Files
triton/lib/ir/instructions.cc

1060 lines
40 KiB
C++
Raw Permalink Normal View History

#include <algorithm>
#include <iostream>
#include "triton/ir/context.h"
#include "triton/ir/basic_block.h"
#include "triton/ir/instructions.h"
#include "triton/ir/constant.h"
#include "triton/ir/type.h"
#include "triton/ir/function.h"
namespace triton{
namespace ir{
//===----------------------------------------------------------------------===//
// instruction classes
//===----------------------------------------------------------------------===//
instruction::instruction(type *ty, value_id_t ity, unsigned num_ops,
const std::string &name, instruction *next)
: user(ty, num_ops, name), id_(ity) {
if(next){
basic_block *block = next->get_parent();
assert(block && "Next instruction is not in a basic block!");
auto it = std::find(block->begin(), block->end(), next);
block->get_inst_list().insert(it, next);
}
}
void instruction::erase_from_parent() {
parent_->erase(this);
for(ir::value* op: ops())
op->erase_use(this);
}
bool instruction::has_tile_result_or_op() {
bool result = get_type()->is_block_ty();
for(unsigned i = 0; i < get_num_operands(); i++)
result |= get_operand(i)->get_type()->is_block_ty();
return result;
}
//===----------------------------------------------------------------------===//
// phi_node classes
//===----------------------------------------------------------------------===//
phi_node::phi_node(type *ty, unsigned num_reserved, std::string const &name, instruction *next)
: instruction(ty, INST_PHI, 0, name, next) {
blocks_.reserve(num_reserved);
}
value* phi_node::get_value_for_block(basic_block * block) {
auto it = std::find(blocks_.begin(), blocks_.end(), block);
size_t n = std::distance(blocks_.begin(), it);
return get_incoming_value(n);
}
// Set incoming value
void phi_node::set_incoming_value(unsigned i, value *v){
assert(v && "PHI node got a null value!");
assert(get_type() == v->get_type() &&
"All operands to PHI node must be the same type as the PHI node!");
set_operand(i, v);
}
// Set incoming block
void phi_node::set_incoming_block(unsigned i, basic_block *block){
assert(block && "PHI node got a null basic block!");
blocks_[i] = block;
}
// Add incoming
void phi_node::add_incoming(value *v, basic_block *block){
assert(v && "PHI node got a null value!!");
resize_ops(get_num_operands() + 1);
blocks_.resize(get_num_operands() + 1);
set_incoming_value(get_num_operands() - 1, v);
set_incoming_block(get_num_operands() - 1, block);
}
// Factory methods
phi_node* phi_node::create(type *ty, unsigned num_reserved, const std::string &name, instruction *next){
return new phi_node(ty, num_reserved, name, next);
}
//===----------------------------------------------------------------------===//
// call_inst classes
//===----------------------------------------------------------------------===//
std::string call_inst::repr_impl() const { return "call " + fn_->get_name(); }
call_inst::call_inst(ir::function* fn, const std::vector<ir::value*>& values, const std::string& name, instruction* next)
: instruction(fn->get_fn_type()->get_return_ty(), INST_CALL, values.size(), name, next), fn_(fn){
for(size_t i = 0; i < values.size(); i++)
set_operand(i, values.at(i));
}
call_inst* call_inst::create(ir::function* fn, const std::vector<ir::value*>& values, const std::string &name, instruction *next) {
return new call_inst(fn, values, name, next);
}
// launch
launch_inst::launch_inst(ir::function* fn, const std::vector<ir::value*>& values, const std::vector<ir::value*>& grid, ir::value* num_warps, const std::string& name, instruction* next)
: instruction(fn->get_fn_type()->get_return_ty(), INST_LAUNCH, 1 + values.size() + grid.size() + 1, name, next){
int k = 0;
if(grid.size() != 3)
throw std::runtime_error("grid must have 3 elements");
set_operand(k++, fn);
val_begin = k;
for(ir::value* v: values)
set_operand(k++, v);
val_end = k;
grid_begin = k;
for(ir::value* g: grid)
set_operand(k++, g);
grid_end = k;
set_operand(k++, num_warps);
}
ir::function* launch_inst::get_fn() {
return (ir::function*)get_operand(0);
}
std::vector<ir::value*> launch_inst::get_values() {
std::vector<ir::value*> ret;
for(int i = val_begin; i < val_end; i++)
ret.push_back(get_operand(i));
return ret;
}
std::vector<ir::value*> launch_inst::get_grid() {
std::vector<ir::value*> ret;
for(int i = grid_begin; i < grid_end; i++)
ret.push_back(get_operand(i));
return ret;
}
ir::value* launch_inst::get_num_warps() {
return get_operand(grid_end);
}
launch_inst* launch_inst::create(ir::function *fn, const std::vector<ir::value *> &values, const std::vector<ir::value *> &grid, ir::value *num_warps, const std::string &name, instruction *next) {
return new launch_inst(fn, values, grid, num_warps, name, next);
}
//===----------------------------------------------------------------------===//
// binary_operator classes
//===----------------------------------------------------------------------===//
std::string binary_operator::repr_impl() const {
switch(op_) {
case Add : return "add";
case FAdd : return "fadd";
case Sub : return "sub";
case FSub : return "fsub";
case Mul : return "mul";
case FMul : return "fmul";
case UDiv : return "udiv";
case SDiv : return "sdiv";
case FDiv : return "fdiv";
case URem : return "urem";
case SRem : return "srem";
case FRem : return "frem";
case Shl : return "shl";
case LShr : return "lshr";
case AShr : return "ashr";
case And : return "and";
case Or : return "or";
case Xor : return "xor";
default: throw std::runtime_error("unknown binary operator");
}
}
bool binary_operator::is_int_div() const {
return op_ == binary_op_t::UDiv || op_ == binary_op_t::SDiv;
}
bool binary_operator::is_int_rem() const {
return op_ == binary_op_t::URem || op_ == binary_op_t::SRem;
}
bool binary_operator::is_shl() const {
return op_ == binary_op_t::Shl;
}
bool binary_operator::is_shr() const {
return op_ == binary_op_t::LShr || op_ == binary_op_t::AShr;
}
bool binary_operator::is_int_mult() const {
return op_ == binary_op_t::Mul;
}
bool binary_operator::is_int_add_sub() const {
return op_ == binary_op_t::Add || op_ == binary_op_t::Sub;
}
binary_operator::binary_operator(binary_op_t op, value *lhs, value *rhs, type *ty, const std::string &name, instruction *next)
: instruction(ty, INST_BINOP, 2, name, next), op_(op), fdiv_ieee_rnd_(false){
set_operand(0, lhs);
set_operand(1, rhs);
}
binary_operator *binary_operator::create(binary_op_t op, value *lhs, value *rhs, const std::string &name, instruction *next){
assert(lhs->get_type() == rhs->get_type() &&
"Cannot create binary operator with two operands of differing type!");
return new binary_operator(op, lhs, rhs, lhs->get_type(), name, next);
}
//binary_operator *binary_operator::create_fneg(value *arg, const std::string &name, instruction *next){
// assert(arg->get_type()->get_scalar_ty()->is_floating_point_ty());
// value *zero = constant_fp::get_zero_value_for_negation(arg->get_type());
// return binary_operator::create(binary_op_t::FSub, zero, arg, name, next);
//}
//binary_operator *binary_operator::create_neg(value *arg, const std::string &name, instruction *next){
// assert(arg->get_type()->get_scalar_ty()->is_integer_ty());
// value *zero = constant_fp::get_zero_value_for_negation(arg->get_type()->get_scalar_ty());
// return binary_operator::create(binary_op_t::Sub, zero, arg, name, next);
//}
//binary_operator *binary_operator::create_not(value *arg, const std::string &name, instruction *next){
// assert(arg->get_type()->is_integer_ty());
// constant *mask = constant::get_all_ones_value(arg->get_type());
// return binary_operator::create(binary_op_t::Xor, arg, mask, name, next);
//}
//===----------------------------------------------------------------------===//
// cmp_inst classes
//===----------------------------------------------------------------------===//
// cmp_inst
std::string cmp_inst::repr_impl() const {
switch (pred_) {
case FCMP_FALSE : return "false";
case FCMP_OEQ : return "fcmp_oeq";
case FCMP_OGT : return "fcmp_ogt";
case FCMP_OGE : return "fcmp_oge";
case FCMP_OLT : return "fcmp_olt";
case FCMP_OLE : return "fcmp_ole";
case FCMP_ONE : return "fcmp_one";
case FCMP_ORD : return "fcmp_ord";
case FCMP_UNO : return "fcmp_uno";
case FCMP_UEQ : return "fcmp_ueq";
case FCMP_UGT : return "fcmp_ugt";
case FCMP_UGE : return "fcmp_uge";
case FCMP_ULT : return "fcmp_ult";
case FCMP_ULE : return "fcmp_ule";
case FCMP_UNE : return "fcmp_une";
case FCMP_TRUE : return "true";
case ICMP_EQ : return "icmp_eq";
case ICMP_NE : return "icmp_ne";
case ICMP_UGT : return "icmp_ugt";
case ICMP_UGE : return "icmp_uge";
case ICMP_ULT : return "icmp_ult";
case ICMP_ULE : return "icmp_ule";
case ICMP_SGT : return "icmp_sgt";
case ICMP_SGE : return "icmp_sge";
case ICMP_SLT : return "icmp_slt";
case ICMP_SLE : return "icmp_sle";
default: throw std::runtime_error("unreachable");
}
}
cmp_inst::cmp_inst(type *ty, value_id_t id, cmp_pred_t pred, value *lhs, value *rhs, const std::string &name, instruction *next)
: instruction(ty, id, 2, name, next), pred_(pred) {
set_operand(0, lhs);
set_operand(1, rhs);
}
type* cmp_inst::make_cmp_result_type(type *ty){
type* int1_ty = type::get_int1_ty(ty->get_context());
if (block_type* tile_ty = dynamic_cast<block_type*>(ty))
return block_type::get_same_shapes(int1_ty, tile_ty);
return int1_ty;
}
bool cmp_inst::is_fp_predicate(cmp_pred_t pred) {
return pred >= FIRST_FCMP_PREDICATE && pred <= LAST_FCMP_PREDICATE;
}
bool cmp_inst::is_int_predicate(cmp_pred_t pred) {
return pred >= FIRST_ICMP_PREDICATE && pred <= LAST_ICMP_PREDICATE;
}
// icmp_inst
icmp_inst::icmp_inst(type *ty, cmp_pred_t pred,
value *lhs, value *rhs, const std::string &name, instruction *next)
: cmp_inst(ty, INST_ICMP, pred, lhs, rhs, name, next){ }
icmp_inst* icmp_inst::create(cmp_pred_t pred, value *lhs, value *rhs, const std::string &name, instruction *next){
assert(is_int_predicate(pred));
assert(lhs->get_type() == rhs->get_type());
type *res_ty = make_cmp_result_type(lhs->get_type());
return new icmp_inst(res_ty, pred, lhs, rhs, name, next);
}
// fcmp_inst
fcmp_inst::fcmp_inst(type *ty, cmp_pred_t pred,
value *lhs, value *rhs, const std::string &name, instruction *next)
: cmp_inst(ty, INST_FCMP, pred, lhs, rhs, name, next){ }
fcmp_inst* fcmp_inst::create(cmp_pred_t pred, value *lhs, value *rhs, const std::string &name, instruction *next){
assert(is_fp_predicate(pred));
type *res_ty = make_cmp_result_type(lhs->get_type());
return new fcmp_inst(res_ty, pred, lhs, rhs, name, next);
}
//===----------------------------------------------------------------------===//
// unary_inst classes
//===----------------------------------------------------------------------===//
unary_inst::unary_inst(type *ty, value_id_t id, value *v, const std::string &name, instruction *next)
: instruction(ty, id, 1, name, next) {
set_operand(0, v);
}
//===----------------------------------------------------------------------===//
// dequantize_inst classes
//===----------------------------------------------------------------------===//
dequantize_inst::dequantize_inst(type *ty, value *v, value *scale, value *shift, const std::string &name, instruction *next)
: instruction(ty, INST_DEQUANTIZE, 3, name, next) {
set_operand(0, v);
set_operand(1, scale);
set_operand(2, shift);
}
dequantize_inst *dequantize_inst::create(value *arg, value *scale, value *shift, type *ty, const std::string &name, instruction *next){
return new dequantize_inst(ty, arg, scale, shift, name, next);
}
//===----------------------------------------------------------------------===//
// cast_inst classes
//===----------------------------------------------------------------------===//
std::string cast_inst::repr_impl() const {
switch (op_){
case cast_op_t::Trunc: return "trunc";
case cast_op_t::ZExt: return "zext";
case cast_op_t::SExt: return "sext";
case cast_op_t::FPTrunc: return "fp_trunc";
case cast_op_t::FPExt: return "fp_ext";
case cast_op_t::UIToFP: return "ui_to_fp";
case cast_op_t::SIToFP: return "si_to_fp";
case cast_op_t::FPToUI: return "fp_to_ui";
case cast_op_t::FPToSI: return "fp_to_si";
case cast_op_t::PtrToInt: return "ptr_to_int";
case cast_op_t::IntToPtr: return "int_to_ptr";
case cast_op_t::BitCast: return "bitcast";
case cast_op_t::AddrSpaceCast: return "addr_space_cast";
default: throw std::runtime_error("unreachable");
}
}
// TODO
bool cast_inst::is_valid(cast_op_t op, value *arg, type *ty) {
assert(arg->get_type()->is_block_ty() == ty->is_block_ty());
return true;
}
cast_inst *cast_inst::create(cast_op_t op, value *arg, type *ty, const std::string &name, instruction *next){
assert(is_valid(op, arg, ty) && "Invalid cast!");
// Construct and return the appropriate CastInst subclass
switch (op) {
case cast_op_t::Trunc: return new trunc_inst (ty, arg, name, next);
case cast_op_t::ZExt: return new z_ext_inst (ty, arg, name, next);
case cast_op_t::SExt: return new s_ext_inst (ty, arg, name, next);
case cast_op_t::FPTrunc: return new fp_trunc_inst (ty, arg, name, next);
case cast_op_t::FPExt: return new fp_ext_inst (ty, arg, name, next);
case cast_op_t::UIToFP: return new ui_to_fp_inst (ty, arg, name, next);
case cast_op_t::SIToFP: return new si_to_fp_inst (ty, arg, name, next);
case cast_op_t::FPToUI: return new fp_to_ui_inst (ty, arg, name, next);
case cast_op_t::FPToSI: return new fp_to_si_inst (ty, arg, name, next);
case cast_op_t::PtrToInt: return new ptr_to_int_inst (ty, arg, name, next);
case cast_op_t::IntToPtr: return new int_to_ptr_inst (ty, arg, name, next);
case cast_op_t::BitCast: return new bit_cast_inst (ty, arg, name, next);
case cast_op_t::AddrSpaceCast: return new addr_space_cast_inst (ty, arg, name, next);
default: throw std::runtime_error("unreachable");
}
}
cast_inst *cast_inst::create_integer_cast(value *arg, type *ty, bool is_signed, const std::string &name, instruction *next){
type *arg_ty = arg->get_type();
assert(arg_ty->is_int_or_tileint_ty() && ty->is_int_or_tileint_ty() && "Invalid integer cast!");
unsigned arg_bits = arg_ty->get_scalar_ty()->get_integer_bitwidth();
unsigned dst_bits = ty->get_scalar_ty()->get_integer_bitwidth();
cast_op_t op = (arg_bits == dst_bits ? cast_op_t::BitCast :
(arg_bits > dst_bits ? cast_op_t::Trunc :
(is_signed ? cast_op_t::SExt : cast_op_t::ZExt)));
return create(op, arg, ty, name, next);
}
//===----------------------------------------------------------------------===//
// terminator_inst classes
//===----------------------------------------------------------------------===//
// return_inst
return_inst::return_inst(context &ctx, value *ret_val, instruction *next)
: terminator_inst(ret_val?ret_val->get_type():type::get_void_ty(ctx), INST_RETURN, ret_val!=nullptr, "", next){
if(ret_val)
set_operand(0, ret_val);
}
return_inst *return_inst::create(context &ctx, value *ret_val, instruction *next){
return new return_inst(ctx, ret_val, next);
}
// branch_inst
branch_inst* branch_inst::create(basic_block *dst, instruction *next) {
assert(dst && "Branch destination may not be null!");
return new uncond_branch_inst(dst, next);
}
branch_inst* branch_inst::create(value *cond, basic_block *if_dst, basic_block *else_dst, instruction *next) {
assert(cond->get_type()->is_integer_ty(1) && "May only branch on boolean predicates!");
return new cond_branch_inst(if_dst, else_dst, cond, next);
}
// uncond_branch_inst
uncond_branch_inst::uncond_branch_inst(basic_block *dst, instruction *next)
: branch_inst(type::get_void_ty(dst->get_context()), INST_UNCOND_BRANCH, 1, "", next){
set_operand(0, dst);
}
// cond_branch_inst
cond_branch_inst::cond_branch_inst(basic_block *if_dst, basic_block *else_dst, value *cond, instruction *next)
: branch_inst(type::get_void_ty(if_dst->get_context()), INST_COND_BRANCH, 3, "", next){
assert(cond->get_type()->is_integer_ty(1) && "May only branch on boolean predicates!");
set_operand(0, if_dst);
set_operand(1, else_dst);
set_operand(2, cond);
}
//===----------------------------------------------------------------------===//
// getelementptr_inst classes
//===----------------------------------------------------------------------===//
getelementptr_inst::getelementptr_inst(type *pointee_ty, value *ptr, const std::vector<value *> &idx, const std::string &name, instruction *next)
: instruction(get_return_type(pointee_ty, ptr, idx), INST_GETELEMENTPTR, 1 + idx.size(), name, next),
source_elt_ty(pointee_ty),
res_elt_ty(get_indexed_type(pointee_ty, idx)){
// sanity check
type *expected_ty = get_type()->get_scalar_ty();
expected_ty = ((pointer_type*)expected_ty)->get_element_ty();
assert(res_elt_ty == expected_ty);
// set operands
set_operand(0, ptr);
for(size_t i = 0; i < idx.size(); i++)
set_operand(1 + i, idx[i]);
}
type *getelementptr_inst::get_return_type(type *elt_ty, value *x, const std::vector<value *> &idx_list) {
// result pointer type
type *ty = x->get_type();
unsigned addr_space = ty->get_scalar_ty()->get_pointer_address_space();
type *ptr_ty = pointer_type::get(get_indexed_type(elt_ty, idx_list), addr_space);
// Tile GEP
if(ty->is_block_ty())
return block_type::get_same_shapes(ptr_ty, ty);
for(value *idx : idx_list)
if (idx->get_type()->is_block_ty())
return block_type::get_same_shapes(ptr_ty, ty);
// Scalar GEP
return ptr_ty;
}
type *getelementptr_inst::get_indexed_type_impl(type *ty, const std::vector<value *> &idx_list) {
if(idx_list.empty())
return ty;
if(!ty->is_sized())
return nullptr;
unsigned cur_idx = 1;
for(; cur_idx != idx_list.size(); cur_idx++){
composite_type *cty = dynamic_cast<composite_type*>(ty);
if(!cty || cty->is_pointer_ty())
break;
value *idx = idx_list[cur_idx];
if(!cty->index_valid(idx))
break;
ty = cty->get_type_at_index(idx);
}
return (cur_idx == idx_list.size())? ty : nullptr;
}
type *getelementptr_inst::get_indexed_type(type *ty, const std::vector<value *> &idx_list) {
type *result = get_indexed_type_impl(ty, idx_list);
assert(result && "invalid GEP type!");
return result;
}
getelementptr_inst *getelementptr_inst::create(value *ptr, const std::vector<value *> &idx, const std::string &name, instruction *next) {
type *pointee_ty = ((pointer_type*)(ptr->get_type()->get_scalar_ty()))->get_element_ty();
return new getelementptr_inst(pointee_ty, ptr, idx, name, next);
}
//===----------------------------------------------------------------------===//
// load_inst/store_inst classes
//===----------------------------------------------------------------------===//
// io_inst
io_inst::io_inst(type *ty, value_id_t id, unsigned num_ops, EVICTION_POLICY eviction, const std::string &name, instruction *next)
: instruction(ty, id, num_ops, name, next), eviction_(eviction)
{ }
// load_inst
load_inst::load_inst(value *ptr, value_id_t id, unsigned num_ops, load_inst::CACHE_MODIFIER cache, EVICTION_POLICY eviction, bool is_volatile, const std::string &name, instruction *next)
: io_inst(get_pointee_type(ptr->get_type()), id, num_ops, eviction, name, next), cache_(cache), is_volatile_(is_volatile)
{ }
// load
type *load_inst::get_pointee_type(type *ty) {
type *scalar_ty = ty->get_scalar_ty();
type *pointee_ty = scalar_ty->get_pointer_element_ty();
if(ty->is_block_ty())
return block_type::get_same_shapes(pointee_ty, ty);
return pointee_ty;
}
// unmasked_load
unmasked_load_inst::unmasked_load_inst(value *ptr, load_inst::CACHE_MODIFIER cache,load_inst::EVICTION_POLICY eviction, bool is_volatile, const std::string &name, instruction *next)
: load_inst(ptr, INST_UNMASKED_LOAD, 1, cache, eviction, is_volatile, name, next) {
set_operand(0, ptr);
}
unmasked_load_inst* unmasked_load_inst::create(value *ptr, load_inst::CACHE_MODIFIER cache, load_inst::EVICTION_POLICY eviction, bool is_volatile, const std::string &name, instruction *next) {
return new unmasked_load_inst(ptr, cache, eviction, is_volatile, name, next);
}
// masked load
masked_load_inst::masked_load_inst(value *ptr, value *mask, value *false_value, load_inst::CACHE_MODIFIER cache, load_inst::EVICTION_POLICY eviction,
bool is_volatile,
const std::string &name, instruction *next)
: load_inst(ptr, INST_MASKED_LOAD, 3, cache, eviction, is_volatile, name, next) {
set_operand(0, ptr);
set_operand(1, mask);
set_operand(2, false_value);
}
masked_load_inst* masked_load_inst::create(value *ptr, value *mask, value *false_value,
load_inst::CACHE_MODIFIER cache, load_inst::EVICTION_POLICY eviction,
bool is_volatile,
const std::string &name, instruction *next) {
return new masked_load_inst(ptr, mask, false_value, cache, eviction, is_volatile, name, next);
}
// masked load async
masked_load_async_inst::masked_load_async_inst(value *ptr, value *mask, value *false_value,
load_inst::CACHE_MODIFIER cache, load_inst::EVICTION_POLICY eviction,
const std::string &name, instruction *next)
: load_inst(ptr, INST_MASKED_LOAD_ASYNC, 3, cache, eviction, false, name, next) {
set_operand(0, ptr);
set_operand(1, mask);
set_operand(2, false_value);
}
masked_load_async_inst* masked_load_async_inst::create(value *ptr, value *mask, value *false_value,
load_inst::CACHE_MODIFIER cache, EVICTION_POLICY eviction,
const std::string &name, instruction *next) {
return new masked_load_async_inst(ptr, mask, false_value, cache, eviction, name, next);
}
2020-11-19 18:19:55 -05:00
// store
store_inst::store_inst(value *ptr, value_id_t id, unsigned num_ops, EVICTION_POLICY eviction, const std::string &name, instruction *next)
: io_inst(type::get_void_ty(ptr->get_type()->get_context()), id, num_ops, eviction, name, next)
{ }
// unmasked_store
unmasked_store_inst::unmasked_store_inst(value *ptr, value *val, EVICTION_POLICY eviction,
const std::string &name, instruction *next)
: store_inst(ptr, INST_UNMASKED_STORE, 2, eviction, name, next) {
set_operand(0, ptr);
set_operand(1, val);
}
unmasked_store_inst* unmasked_store_inst::create(value *ptr, value *val, EVICTION_POLICY eviction,
const std::string &name, instruction *next) {
return new unmasked_store_inst(ptr, val, eviction, name, next);
}
// masked store
masked_store_inst::masked_store_inst(value *ptr, value *val, value *mask, EVICTION_POLICY eviction,
const std::string &name, instruction *next)
: store_inst(ptr, INST_MASKED_STORE, 3, eviction, name, next) {
set_operand(0, ptr);
set_operand(1, val);
set_operand(2, mask);
}
masked_store_inst* masked_store_inst::create(value *ptr, value *val, value *mask, EVICTION_POLICY eviction,
const std::string &name, instruction *next) {
return new masked_store_inst(ptr, val, mask, eviction, name, next);
}
//===----------------------------------------------------------------------===//
// struct classes
//===----------------------------------------------------------------------===//
// insert value
insert_value_inst::insert_value_inst(value *val, value *elt, size_t idx, const std::string& name, instruction *next)
: instruction(val->get_type(), INST_INSERT_VALUE, 2, name, next), idx_(idx) {
set_operand(0, val);
set_operand(1, elt);
}
insert_value_inst* insert_value_inst::create(value *val, value *elt, size_t idx, const std::string& name, instruction *next){
return new insert_value_inst(val, elt, idx, name, next);
}
// extract value
extract_value_inst::extract_value_inst(value *val, size_t idx, const std::string& name, instruction *next)
: instruction(val->get_type()->get_struct_type(idx), INST_EXTRACT_VALUE, 1, name, next), idx_(idx) {
set_operand(0, val);
}
extract_value_inst* extract_value_inst::create(value *val, size_t idx, const std::string& name, instruction *next){
return new extract_value_inst(val, idx, name, next);
}
//===----------------------------------------------------------------------===//
// retile_inst classes
//===----------------------------------------------------------------------===//
// cat
cat_inst::cat_inst(value *x, value *y, const std::string &name, instruction *next)
: instruction(block_type::get(x->get_type()->get_scalar_ty(),
{x->get_type()->get_block_shapes()[0] +
y->get_type()->get_block_shapes()[0] }), INST_CAT, 2, name, next) {
set_operand(0, x);
set_operand(1, y);
}
instruction* cat_inst::create(value *lhs, value *rhs, const std::string &name, instruction *next) {
return new cat_inst(lhs, rhs, name, next);
}
// retile
retile_inst::retile_inst(value *arg, value_id_t id, const type::block_shapes_t &shapes,
const std::string &name, instruction *next)
: unary_inst(block_type::get(arg->get_type()->get_scalar_ty(), shapes), id, arg, name, next) { }
// reshape
instruction* reshape_inst::create(value *arg, const type::block_shapes_t &shapes,
const std::string &name, instruction *next) {
return new reshape_inst(arg, INST_RESHAPE, shapes, name, next);
}
// splat
instruction* splat_inst::create(value *arg, const type::block_shapes_t &shapes,
const std::string &name, instruction *next) {
return new splat_inst(arg, INST_SPLAT, shapes, name, next);
}
// broadcast
instruction* broadcast_inst::create(value *arg, const type::block_shapes_t &shapes,
const std::string &name, instruction *next) {
return new broadcast_inst(arg, INST_BROADCAST, shapes, name, next);
}
// downcast
instruction* downcast_inst::create(value *arg, const std::string &name, instruction *next) {
return new downcast_inst(arg->get_type()->get_scalar_ty(), INST_DOWNCAST, arg, name, next);
}
//===----------------------------------------------------------------------===//
// matmul_inst classes
//===----------------------------------------------------------------------===//
dot_inst::dot_inst(value *A, value *B, value *C, TransT AT, TransT BT, bool allow_tf32,
const std::string &name, instruction *next)
: builtin_inst(C->get_type(), INST_DOT, 3, name, next), AT_(AT), BT_(BT){
set_operand(0, A);
set_operand(1, B);
set_operand(2, C);
allow_tf32_ = allow_tf32;
}
instruction *dot_inst::create(value *A, value *B, value *C,
bool AT, bool BT, bool allow_tf32,
const std::string &name, instruction *next) {
TransT OPA = AT ? Trans : NoTrans;
TransT OPB = BT ? Trans : NoTrans;
return new dot_inst(A, B, C, OPA, OPB, allow_tf32, name, next);
}
instruction *dot_inst::create_nn(value *A, value *B, value *C, bool allow_tf32,
const std::string &name, instruction *next) {
return new dot_inst(A, B, C, NoTrans, NoTrans, allow_tf32, name, next);
}
instruction *dot_inst::create_nt(value *A, value *B, value *C, bool allow_tf32,
const std::string &name, instruction *next) {
return new dot_inst(A, B, C, NoTrans, Trans, allow_tf32, name, next);
}
instruction *dot_inst::create_tn(value *A, value *B, value *C, bool allow_tf32,
const std::string &name, instruction *next) {
return new dot_inst(A, B, C, Trans, NoTrans, allow_tf32, name, next);
}
instruction *dot_inst::create_tt(value *A, value *B, value *C, bool allow_tf32,
const std::string &name, instruction *next) {
return new dot_inst(A, B, C, Trans, Trans, allow_tf32, name, next);
}
//===----------------------------------------------------------------------===//
// trans instructions
//===----------------------------------------------------------------------===//
ir::type* trans_inst::get_res_ty(ir::type* ty, std::vector<int> perm) {
// get argument shapes
ir::block_type::block_shapes_t arg_shapes = ty->get_block_shapes();
// permutate argument shapes
perm = init_perm(ty, perm);
ir::block_type::block_shapes_t res_shapes = arg_shapes;
for(size_t i = 0; i < perm.size(); i++)
res_shapes[i] = arg_shapes[perm[i]];
// construct type
return block_type::get(ty->get_scalar_ty(), res_shapes);
}
std::vector<int> trans_inst::init_perm(ir::type* ty, const std::vector<int>& perm) {
if(!perm.empty())
return perm;
auto size = ty->get_block_shapes().size();
std::vector<int> result;
result.push_back(size - 1);
for(size_t i = 0; i < size - 1; i++)
result.push_back(i);
return result;
}
trans_inst::trans_inst(value *arg, const std::vector<int> &perm, const std::string &name, instruction *next)
: builtin_inst(get_res_ty(arg->get_type(), perm), INST_TRANS, 1, name, next) {
// sanity check
perm_ = init_perm(arg->get_type(), perm);
//auto size = arg->get_type()->get_tile_shapes().size();
//assert(perm_.size() == size);
set_operand(0, arg);
}
instruction* trans_inst::create(value *arg, const std::vector<int> &perm, const std::string &name, instruction *next) {
return new trans_inst(arg, perm, name, next);
}
const std::vector<int> trans_inst::get_perm() const {
return perm_;
}
//===----------------------------------------------------------------------===//
// sqrt instructions
//===----------------------------------------------------------------------===//
sqrt_inst::sqrt_inst(value *arg, const std::string &name, instruction *next)
: builtin_inst(arg->get_type(), INST_SQRT, 1, name, next){
set_operand(0, arg);
}
instruction* sqrt_inst::create(value *arg, const std::string &name, instruction *next) {
return new sqrt_inst(arg, name, next);
}
//===----------------------------------------------------------------------===//
// reduce instructions
//===----------------------------------------------------------------------===//
std::string reduce_inst::to_str(op_t op) {
switch (op) {
case ADD: return "+";
case SUB: return "-";
case MAX: return "imax";
case MIN: return "imin";
case FADD: return "+";
case FSUB: return "-";
case FMAX: return "fmax";
case FMIN: return "fmin";
default: break;
}
assert(false);
return "";
}
type* reduce_inst::get_res_type(value *arg, unsigned axis) {
ir::block_type::block_shapes_t shapes = arg->get_type()->get_block_shapes();
shapes.erase(shapes.begin() + axis);
type *scalar_ty = arg->get_type()->get_scalar_ty();
if(shapes.empty())
// shapes.push_back(1);
return scalar_ty;
return block_type::get(scalar_ty, shapes);
}
reduce_inst::reduce_inst(value *arg, op_t op, unsigned axis, const std::string &name, instruction *next)
: builtin_inst(get_res_type(arg, axis), INST_REDUCE, 1, name, next),
op_(op),
axis_(axis){
set_operand(0, arg);
}
instruction* reduce_inst::create(value *arg, op_t op, unsigned axis, const std::string &name, instruction *next) {
return new reduce_inst(arg, op, axis, name, next);
}
//===----------------------------------------------------------------------===//
// select instructions
//===----------------------------------------------------------------------===//
select_inst::select_inst(value *pred, value *if_value, value *else_value, const std::string &name, instruction *next)
: builtin_inst(if_value->get_type(), INST_SELECT, 3, name, next){
set_operand(0, pred);
set_operand(1, if_value);
set_operand(2, else_value);
}
instruction* select_inst::create(value *pred, value *if_value, value *else_value, const std::string &name, instruction *next) {
return new select_inst(pred, if_value, else_value, name, next);
}
//===----------------------------------------------------------------------===//
// builtin instructions
//===----------------------------------------------------------------------===//
// get_program_id
get_program_id_inst::get_program_id_inst(type *ty, unsigned axis, const std::string &name, instruction *next)
: builtin_inst(ty, INST_GET_PROGRAM_ID, 0, name, next), axis_(axis){
}
instruction* get_program_id_inst::create(context &ctx, unsigned axis, const std::string &name, instruction *next) {
return new get_program_id_inst(type::get_int32_ty(ctx), axis, name, next);
}
// get_num_program
get_num_programs_inst::get_num_programs_inst(type *ty, unsigned axis, const std::string &name, instruction *next)
: builtin_inst(ty, INST_GET_NUM_PROGRAMS, 0, name, next), axis_(axis){
}
instruction* get_num_programs_inst::create(context &ctx, unsigned axis, const std::string &name, instruction *next) {
return new get_num_programs_inst(type::get_int32_ty(ctx), axis, name, next);
}
// atomic_rmw
atomic_rmw_inst::atomic_rmw_inst(atomic_rmw_op_t op, value *ptr, value *val, value *msk, const std::string &name, instruction *next)
: atomic_inst(ptr->get_type()->get_pointer_element_ty(), INST_ATOMIC_RMW, 3, name, next), op_(op) {
set_operand(0, ptr);
set_operand(1, val);
set_operand(2, msk);
}
instruction* atomic_rmw_inst::create(atomic_rmw_op_t op, value *ptr, value *val, value *msk, const std::string &name, instruction *next) {
return new atomic_rmw_inst(op, ptr, val, msk, name, next);
}
// atomic cas
atomic_cas_inst::atomic_cas_inst(value *ptr, value *cmp, value *val, const std::string &name, instruction *next)
: atomic_inst(ptr->get_type()->get_pointer_element_ty(), INST_ATOMIC_CAS, 3, name, next) {
set_operand(0, ptr);
set_operand(1, cmp);
set_operand(2, val);
}
instruction* atomic_cas_inst::create(value *ptr, value *cmp, value *val, const std::string &name, instruction *next) {
return new atomic_cas_inst(ptr, cmp, val, name, next);
}
// umulhi
umulhi_inst::umulhi_inst(value *lhs, value *rhs, const std::string &name, instruction *next)
: builtin_inst(lhs->get_type(), INST_UMULHI, 2, name, next) {
set_operand(0, lhs);
set_operand(1, rhs);
}
instruction* umulhi_inst::create(value *lhs, value *rhs, const std::string &name, instruction *next) {
return new umulhi_inst(lhs, rhs, name, next);
}
// exp
exp_inst::exp_inst(value *val, const std::string &name, instruction *next)
: builtin_inst(val->get_type(), INST_EXP, 1, name, next) {
set_operand(0, val);
}
instruction* exp_inst::create(value *val, const std::string& name, instruction *next) {
return new exp_inst(val, name, next);
}
2021-07-14 17:16:48 -07:00
// cos
cos_inst::cos_inst(value *val, const std::string &name, instruction *next)
: builtin_inst(val->get_type(), INST_COS, 1, name, next) {
set_operand(0, val);
}
instruction* cos_inst::create(value *val, const std::string& name, instruction *next) {
return new cos_inst(val, name, next);
}
// sin
sin_inst::sin_inst(value *val, const std::string &name, instruction *next)
: builtin_inst(val->get_type(), INST_SIN, 1, name, next) {
set_operand(0, val);
}
instruction* sin_inst::create(value *val, const std::string& name, instruction *next) {
return new sin_inst(val, name, next);
}
2020-11-03 15:50:11 -05:00
// log
log_inst::log_inst(value *val, const std::string &name, instruction *next)
: builtin_inst(val->get_type(), INST_LOG, 1, name, next) {
set_operand(0, val);
}
instruction* log_inst::create(value *val, const std::string& name, instruction *next) {
return new log_inst(val, name, next);
}
//===----------------------------------------------------------------------===//
// intrinsic instructions
//===----------------------------------------------------------------------===//
// cvt_scanline
cvt_layout_inst* cvt_layout_inst::create(value *arg, const std::string &name, instruction *next) {
return new cvt_layout_inst(arg->get_type(), INST_CVT_LAYOUT, arg, name, next);
}
// copy to shared
copy_to_shared_inst* copy_to_shared_inst::create(value *arg, const std::string &name,
instruction *next) {
return new copy_to_shared_inst(arg->get_type(), INST_COPY_TO_SHARED, arg, name, next);
}
// copy from shared
copy_from_shared_inst* copy_from_shared_inst::create(value *arg, const std::string &name,
instruction *next) {
return new copy_from_shared_inst(arg->get_type(), INST_COPY_FROM_SHARED, arg, name, next);
}
// barrier
barrier_inst::barrier_inst(context &ctx, const std::string &name, instruction *next)
: instruction(type::get_void_ty(ctx), INST_BARRIER, 0, name, next) { }
barrier_inst* barrier_inst::create(context &ctx, const std::string &name, instruction *next) {
return new barrier_inst(ctx, name, next);
}
async_wait_inst::async_wait_inst(context &ctx, int N, const std::string &name, instruction *next)
: instruction(type::get_void_ty(ctx), INST_ASYNC_WAIT, 0, name, next), N_(N) { }
async_wait_inst* async_wait_inst::create(context &ctx, int N, const std::string &name, instruction *next) {
return new async_wait_inst(ctx, N, name, next);
}
// prefetch_s
prefetch_s_inst *prefetch_s_inst::create(context &ctx, value *arg, int inc, const std::string &name, instruction *next) {
return new prefetch_s_inst(ctx, arg, inc, name, next);
}
// global timer
globaltimer_inst::globaltimer_inst(context &ctx, const std::string &name, instruction *next)
: instruction(type::get_int64_ty(ctx), INST_GLOBALTIMER, 0, name, next) { }
globaltimer_inst* globaltimer_inst::create(context &ctx, const std::string &name, instruction *next) {
return new globaltimer_inst(ctx, name, next);
}
// extern elementwise
extern_elementwise_inst::extern_elementwise_inst(
context &ctx, const std::vector<value *> &args, type *ret_ty,
const std::string &lib_name, const std::string &lib_path,
const std::string &symbol_name, const std::string &name, instruction *next)
: instruction(ret_ty, INST_EXTERN_ELEMENTWISE, args.size(), name, next),
lib_name_(lib_name),
lib_path_(lib_path),
symbol_name_(symbol_name) {
for (size_t i = 0; i < args.size(); i++) {
set_operand(i, args[i]);
}
}
extern_elementwise_inst *extern_elementwise_inst::create(
context &ctx, const std::vector<value *> &args, type *ret_ty,
const std::string &lib_name, const std::string &lib_path,
const std::string &symbol_name, const std::string &name,
instruction *next) {
return new extern_elementwise_inst(ctx, args, ret_ty, lib_name, lib_path,
symbol_name, name, next);
}
// clock
clock_inst::clock_inst(context &ctx, const std::string &name, instruction *next)
: instruction(type::get_int64_ty(ctx), INST_CLOCK, 0, name, next) { }
clock_inst* clock_inst::create(context &ctx, const std::string &name, instruction *next) {
return new clock_inst(ctx, name, next);
}
// make_range
make_range::make_range(type *ty, constant_int *first, constant_int *last)
: instruction(ty, INST_MAKE_RANGE, 0), first_(first), last_(last){ }
make_range *make_range::create(constant_int *first, constant_int *last) {
assert(first->get_type()->is_integer_ty());
assert(first->get_type() == last->get_type());
// assert(((constant_int*)first)->get_value() == 0);
type *ty = block_type::get(first->get_type(), {(unsigned)last->get_value() - (unsigned)first->get_value()});
return new make_range(ty, first, last);
}
const constant_int* make_range::get_first() const {
return first_;
}
const constant_int* make_range::get_last() const {
return last_;
}
}
}