_. The config references two public keys, a _mint_ and a _bootstrap validator_. The validator holding the bootstrap validator's private key is responsible for appending the first entries to the ledger. It initializes its internal state with the mint's account. That account will hold the number of native tokens defined by the genesis config. The second validator then contacts the bootstrap validator to register as a _validator_ or _archiver_. Additional validators then register with any registered member of the cluster.
A validator receives all entries from the leader and submits votes confirming those entries are valid. After voting, the validator is expected to store those entries until archiver nodes submit proofs that they have stored copies of it. Once the validator observes a sufficient number of copies exist, it deletes its copy.
## Joining a Cluster
Validators and archivers enter the cluster via registration messages sent to its _control plane_. The control plane is implemented using a _gossip_ protocol, meaning that a node may register with any existing node, and expect its registration to propagate to all nodes in the cluster. The time it takes for all nodes to synchronize is proportional to the square of the number of nodes participating in the cluster. Algorithmically, that's considered very slow, but in exchange for that time, a node is assured that it eventually has all the same information as every other node, and that that information cannot be censored by any one node.
## Sending Transactions to a Cluster
Clients send transactions to any validator's Transaction Processing Unit \(TPU\) port. If the node is in the validator role, it forwards the transaction to the designated leader. If in the leader role, the node bundles incoming transactions, timestamps them creating an _entry_, and pushes them onto the cluster's _data plane_. Once on the data plane, the transactions are validated by validator nodes and replicated by archiver nodes, effectively appending them to the ledger.
## Confirming Transactions
A Solana cluster is capable of subsecond _confirmation_ for up to 150 nodes with plans to scale up to hundreds of thousands of nodes. Once fully implemented, confirmation times are expected to increase only with the logarithm of the number of validators, where the logarithm's base is very high. If the base is one thousand, for example, it means that for the first thousand nodes, confirmation will be the duration of three network hops plus the time it takes the slowest validator of a supermajority to vote. For the next million nodes, confirmation increases by only one network hop.
Solana defines confirmation as the duration of time from when the leader timestamps a new entry to the moment when it recognizes a supermajority of ledger votes.
A gossip network is much too slow to achieve subsecond confirmation once the network grows beyond a certain size. The time it takes to send messages to all nodes is proportional to the square of the number of nodes. If a blockchain wants to achieve low confirmation and attempts to do it using a gossip network, it will be forced to centralize to just a handful of nodes.
Scalable confirmation can be achieved using the follow combination of techniques:
1. Timestamp transactions with a VDF sample and sign the timestamp.
2. Split the transactions into batches, send each to separate nodes and have
each node share its batch with its peers.
3. Repeat the previous step recursively until all nodes have all batches.
Solana rotates leaders at fixed intervals, called _slots_. Each leader may only produce entries during its allotted slot. The leader therefore timestamps transactions so that validators may lookup the public key of the designated leader. The leader then signs the timestamp so that a validator may verify the signature, proving the signer is owner of the designated leader's public key.
Next, transactions are broken into batches so that a node can send transactions to multiple parties without making multiple copies. If, for example, the leader needed to send 60 transactions to 6 nodes, it would break that collection of 60 into batches of 10 transactions and send one to each node. This allows the leader to put 60 transactions on the wire, not 60 transactions for each node. Each node then shares its batch with its peers. Once the node has collected all 6 batches, it reconstructs the original set of 60 transactions.
A batch of transactions can only be split so many times before it is so small that header information becomes the primary consumer of network bandwidth. At the time of this writing, the approach is scaling well up to about 150 validators. To scale up to hundreds of thousands of validators, each node can apply the same technique as the leader node to another set of nodes of equal size. We call the technique [_Turbine Block Propogation_](turbine-block-propagation.md).

View File

@ -1,80 +0,0 @@
# Fork Generation
The chapter describes how forks naturally occur as a consequence of [leader rotation](leader-rotation.md).
## Overview
Nodes take turns being leader and generating the PoH that encodes state changes. The cluster can tolerate loss of connection to any leader by synthesizing what the leader _**would**_ have generated had it been connected but not ingesting any state changes. The possible number of forks is thereby limited to a "there/not-there" skip list of forks that may arise on leader rotation slot boundaries. At any given slot, only a single leader's transactions will be accepted.
## Message Flow
1. Transactions are ingested by the current leader.
2. Leader filters valid transactions.
3. Leader executes valid transactions updating its state.
4. Leader packages transactions into entries based off its current PoH slot.
5. Leader transmits the entries to validator nodes \(in signed shreds\) 1. The PoH stream includes ticks; empty entries that indicate liveness of
the leader and the passage of time on the cluster.
1. A leader's stream begins with the tick entries necessary complete the PoH
back to the leaders most recently observed prior leader slot.
6. Validators retransmit entries to peers in their set and to further
downstream nodes.
7. Validators validate the transactions and execute them on their state.
8. Validators compute the hash of the state.
9. At specific times, i.e. specific PoH tick counts, validators transmit votes
to the leader.
1. Votes are signatures of the hash of the computed state at that PoH tick
count
2. Votes are also propagated via gossip
10. Leader executes the votes as any other transaction and broadcasts them to
the cluster.
11. Validators observe their votes and all the votes from the cluster.
## Partitions, Forks
Forks can arise at PoH tick counts that correspond to a vote. The next leader may not have observed the last vote slot and may start their slot with generated virtual PoH entries. These empty ticks are generated by all nodes in the cluster at a cluster-configured rate for hashes/per/tick `Z`.
There are only two possible versions of the PoH during a voting slot: PoH with `T` ticks and entries generated by the current leader, or PoH with just ticks. The "just ticks" version of the PoH can be thought of as a virtual ledger, one that all nodes in the cluster can derive from the last tick in the previous slot.
Validators can ignore forks at other points \(e.g. from the wrong leader\), or slash the leader responsible for the fork.
Validators vote based on a greedy choice to maximize their reward described in [Tower BFT](../implemented-proposals/tower-bft.md).
### Validator's View
#### Time Progression
The diagram below represents a validator's view of the PoH stream with possible forks over time. L1, L2, etc. are leader slots, and `E`s represent entries from that leader during that leader's slot. The `x`s represent ticks only, and time flows downwards in the diagram.
![Fork generation](../.gitbook/assets/fork-generation.svg)
Note that an `E` appearing on 2 forks at the same slot is a slashable condition, so a validator observing `E3` and `E3'` can slash L3 and safely choose `x` for that slot. Once a validator commits to a forks, other forks can be discarded below that tick count. For any slot, validators need only consider a single "has entries" chain or a "ticks only" chain to be proposed by a leader. But multiple virtual entries may overlap as they link back to the a previous slot.
#### Time Division
It's useful to consider leader rotation over PoH tick count as time division of the job of encoding state for the cluster. The following table presents the above tree of forks as a time-divided ledger.
| leader slot | L1 | L2 | L3 | L4 | L5 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| data | E1 | E2 | E3 | E4 | E5 |
| ticks since prev | | | | x | xx |
Note that only data from leader L3 will be accepted during leader slot L3. Data from L3 may include "catchup" ticks back to a slot other than L2 if L3 did not observe L2's data. L4 and L5's transmissions include the "ticks to prev" PoH entries.
This arrangement of the network data streams permits nodes to save exactly this to the ledger for replay, restart, and checkpoints.
### Leader's View
When a new leader begins a slot, it must first transmit any PoH \(ticks\) required to link the new slot with the most recently observed and voted slot. The fork the leader proposes would link the current slot to a previous fork that the leader has voted on with virtual ticks.

View File

@ -1,97 +0,0 @@
# Leader Rotation
At any given moment, a cluster expects only one validator to produce ledger entries. By having only one leader at a time, all validators are able to replay identical copies of the ledger. The drawback of only one leader at a time, however, is that a malicious leader is capable of censoring votes and transactions. Since censoring cannot be distinguished from the network dropping packets, the cluster cannot simply elect a single node to hold the leader role indefinitely. Instead, the cluster minimizes the influence of a malicious leader by rotating which node takes the lead.
Each validator selects the expected leader using the same algorithm, described below. When the validator receives a new signed ledger entry, it can be certain that entry was produced by the expected leader. The order of slots which each leader is assigned a slot is called a _leader schedule_.
## Leader Schedule Rotation
A validator rejects blocks that are not signed by the _slot leader_. The list of identities of all slot leaders is called a _leader schedule_. The leader schedule is recomputed locally and periodically. It assigns slot leaders for a duration of time called an _epoch_. The schedule must be computed far in advance of the slots it assigns, such that the ledger state it uses to compute the schedule is finalized. That duration is called the _leader schedule offset_. Solana sets the offset to the duration of slots until the next epoch. That is, the leader schedule for an epoch is calculated from the ledger state at the start of the previous epoch. The offset of one epoch is fairly arbitrary and assumed to be sufficiently long such that all validators will have finalized their ledger state before the next schedule is generated. A cluster may choose to shorten the offset to reduce the time between stake changes and leader schedule updates.
While operating without partitions lasting longer than an epoch, the schedule only needs to be generated when the root fork crosses the epoch boundary. Since the schedule is for the next epoch, any new stakes committed to the root fork will not be active until the next epoch. The block used for generating the leader schedule is the first block to cross the epoch boundary.
Without a partition lasting longer than an epoch, the cluster will work as follows:
1. A validator continuously updates its own root fork as it votes.
2. The validator updates its leader schedule each time the slot height crosses an epoch boundary.
For example:
The epoch duration is 100 slots. The root fork is updated from fork computed at slot height 99 to a fork computed at slot height 102. Forks with slots at height 100,101 were skipped because of failures. The new leader schedule is computed using fork at slot height 102. It is active from slot 200 until it is updated again.
No inconsistency can exist because every validator that is voting with the cluster has skipped 100 and 101 when its root passes 102. All validators, regardless of voting pattern, would be committing to a root that is either 102, or a descendant of 102.
### Leader Schedule Rotation with Epoch Sized Partitions.
The duration of the leader schedule offset has a direct relationship to the likelihood of a cluster having an inconsistent view of the correct leader schedule.
Consider the following scenario:
Two partitions that are generating half of the blocks each. Neither is coming to a definitive supermajority fork. Both will cross epoch 100 and 200 without actually committing to a root and therefore a cluster wide commitment to a new leader schedule.
In this unstable scenario, multiple valid leader schedules exist.
* A leader schedule is generated for every fork whose direct parent is in the previous epoch.
* The leader schedule is valid after the start of the next epoch for descendant forks until it is updated.
Each partition's schedule will diverge after the partition lasts more than an epoch. For this reason, the epoch duration should be selected to be much much larger then slot time and the expected length for a fork to be committed to root.
After observing the cluster for a sufficient amount of time, the leader schedule offset can be selected based on the median partition duration and its standard deviation. For example, an offset longer then the median partition duration plus six standard deviations would reduce the likelihood of an inconsistent ledger schedule in the cluster to 1 in 1 million.
## Leader Schedule Generation at Genesis
The genesis config declares the first leader for the first epoch. This leader ends up scheduled for the first two epochs because the leader schedule is also generated at slot 0 for the next epoch. The length of the first two epochs can be specified in the genesis config as well. The minimum length of the first epochs must be greater than or equal to the maximum rollback depth as defined in [Tower BFT](../implemented-proposals/tower-bft.md).
## Leader Schedule Generation Algorithm
Leader schedule is generated using a predefined seed. The process is as follows:
1. Periodically use the PoH tick height \(a monotonically increasing counter\) to
seed a stable pseudo-random algorithm.
2. At that height, sample the bank for all the staked accounts with leader
identities that have voted within a cluster-configured number of ticks. The
sample is called the _active set_.
3. Sort the active set by stake weight.
4. Use the random seed to select nodes weighted by stake to create a
stake-weighted ordering.
5. This ordering becomes valid after a cluster-configured number of ticks.
## Schedule Attack Vectors
### Seed
The seed that is selected is predictable but unbiasable. There is no grinding attack to influence its outcome.
### Active Set
A leader can bias the active set by censoring validator votes. Two possible ways exist for leaders to censor the active set:
* Ignore votes from validators
* Refuse to vote for blocks with votes from validators
To reduce the likelihood of censorship, the active set is calculated at the leader schedule offset boundary over an _active set sampling duration_. The active set sampling duration is long enough such that votes will have been collected by multiple leaders.
### Staking
Leaders can censor new staking transactions or refuse to validate blocks with new stakes. This attack is similar to censorship of validator votes.
### Validator operational key loss
Leaders and validators are expected to use ephemeral keys for operation, and stake owners authorize the validators to do work with their stake via delegation.
The cluster should be able to recover from the loss of all the ephemeral keys used by leaders and validators, which could occur through a common software vulnerability shared by all the nodes. Stake owners should be able to vote directly co-sign a validator vote even though the stake is currently delegated to a validator.
## Appending Entries
The lifetime of a leader schedule is called an _epoch_. The epoch is split into _slots_, where each slot has a duration of `T` PoH ticks.
A leader transmits entries during its slot. After `T` ticks, all the validators switch to the next scheduled leader. Validators must ignore entries sent outside a leader's assigned slot.
All `T` ticks must be observed by the next leader for it to build its own entries on. If entries are not observed \(leader is down\) or entries are invalid \(leader is buggy or malicious\), the next leader must produce ticks to fill the previous leader's slot. Note that the next leader should do repair requests in parallel, and postpone sending ticks until it is confident other validators also failed to observe the previous leader's entries. If a leader incorrectly builds on its own ticks, the leader following it must replace all its ticks.

View File

@ -1,269 +0,0 @@
# Ledger Replication
At full capacity on a 1gbps network solana will generate 4 petabytes of data per year. To prevent the network from centralizing around validators that have to store the full data set this protocol proposes a way for mining nodes to provide storage capacity for pieces of the data.
The basic idea to Proof of Replication is encrypting a dataset with a public symmetric key using CBC encryption, then hash the encrypted dataset. The main problem with the naive approach is that a dishonest storage node can stream the encryption and delete the data as it's hashed. The simple solution is to periodically regenerate the hash based on a signed PoH value. This ensures that all the data is present during the generation of the proof and it also requires validators to have the entirety of the encrypted data present for verification of every proof of every identity. So the space required to validate is `number_of_proofs * data_size`
## Optimization with PoH
Our improvement on this approach is to randomly sample the encrypted segments faster than it takes to encrypt, and record the hash of those samples into the PoH ledger. Thus the segments stay in the exact same order for every PoRep and verification can stream the data and verify all the proofs in a single batch. This way we can verify multiple proofs concurrently, each one on its own CUDA core. The total space required for verification is `1_ledger_segment + 2_cbc_blocks * number_of_identities` with core count equal to `number_of_identities`. We use a 64-byte chacha CBC block size.
## Network
Validators for PoRep are the same validators that are verifying transactions. If an archiver can prove that a validator verified a fake PoRep, then the validator will not receive a reward for that storage epoch.
Archivers are specialized _light clients_. They download a part of the ledger \(a.k.a Segment\) and store it, and provide PoReps of storing the ledger. For each verified PoRep archivers earn a reward of sol from the mining pool.
## Constraints
We have the following constraints:
* Verification requires generating the CBC blocks. That requires space of 2
blocks per identity, and 1 CUDA core per identity for the same dataset. So as
many identities at once should be batched with as many proofs for those
identities verified concurrently for the same dataset.
* Validators will randomly sample the set of storage proofs to the set that
they can handle, and only the creators of those chosen proofs will be
rewarded. The validator can run a benchmark whenever its hardware configuration
changes to determine what rate it can validate storage proofs.
## Validation and Replication Protocol
### Constants
1. SLOTS\_PER\_SEGMENT: Number of slots in a segment of ledger data. The
unit of storage for an archiver.
2. NUM\_KEY\_ROTATION\_SEGMENTS: Number of segments after which archivers
regenerate their encryption keys and select a new dataset to store.
3. NUM\_STORAGE\_PROOFS: Number of storage proofs required for a storage proof
claim to be successfully rewarded.
4. RATIO\_OF\_FAKE\_PROOFS: Ratio of fake proofs to real proofs that a storage
mining proof claim has to contain to be valid for a reward.
5. NUM\_STORAGE\_SAMPLES: Number of samples required for a storage mining
proof.
6. NUM\_CHACHA\_ROUNDS: Number of encryption rounds performed to generate
encrypted state.
7. NUM\_SLOTS\_PER\_TURN: Number of slots that define a single storage epoch or
a "turn" of the PoRep game.
### Validator behavior
1. Validators join the network and begin looking for archiver accounts at each
storage epoch/turn boundary.
2. Every turn, Validators sign the PoH value at the boundary and use that signature
to randomly pick proofs to verify from each storage account found in the turn boundary.
This signed value is also submitted to the validator's storage account and will be used by
archivers at a later stage to cross-verify.
3. Every `NUM_SLOTS_PER_TURN` slots the validator advertises the PoH value. This is value
is also served to Archivers via RPC interfaces.
4. For a given turn N, all validations get locked out until turn N+3 \(a gap of 2 turn/epoch\).
At which point all validations during that turn are available for reward collection.
5. Any incorrect validations will be marked during the turn in between.
### Archiver behavior
1. Since an archiver is somewhat of a light client and not downloading all the
ledger data, they have to rely on other validators and archivers for information.
Any given validator may or may not be malicious and give incorrect information, although
there are not any obvious attack vectors that this could accomplish besides having the
archiver do extra wasted work. For many of the operations there are a number of options
depending on how paranoid an archiver is:
* \(a\) archiver can ask a validator
* \(b\) archiver can ask multiple validators
* \(c\) archiver can ask other archivers
* \(d\) archiver can subscribe to the full transaction stream and generate
the information itself \(assuming the slot is recent enough\)
* \(e\) archiver can subscribe to an abbreviated transaction stream to
generate the information itself \(assuming the slot is recent enough\)
2. An archiver obtains the PoH hash corresponding to the last turn with its slot.
3. The archiver signs the PoH hash with its keypair. That signature is the
seed used to pick the segment to replicate and also the encryption key. The
archiver mods the signature with the slot to get which segment to
replicate.
4. The archiver retrives the ledger by asking peer validators and
archivers. See 6.5.
5. The archiver then encrypts that segment with the key with chacha algorithm
in CBC mode with `NUM_CHACHA_ROUNDS` of encryption.
6. The archiver initializes a chacha rng with the a signed recent PoH value as
the seed.
7. The archiver generates `NUM_STORAGE_SAMPLES` samples in the range of the
entry size and samples the encrypted segment with sha256 for 32-bytes at each
offset value. Sampling the state should be faster than generating the encrypted
segment.
8. The archiver sends a PoRep proof transaction which contains its sha state
at the end of the sampling operation, its seed and the samples it used to the
current leader and it is put onto the ledger.
9. During a given turn the archiver should submit many proofs for the same segment
and based on the `RATIO_OF_FAKE_PROOFS` some of those proofs must be fake.
10. As the PoRep game enters the next turn, the archiver must submit a
transaction with the mask of which proofs were fake during the last turn. This
transaction will define the rewards for both archivers and validators.
11. Finally for a turn N, as the PoRep game enters turn N + 3, archiver's proofs for
turn N will be counted towards their rewards.
### The PoRep Game
The Proof of Replication game has 4 primary stages. For each "turn" multiple PoRep games can be in progress but each in a different stage.
The 4 stages of the PoRep Game are as follows:
1. Proof submission stage
* Archivers: submit as many proofs as possible during this stage
* Validators: No-op
2. Proof verification stage
* Archivers: No-op
* Validators: Select archivers and verify their proofs from the previous turn
3. Proof challenge stage
* Archivers: Submit the proof mask with justifications \(for fake proofs submitted 2 turns ago\)
* Validators: No-op
4. Reward collection stage
* Archivers: Collect rewards for 3 turns ago
* Validators: Collect rewards for 3 turns ago
For each turn of the PoRep game, both Validators and Archivers evaluate each stage. The stages are run as separate transactions on the storage program.
### Finding who has a given block of ledger
1. Validators monitor the turns in the PoRep game and look at the rooted bank
at turn boundaries for any proofs.
2. Validators maintain a map of ledger segments and corresponding archiver public keys.
The map is updated when a Validator processes an archiver's proofs for a segment.
The validator provides an RPC interface to access the this map. Using this API, clients
can map a segment to an archiver's network address \(correlating it via cluster\_info table\).
The clients can then send repair requests to the archiver to retrieve segments.
3. Validators would need to invalidate this list every N turns.
## Sybil attacks
For any random seed, we force everyone to use a signature that is derived from a PoH hash at the turn boundary. Everyone uses the same count, so the same PoH hash is signed by every participant. The signatures are then each cryptographically tied to the keypair, which prevents a leader from grinding on the resulting value for more than 1 identity.
Since there are many more client identities then encryption identities, we need to split the reward for multiple clients, and prevent Sybil attacks from generating many clients to acquire the same block of data. To remain BFT we want to avoid a single human entity from storing all the replications of a single chunk of the ledger.
Our solution to this is to force the clients to continue using the same identity. If the first round is used to acquire the same block for many client identities, the second round for the same client identities will force a redistribution of the signatures, and therefore PoRep identities and blocks. Thus to get a reward for archivers need to store the first block for free and the network can reward long lived client identities more than new ones.
## Validator attacks
* If a validator approves fake proofs, archiver can easily out them by
showing the initial state for the hash.
* If a validator marks real proofs as fake, no on-chain computation can be done
to distinguish who is correct. Rewards would have to rely on the results from
multiple validators to catch bad actors and archivers from being denied rewards.
* Validator stealing mining proof results for itself. The proofs are derived
from a signature from an archiver, since the validator does not know the
private key used to generate the encryption key, it cannot be the generator of
the proof.
## Reward incentives
Fake proofs are easy to generate but difficult to verify. For this reason, PoRep proof transactions generated by archivers may require a higher fee than a normal transaction to represent the computational cost required by validators.
Some percentage of fake proofs are also necessary to receive a reward from storage mining.
## Notes
* We can reduce the costs of verification of PoRep by using PoH, and actually
make it feasible to verify a large number of proofs for a global dataset.
* We can eliminate grinding by forcing everyone to sign the same PoH hash and
use the signatures as the seed
* The game between validators and archivers is over random blocks and random
encryption identities and random data samples. The goal of randomization is
to prevent colluding groups from having overlap on data or validation.
* Archiver clients fish for lazy validators by submitting fake proofs that
they can prove are fake.
* To defend against Sybil client identities that try to store the same block we
force the clients to store for multiple rounds before receiving a reward.
* Validators should also get rewarded for validating submitted storage proofs
as incentive for storing the ledger. They can only validate proofs if they
are storing that slice of the ledger.

View File

@ -1,34 +0,0 @@
# Managing Forks
The ledger is permitted to fork at slot boundaries. The resulting data structure forms a tree called a _blockstore_. When the validator interprets the blockstore, it must maintain state for each fork in the chain. We call each instance an _active fork_. It is the responsibility of a validator to weigh those forks, such that it may eventually select a fork.
A validator selects a fork by submiting a vote to a slot leader on that fork. The vote commits the validator for a duration of time called a _lockout period_. The validator is not permitted to vote on a different fork until that lockout period expires. Each subsequent vote on the same fork doubles the length of the lockout period. After some cluster-configured number of votes \(currently 32\), the length of the lockout period reaches what's called _max lockout_. Until the max lockout is reached, the validator has the option to wait until the lockout period is over and then vote on another fork. When it votes on another fork, it performs a operation called _rollback_, whereby the state rolls back in time to a shared checkpoint and then jumps forward to the tip of the fork that it just voted on. The maximum distance that a fork may roll back is called the _rollback depth_. Rollback depth is the number of votes required to achieve max lockout. Whenever a validator votes, any checkpoints beyond the rollback depth become unreachable. That is, there is no scenario in which the validator will need to roll back beyond rollback depth. It therefore may safely _prune_ unreachable forks and _squash_ all checkpoints beyond rollback depth into the root checkpoint.
## Active Forks
An active fork is as a sequence of checkpoints that has a length at least one longer than the rollback depth. The shortest fork will have a length exactly one longer than the rollback depth. For example:
![Forks](../.gitbook/assets/forks.svg)
The following sequences are _active forks_:
* {4, 2, 1}
* {5, 2, 1}
* {6, 3, 1}
* {7, 3, 1}
## Pruning and Squashing
A validator may vote on any checkpoint in the tree. In the diagram above, that's every node except the leaves of the tree. After voting, the validator prunes nodes that fork from a distance farther than the rollback depth and then takes the opportunity to minimize its memory usage by squashing any nodes it can into the root.
Starting from the example above, wth a rollback depth of 2, consider a vote on 5 versus a vote on 6. First, a vote on 5:
![Forks after pruning](../.gitbook/assets/forks-pruned.svg)
The new root is 2, and any active forks that are not descendants from 2 are pruned.
Alternatively, a vote on 6:
![Forks](../.gitbook/assets/forks-pruned2.svg)
The tree remains with a root of 1, since the active fork starting at 6 is only 2 checkpoints from the root.

View File

@ -1,24 +0,0 @@
# Performance Metrics
Solana cluster performance is measured as average number of transactions per second that the network can sustain \(TPS\). And, how long it takes for a transaction to be confirmed by super majority of the cluster \(Confirmation Time\).
Each cluster node maintains various counters that are incremented on certain events. These counters are periodically uploaded to a cloud based database. Solana's metrics dashboard fetches these counters, and computes the performance metrics and displays it on the dashboard.
## TPS
Each node's bank runtime maintains a count of transactions that it has processed. The dashboard first calculates the median count of transactions across all metrics enabled nodes in the cluster. The median cluster transaction count is then averaged over a 2 second period and displayed in the TPS time series graph. The dashboard also shows the Mean TPS, Max TPS and Total Transaction Count stats which are all calculated from the median transaction count.
## Confirmation Time
Each validator node maintains a list of active ledger forks that are visible to the node. A fork is considered to be frozen when the node has received and processed all entries corresponding to the fork. A fork is considered to be confirmed when it receives cumulative super majority vote, and when one of its children forks is frozen.
The node assigns a timestamp to every new fork, and computes the time it took to confirm the fork. This time is reflected as validator confirmation time in performance metrics. The performance dashboard displays the average of each validator node's confirmation time as a time series graph.
## Hardware setup
The validator software is deployed to GCP n1-standard-16 instances with 1TB pd-ssd disk, and 2x Nvidia V100 GPUs. These are deployed in the us-west-1 region.
solana-bench-tps is started after the network converges from a client machine with n1-standard-16 CPU-only instance with the following arguments: `--tx\_count=50000 --thread-batch-sleep 1000`
TPS and confirmation metrics are captured from the dashboard numbers over a 5 minute average of when the bench-tps transfer stage begins.

View File

@ -1,211 +0,0 @@
# Stake Delegation and Rewards
Stakers are rewarded for helping to validate the ledger. They do this by delegating their stake to validator nodes. Those validators do the legwork of replaying the ledger and send votes to a per-node vote account to which stakers can delegate their stakes. The rest of the cluster uses those stake-weighted votes to select a block when forks arise. Both the validator and staker need some economic incentive to play their part. The validator needs to be compensated for its hardware and the staker needs to be compensated for the risk of getting its stake slashed. The economics are covered in [staking rewards](../implemented-proposals/staking-rewards.md). This chapter, on the other hand, describes the underlying mechanics of its implementation.
## Basic Design
The general idea is that the validator owns a Vote account. The Vote account tracks validator votes, counts validator generated credits, and provides any additional validator specific state. The Vote account is not aware of any stakes delegated to it and has no staking weight.
A separate Stake account \(created by a staker\) names a Vote account to which the stake is delegated. Rewards generated are proportional to the amount of lamports staked. The Stake account is owned by the staker only. Some portion of the lamports stored in this account are the stake.
## Passive Delegation
Any number of Stake accounts can delegate to a single Vote account without an interactive action from the identity controlling the Vote account or submitting votes to the account.
The total stake allocated to a Vote account can be calculated by the sum of all the Stake accounts that have the Vote account pubkey as the `StakeState::Stake::voter_pubkey`.
## Vote and Stake accounts
The rewards process is split into two on-chain programs. The Vote program solves the problem of making stakes slashable. The Stake program acts as custodian of the rewards pool and provides for passive delegation. The Stake program is responsible for paying rewards to staker and voter when shown that a staker's delegate has participated in validating the ledger.
### VoteState
VoteState is the current state of all the votes the validator has submitted to the network. VoteState contains the following state information:
* `votes` - The submitted votes data structure.
* `credits` - The total number of rewards this vote program has generated over its lifetime.
* `root_slot` - The last slot to reach the full lockout commitment necessary for rewards.
* `commission` - The commission taken by this VoteState for any rewards claimed by staker's Stake accounts. This is the percentage ceiling of the reward.
* Account::lamports - The accumulated lamports from the commission. These do not count as stakes.
* `authorized_voter` - Only this identity is authorized to submit votes. This field can only modified by this identity.
* `node_pubkey` - The Solana node that votes in this account.
* `authorized_withdrawer` - the identity of the entity in charge of the lamports of this account, separate from the account's
```text
address and the authorized vote signer
```
### VoteInstruction::Initialize\(VoteInit\)
* `account[0]` - RW - The VoteState
`VoteInit` carries the new vote account's `node_pubkey`, `authorized_voter`, `authorized_withdrawer`, and `commission`
other VoteState members defaulted
### VoteInstruction::Authorize\(Pubkey, VoteAuthorize\)
Updates the account with a new authorized voter or withdrawer, according to the VoteAuthorize parameter \(`Voter` or `Withdrawer`\). The transaction must be by signed by the Vote account's current `authorized_voter` or `authorized_withdrawer`.
* `account[0]` - RW - The VoteState
`VoteState::authorized_voter` or `authorized_withdrawer` is set to to `Pubkey`.
### VoteInstruction::Vote\(Vote\)
* `account[0]` - RW - The VoteState
`VoteState::lockouts` and `VoteState::credits` are updated according to voting lockout rules see [Tower BFT](../implemented-proposals/tower-bft.md)
* `account[1]` - RO - `sysvar::slot_hashes` A list of some N most recent slots and their hashes for the vote to be verified against.
* `account[2]` - RO - `sysvar::clock` The current network time, expressed in slots, epochs.
### StakeState
A StakeState takes one of four forms, StakeState::Uninitialized, StakeState::Initialized, StakeState::Stake, and StakeState::RewardsPool. Only the first three forms are used in staking, but only StakeState::Stake is interesting. All RewardsPools are created at genesis.
### StakeState::Stake
StakeState::Stake is the current delegation preference of the **staker** and contains the following state information:
* Account::lamports - The lamports available for staking.
* `stake` - the staked amount \(subject to warm up and cool down\) for generating rewards, always less than or equal to Account::lamports
* `voter_pubkey` - The pubkey of the VoteState instance the lamports are delegated to.
* `credits_observed` - The total credits claimed over the lifetime of the program.
* `activated` - the epoch at which this stake was activated/delegated. The full stake will be counted after warm up.
* `deactivated` - the epoch at which this stake was de-activated, some cool down epochs are required before the account
```text
is fully deactivated, and the stake available for withdrawal
```
* `authorized_staker` - the pubkey of the entity that must sign delegation, activation, and deactivation transactions
* `authorized_withdrawer` - the identity of the entity in charge of the lamports of this account, separate from the account's
```text
address, and the authorized staker
```
### StakeState::RewardsPool
To avoid a single network wide lock or contention in redemption, 256 RewardsPools are part of genesis under pre-determined keys, each with std::u64::MAX credits to be able to satisfy redemptions according to point value.
The Stakes and the RewardsPool are accounts that are owned by the same `Stake` program.
### StakeInstruction::DelegateStake
The Stake account is moved from Initialized to StakeState::Stake form, or from a deactivated (i.e. fully cooled-down) StakeState::Stake to activated StakeState::Stake. This is how stakers choose the vote account and validator node to which their stake account lamports are delegated. The transaction must be signed by the stake's `authorized_staker`.
* `account[0]` - RW - The StakeState::Stake instance. `StakeState::Stake::credits_observed` is initialized to `VoteState::credits`, `StakeState::Stake::voter_pubkey` is initialized to `account[1]`. If this is the initial delegation of stake, `StakeState::Stake::stake` is initialized to the account's balance in lamports, `StakeState::Stake::activated` is initialized to the current Bank epoch, and `StakeState::Stake::deactivated` is initialized to std::u64::MAX
* `account[1]` - R - The VoteState instance.
* `account[2]` - R - sysvar::clock account, carries information about current Bank epoch
* `account[3]` - R - sysvar::stakehistory account, carries information about stake history
* `account[4]` - R - stake::Config accoount, carries warmup, cooldown, and slashing configuration
### StakeInstruction::Authorize\(Pubkey, StakeAuthorize\)
Updates the account with a new authorized staker or withdrawer, according to the StakeAuthorize parameter \(`Staker` or `Withdrawer`\). The transaction must be by signed by the Stakee account's current `authorized_staker` or `authorized_withdrawer`. Any stake lock-up must have expired, or the lock-up custodian must also sign the transaction.
* `account[0]` - RW - The StakeState
`StakeState::authorized_staker` or `authorized_withdrawer` is set to to `Pubkey`.
### StakeInstruction::Deactivate
A staker may wish to withdraw from the network. To do so he must first deactivate his stake, and wait for cool down.
The transaction must be signed by the stake's `authorized_staker`.
* `account[0]` - RW - The StakeState::Stake instance that is deactivating.
* `account[1]` - R - sysvar::clock account from the Bank that carries current epoch
StakeState::Stake::deactivated is set to the current epoch + cool down. The account's stake will ramp down to zero by that epoch, and Account::lamports will be available for withdrawal.
### StakeInstruction::Withdraw\(u64\)
Lamports build up over time in a Stake account and any excess over activated stake can be withdrawn. The transaction must be signed by the stake's `authorized_withdrawer`.
* `account[0]` - RW - The StakeState::Stake from which to withdraw.
* `account[1]` - RW - Account that should be credited with the withdrawn lamports.
* `account[2]` - R - sysvar::clock account from the Bank that carries current epoch, to calculate stake.
* `account[3]` - R - sysvar::stake\_history account from the Bank that carries stake warmup/cooldown history
## Benefits of the design
* Single vote for all the stakers.
* Clearing of the credit variable is not necessary for claiming rewards.
* Each delegated stake can claim its rewards independently.
* Commission for the work is deposited when a reward is claimed by the delegated stake.
## Example Callflow
![Passive Staking Callflow](../.gitbook/assets/passive-staking-callflow.svg)
## Staking Rewards
The specific mechanics and rules of the validator rewards regime is outlined here. Rewards are earned by delegating stake to a validator that is voting correctly. Voting incorrectly exposes that validator's stakes to [slashing](../proposals/slashing.md).
### Basics
The network pays rewards from a portion of network [inflation](../terminology.md#inflation). The number of lamports available to pay rewards for an epoch is fixed and must be evenly divided among all staked nodes according to their relative stake weight and participation. The weighting unit is called a [point](../terminology.md#point).
Rewards for an epoch are not available until the end of that epoch.
At the end of each epoch, the total number of points earned during the epoch is summed and used to divide the rewards portion of epoch inflation to arrive at a point value. This value is recorded in the bank in a [sysvar](../terminology.md#sysvar) that maps epochs to point values.
During redemption, the stake program counts the points earned by the stake for each epoch, multiplies that by the epoch's point value, and transfers lamports in that amount from a rewards account into the stake and vote accounts according to the vote account's commission setting.
### Economics
Point value for an epoch depends on aggregate network participation. If participation in an epoch drops off, point values are higher for those that do participate.
### Earning credits
Validators earn one vote credit for every correct vote that exceeds maximum lockout, i.e. every time the validator's vote account retires a slot from its lockout list, making that vote a root for the node.
Stakers who have delegated to that validator earn points in proportion to their stake. Points earned is the product of vote credits and stake.
### Stake warmup, cooldown, withdrawal
Stakes, once delegated, do not become effective immediately. They must first pass through a warm up period. During this period some portion of the stake is considered "effective", the rest is considered "activating". Changes occur on epoch boundaries.
The stake program limits the rate of change to total network stake, reflected in the stake program's `config::warmup_rate` \(typically 25% per epoch\).
The amount of stake that can be warmed up each epoch is a function of the previous epoch's total effective stake, total activating stake, and the stake program's configured warmup rate.
Cooldown works the same way. Once a stake is deactivated, some part of it is considered "effective", and also "deactivating". As the stake cools down, it continues to earn rewards and be exposed to slashing, but it also becomes available for withdrawal.
Bootstrap stakes are not subject to warmup.
Rewards are paid against the "effective" portion of the stake for that epoch.
#### Warmup example
Consider the situation of a single stake of 1,000 activated at epoch N, with network warmup rate of 20%, and a quiescent total network stake at epoch N of 2,000.
At epoch N+1, the amount available to be activated for the network is 400 \(20% of 200\), and at epoch N, this example stake is the only stake activating, and so is entitled to all of the warmup room available.
| epoch | effective | activating | total effective | total activating |
| :--- | ---: | ---: | ---: | ---: |
| N-1 | | | 2,000 | 0 |
| N | 0 | 1,000 | 2,000 | 1,000 |
| N+1 | 400 | 600 | 2,400 | 600 |
| N+2 | 880 | 120 | 2,880 | 120 |
| N+3 | 1000 | 0 | 3,000 | 0 |
Were 2 stakes \(X and Y\) to activate at epoch N, they would be awarded a portion of the 20% in proportion to their stakes. At each epoch effective and activating for each stake is a function of the previous epoch's state.
| epoch | X eff | X act | Y eff | Y act | total effective | total activating |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| N-1 | | | | | 2,000 | 0 |
| N | 0 | 1,000 | 0 | 200 | 2,000 | 1,200 |
| N+1 | 333 | 667 | 67 | 133 | 2,400 | 800 |
| N+2 | 733 | 267 | 146 | 54 | 2,880 | 321 |
| N+3 | 1000 | 0 | 200 | 0 | 3,200 | 0 |
### Withdrawal
Only lamports in excess of effective+activating stake may be withdrawn at any time. This means that during warmup, effectively no stake can be withdrawn. During cooldown, any tokens in excess of effective stake may be withdrawn \(activating == 0\). Because earned rewards are automatically added to stake, withdrawal is generally only possible after deactivation.
### Lock-up
Stake accounts support the notion of lock-up, wherein the stake account balance is unavailable for withdrawal until a specified time. Lock-up is specified as an epoch height, i.e. the minimum epoch height that must be reached by the network before the stake account balance is available for withdrawal, unless the transaction is also signed by a specified custodian. This information is gathered when the stake account is created, and stored in the Lockup field of the stake account's state. Changing the authorized staker or withdrawer is also subject to lock-up, as such an operation is effectively a transfer.

Some files were not shown because too many files have changed in this diff Show More