[CODEGEN] Various bugfixes and stability improvements in compiler backend (#240)
This commit is contained in:
@@ -93,7 +93,22 @@ protected:
|
||||
shape_t shape_;
|
||||
};
|
||||
|
||||
class mma_layout: public data_layout {
|
||||
class distributed_layout: public data_layout{
|
||||
public:
|
||||
distributed_layout(id_t id,
|
||||
const std::vector<int>& axes,
|
||||
const std::vector<unsigned>& shape,
|
||||
const std::vector<ir::value*>& values,
|
||||
analysis::align* align);
|
||||
|
||||
int shape_per_cta(size_t k) { return shape_per_cta_.at(k); }
|
||||
int rep_per_cta(size_t k) { return shape_[k] / shape_per_cta_[k]; }
|
||||
|
||||
protected:
|
||||
std::vector<int> shape_per_cta_;
|
||||
};
|
||||
|
||||
class mma_layout: public distributed_layout {
|
||||
public:
|
||||
mma_layout(size_t num_warps,
|
||||
const std::vector<int>& axes,
|
||||
@@ -107,7 +122,6 @@ public:
|
||||
int fpw(size_t k) { return fpw_.at(k); }
|
||||
int wpt(size_t k) { return wpt_.at(k); }
|
||||
int spw(size_t k) { return spw_.at(k); }
|
||||
int spt(size_t k) { return spt_.at(k); }
|
||||
int rep(size_t k) { return rep_.at(k); }
|
||||
|
||||
private:
|
||||
@@ -123,7 +137,7 @@ private:
|
||||
std::vector<int> rep_;
|
||||
};
|
||||
|
||||
struct scanline_layout: public data_layout {
|
||||
struct scanline_layout: public distributed_layout {
|
||||
scanline_layout(size_t num_warps,
|
||||
const std::vector<int>& axes,
|
||||
const std::vector<unsigned>& shape,
|
||||
@@ -219,6 +233,7 @@ public:
|
||||
|
||||
// accessors
|
||||
unsigned layout_of(ir::value *value) const { return groups_.at(value); }
|
||||
bool has(ir::value* value) const { return groups_.find(value) != groups_.end(); }
|
||||
const std::vector<ir::value*>& values_of(unsigned id) const { return values_.at(id); }
|
||||
size_t num_layouts() const { return values_.size();}
|
||||
data_layout* get(size_t id) { return layouts_.at(id); }
|
||||
@@ -226,7 +241,7 @@ public:
|
||||
std::map<size_t, data_layout*> &get_all() { return layouts_; }
|
||||
bool has_tmp(ir::value* i) { return tmp_.find(i) != tmp_.end(); }
|
||||
int tmp(ir::value* i) { return tmp_.at(i);}
|
||||
|
||||
void copy(ir::value* dst, ir::value* src) { groups_[dst] = groups_[src]; }
|
||||
// execution
|
||||
void run(ir::module &mod);
|
||||
|
||||
|
@@ -171,7 +171,8 @@ public:
|
||||
void visit_reducend_inst(ir::reduce_inst*, std::function<Value*(Value*,Value*)>, Value*);
|
||||
void visit_reduce_inst(ir::reduce_inst*);
|
||||
void visit_select_inst(ir::select_inst*);
|
||||
void visit_recoalesce_inst(ir::recoalesce_inst*);
|
||||
void visit_layout_convert(ir::value *out, ir::value *in);
|
||||
void visit_cvt_layout_inst(ir::cvt_layout_inst*);
|
||||
void visit_masked_load_async_inst(ir::masked_load_async_inst*);
|
||||
void visit_copy_to_shared_inst(ir::copy_to_shared_inst*);
|
||||
void visit_copy_from_shared_inst(ir::copy_from_shared_inst*);
|
||||
|
@@ -33,6 +33,7 @@ private:
|
||||
|
||||
public:
|
||||
coalesce(analysis::align* align, triton::codegen::analysis::layouts *layouts);
|
||||
triton::ir::value *simplify(ir::instruction* i, triton::ir::builder &builder);
|
||||
void run(ir::module &mod);
|
||||
|
||||
private:
|
||||
|
@@ -34,8 +34,7 @@ private:
|
||||
bool rewrite_gep_ptr_min_off_plus_off(ir::instruction *value, ir::builder& builder);
|
||||
bool rewrite_select_masked_load(ir::instruction *value, ir::builder& builder);
|
||||
bool rewrite_load_to_shared(ir::instruction *value, ir::builder& builder);
|
||||
|
||||
private:
|
||||
bool rewrite_cvt_layout(ir::instruction *value, ir::builder& builder);
|
||||
|
||||
public:
|
||||
peephole(target* tgt, analysis::layouts* layouts): tgt_(tgt), layouts_(layouts) {}
|
||||
|
@@ -60,136 +60,151 @@ protected:
|
||||
public:
|
||||
static bool nvmlinit();
|
||||
static bool cuinit();
|
||||
static bool spvllvminit();
|
||||
static void release();
|
||||
|
||||
// CUDA
|
||||
/* ------------------- *
|
||||
* CUDA
|
||||
* ------------------- */
|
||||
// context management
|
||||
static CUresult cuInit(unsigned int Flags);
|
||||
static CUresult cuCtxGetCurrent(CUcontext *pctx);
|
||||
static CUresult cuCtxSetCurrent(CUcontext ctx);
|
||||
static CUresult cuCtxDestroy_v2(CUcontext ctx);
|
||||
static CUresult cuEventCreate(CUevent *phEvent, unsigned int Flags);
|
||||
static CUresult cuDeviceGet(CUdevice *device, int ordinal);
|
||||
static CUresult cuMemcpyDtoH_v2(void *dstHost, CUdeviceptr srcDevice, size_t ByteCount);
|
||||
static CUresult cuStreamCreate(CUstream *phStream, unsigned int Flags);
|
||||
static CUresult cuEventElapsedTime(float *pMilliseconds, CUevent hStart, CUevent hEnd);
|
||||
static CUresult cuMemFree_v2(CUdeviceptr dptr);
|
||||
static CUresult cuMemcpyDtoHAsync_v2(void *dstHost, CUdeviceptr srcDevice, size_t ByteCount, CUstream hStream);
|
||||
static CUresult cuCtxCreate_v2(CUcontext *pctx, unsigned int flags, CUdevice dev);
|
||||
static CUresult cuCtxPushCurrent_v2(CUcontext ctx);
|
||||
static CUresult cuCtxPopCurrent_v2(CUcontext *pctx);
|
||||
static CUresult cuCtxGetDevice(CUdevice* result);
|
||||
static CUresult cuCtxEnablePeerAccess(CUcontext peerContext, unsigned int flags);
|
||||
static CUresult cuDriverGetVersion(int *driverVersion);
|
||||
// device management
|
||||
static CUresult cuDeviceGet(CUdevice *device, int ordinal);
|
||||
static CUresult cuDeviceGetName(char *name, int len, CUdevice dev);
|
||||
static CUresult cuDeviceGetPCIBusId(char *id, int len, CUdevice dev);
|
||||
static CUresult cuModuleGetGlobal_v2(CUdeviceptr *dptr, size_t* bytes, CUmodule hmod, const char *name);
|
||||
static CUresult cuMemcpyHtoDAsync_v2(CUdeviceptr dstDevice, const void *srcHost, size_t ByteCount, CUstream hStream);
|
||||
static CUresult cuModuleLoad(CUmodule *module, const char *fname);
|
||||
static CUresult cuModuleLoadData(CUmodule* module, const void* image);
|
||||
static CUresult cuLaunchKernel(CUfunction f, unsigned int gridDimX, unsigned int gridDimY, unsigned int gridDimZ, unsigned int blockDimX, unsigned int blockDimY, unsigned int blockDimZ, unsigned int sharedMemBytes, CUstream hStream, void **kernelParams, void **extra);
|
||||
static CUresult cuModuleUnload(CUmodule hmod);
|
||||
static CUresult cuModuleLoadDataEx(CUmodule *module, const void *image, unsigned int numOptions, CUjit_option *options, void **optionValues);
|
||||
|
||||
static CUresult cuDeviceGetAttribute(int *pi, CUdevice_attribute attrib, CUdevice dev);
|
||||
static CUresult cuDeviceGetCount(int *count);
|
||||
// link management
|
||||
static CUresult cuLinkAddData_v2(CUlinkState state, CUjitInputType type, void* data, size_t size, const char* name, unsigned int numOptions, CUjit_option* options, void** optionValues);
|
||||
static CUresult cuLinkCreate_v2(unsigned int numOptions, CUjit_option* options, void** optionValues, CUlinkState* stateOut);
|
||||
static CUresult cuLinkComplete(CUlinkState state, void** cubinOut, size_t* sizeOut);
|
||||
static CUresult cuLinkDestroy(CUlinkState state);
|
||||
|
||||
static CUresult cuDeviceGetAttribute(int *pi, CUdevice_attribute attrib, CUdevice dev);
|
||||
static CUresult cuDeviceGetCount(int *count);
|
||||
static CUresult cuMemcpyHtoD_v2(CUdeviceptr dstDevice, const void *srcHost, size_t ByteCount);
|
||||
static CUresult cuInit(unsigned int Flags);
|
||||
static CUresult cuEventRecord(CUevent hEvent, CUstream hStream);
|
||||
static CUresult cuCtxCreate_v2(CUcontext *pctx, unsigned int flags, CUdevice dev);
|
||||
static CUresult cuCtxPushCurrent_v2(CUcontext ctx);
|
||||
static CUresult cuCtxPopCurrent_v2(CUcontext *pctx);
|
||||
// module management
|
||||
static CUresult cuModuleGetGlobal_v2(CUdeviceptr *dptr, size_t* bytes, CUmodule hmod, const char *name);
|
||||
static CUresult cuModuleLoad(CUmodule *module, const char *fname);
|
||||
static CUresult cuModuleLoadData(CUmodule* module, const void* image);
|
||||
static CUresult cuModuleUnload(CUmodule hmod);
|
||||
static CUresult cuModuleLoadDataEx(CUmodule *module, const void *image, unsigned int numOptions, CUjit_option *options, void **optionValues);
|
||||
static CUresult cuModuleGetFunction(CUfunction *hfunc, CUmodule hmod, const char *name);
|
||||
// stream management
|
||||
static CUresult cuStreamCreate(CUstream *phStream, unsigned int Flags);
|
||||
static CUresult cuStreamSynchronize(CUstream hStream);
|
||||
static CUresult cuStreamGetCtx(CUstream hStream, CUcontext* pctx);
|
||||
static CUresult cuStreamDestroy_v2(CUstream hStream);
|
||||
static CUresult cuEventDestroy_v2(CUevent hEvent);
|
||||
static CUresult cuMemAlloc_v2(CUdeviceptr *dptr, size_t bytesize);
|
||||
static CUresult cuPointerGetAttribute(void * data, CUpointer_attribute attribute, CUdeviceptr ptr);
|
||||
static CUresult cuCtxGetDevice(CUdevice* result);
|
||||
static CUresult cuMemsetD8Async(CUdeviceptr dst, unsigned char x, size_t N, CUstream stream);
|
||||
static CUresult cuLaunchKernel(CUfunction f, unsigned int gridDimX, unsigned int gridDimY, unsigned int gridDimZ, unsigned int blockDimX, unsigned int blockDimY, unsigned int blockDimZ, unsigned int sharedMemBytes, CUstream hStream, void **kernelParams, void **extra);
|
||||
// function management
|
||||
static CUresult cuFuncGetAttribute(int* pi, CUfunction_attribute attrib, CUfunction hfunc);
|
||||
static CUresult cuFuncSetAttribute(CUfunction hfunc, CUfunction_attribute attrib, int value);
|
||||
static CUresult cuFuncSetCacheConfig(CUfunction hfunc, CUfunc_cache config);
|
||||
static CUresult cuCtxEnablePeerAccess(CUcontext peerContext, unsigned int flags);
|
||||
// NVML
|
||||
// memory management
|
||||
static CUresult cuMemAlloc_v2(CUdeviceptr *dptr, size_t bytesize);
|
||||
static CUresult cuPointerGetAttribute(void * data, CUpointer_attribute attribute, CUdeviceptr ptr);
|
||||
static CUresult cuMemsetD8Async(CUdeviceptr dst, unsigned char x, size_t N, CUstream stream);
|
||||
static CUresult cuMemcpyDtoH_v2(void *dstHost, CUdeviceptr srcDevice, size_t ByteCount);
|
||||
static CUresult cuMemFree_v2(CUdeviceptr dptr);
|
||||
static CUresult cuMemcpyDtoHAsync_v2(void *dstHost, CUdeviceptr srcDevice, size_t ByteCount, CUstream hStream);
|
||||
static CUresult cuMemcpyHtoDAsync_v2(CUdeviceptr dstDevice, const void *srcHost, size_t ByteCount, CUstream hStream);
|
||||
static CUresult cuMemcpyHtoD_v2(CUdeviceptr dstDevice, const void *srcHost, size_t ByteCount);
|
||||
// event management
|
||||
static CUresult cuEventCreate(CUevent *phEvent, unsigned int Flags);
|
||||
static CUresult cuEventElapsedTime(float *pMilliseconds, CUevent hStart, CUevent hEnd);
|
||||
static CUresult cuEventRecord(CUevent hEvent, CUstream hStream);
|
||||
static CUresult cuEventDestroy_v2(CUevent hEvent);
|
||||
|
||||
|
||||
/* ------------------- *
|
||||
* NVML
|
||||
* ------------------- */
|
||||
static nvmlReturn_t nvmlDeviceGetHandleByPciBusId_v2( const char* pciBusId, nvmlDevice_t* device);
|
||||
static nvmlReturn_t nvmlDeviceGetClockInfo(nvmlDevice_t device, nvmlClockType_t type, unsigned int *clock);
|
||||
static nvmlReturn_t nvmlDeviceGetMaxClockInfo(nvmlDevice_t device, nvmlClockType_t type, unsigned int *clock);
|
||||
static nvmlReturn_t nvmlDeviceSetApplicationsClocks(nvmlDevice_t device, unsigned int mem_clock, unsigned int sm_clock);
|
||||
|
||||
|
||||
// SPIR-V libraries
|
||||
static int initializeLLVMToSPIRVPass(llvm::PassRegistry &);
|
||||
static bool writeSpirv(llvm::Module *M, std::ostream &OS, std::string &ErrMsg);
|
||||
|
||||
|
||||
private:
|
||||
|
||||
// Libraries
|
||||
static void* cuda_;
|
||||
static void* nvml_;
|
||||
static void* vulkan_;
|
||||
static void* spvllvm_;
|
||||
static void* spvcross_;
|
||||
static void* opengl_;
|
||||
|
||||
|
||||
// CUDA functions
|
||||
/* ------------------- *
|
||||
* CUDA
|
||||
* ------------------- */
|
||||
// context management
|
||||
static void* cuCtxGetCurrent_;
|
||||
static void* cuCtxSetCurrent_;
|
||||
static void* cuCtxDestroy_v2_;
|
||||
static void* cuEventCreate_;
|
||||
static void* cuDeviceGet_;
|
||||
static void* cuMemcpyDtoH_v2_;
|
||||
static void* cuStreamCreate_;
|
||||
static void* cuEventElapsedTime_;
|
||||
static void* cuMemFree_v2_;
|
||||
static void* cuMemcpyDtoHAsync_v2_;
|
||||
static void* cuCtxCreate_v2_;
|
||||
static void* cuCtxGetDevice_;
|
||||
static void* cuCtxPushCurrent_v2_;
|
||||
static void* cuCtxPopCurrent_v2_;
|
||||
static void* cuCtxEnablePeerAccess_;
|
||||
static void* cuDriverGetVersion_;
|
||||
static void* cuInit_;
|
||||
// device management
|
||||
static void* cuDeviceGet_;
|
||||
static void* cuDeviceGetName_;
|
||||
static void* cuDeviceGetPCIBusId_;
|
||||
static void* cuModuleGetGlobal_v2_;
|
||||
static void* cuMemcpyHtoDAsync_v2_;
|
||||
static void* cuModuleLoad_;
|
||||
static void* cuLaunchKernel_;
|
||||
static void* cuModuleUnload_;
|
||||
static void* cuModuleLoadDataEx_;
|
||||
static void* cuDeviceGetAttribute_;
|
||||
static void* cuDeviceGetCount_;
|
||||
// link management
|
||||
static void* cuLinkAddData_v2_;
|
||||
static void* cuLinkCreate_v2_;
|
||||
static void* cuLinkDestroy_;
|
||||
static void* cuModuleLoadData_;
|
||||
static void* cuLinkComplete_;
|
||||
static void* cuDeviceGetAttribute_;
|
||||
static void* cuDeviceGetCount_;
|
||||
static void* cuMemcpyHtoD_v2_;
|
||||
static void* cuInit_;
|
||||
static void* cuEventRecord_;
|
||||
static void* cuCtxCreate_v2_;
|
||||
// module management
|
||||
static void* cuModuleGetGlobal_v2_;
|
||||
static void* cuModuleLoad_;
|
||||
static void* cuModuleUnload_;
|
||||
static void* cuModuleLoadDataEx_;
|
||||
static void* cuModuleLoadData_;
|
||||
static void* cuModuleGetFunction_;
|
||||
// stream management
|
||||
static void* cuStreamCreate_;
|
||||
static void* cuStreamSynchronize_;
|
||||
static void* cuStreamDestroy_v2_;
|
||||
static void* cuStreamGetCtx_;
|
||||
static void* cuEventDestroy_v2_;
|
||||
static void* cuMemAlloc_v2_;
|
||||
static void* cuPointerGetAttribute_;
|
||||
static void* cuCtxGetDevice_;
|
||||
static void* cuMemsetD8Async_;
|
||||
static void* cuCtxPushCurrent_v2_;
|
||||
static void* cuCtxPopCurrent_v2_;
|
||||
static void* cuLaunchKernel_;
|
||||
// function management
|
||||
static void* cuFuncGetAttribute_;
|
||||
static void* cuFuncSetAttribute_;
|
||||
static void* cuFuncSetCacheConfig_;
|
||||
static void* cuCtxEnablePeerAccess_;
|
||||
// NVML
|
||||
// memory management
|
||||
static void* cuMemcpyDtoH_v2_;
|
||||
static void* cuMemFree_v2_;
|
||||
static void* cuMemcpyDtoHAsync_v2_;
|
||||
static void* cuMemcpyHtoDAsync_v2_;
|
||||
static void* cuMemcpyHtoD_v2_;
|
||||
static void* cuMemAlloc_v2_;
|
||||
static void* cuMemsetD8Async_;
|
||||
static void* cuPointerGetAttribute_;
|
||||
// event management
|
||||
static void* cuEventCreate_;
|
||||
static void* cuEventElapsedTime_;
|
||||
static void* cuEventRecord_;
|
||||
static void* cuEventDestroy_v2_;
|
||||
|
||||
|
||||
|
||||
|
||||
/* ------------------- *
|
||||
* NVML
|
||||
* ------------------- */
|
||||
static void* nvmlInit_v2_;
|
||||
static void* nvmlDeviceGetHandleByPciBusId_v2_;
|
||||
static void* nvmlDeviceGetClockInfo_;
|
||||
static void* nvmlDeviceGetMaxClockInfo_;
|
||||
static void* nvmlDeviceSetApplicationsClocks_;
|
||||
|
||||
// LLVM to SPIR-V
|
||||
static void* initializeLLVMToSPIRVPass_;
|
||||
static void* writeSpirv_;
|
||||
};
|
||||
|
||||
}
|
||||
|
@@ -153,6 +153,9 @@ enum value_id_t: unsigned {
|
||||
// intrinsics
|
||||
INST_COPY_TO_SHARED,
|
||||
INST_COPY_FROM_SHARED,
|
||||
INST_CVT_LAYOUT,
|
||||
INST_CVT_SCANLINE,
|
||||
INST_DECOALESCE,
|
||||
INST_RECOALESCE,
|
||||
INST_BARRIER,
|
||||
INST_ASYNC_WAIT,
|
||||
|
@@ -807,16 +807,15 @@ public:
|
||||
_TRITON_DEFINE_ACCEPT(copy_from_shared_inst)
|
||||
};
|
||||
|
||||
|
||||
class recoalesce_inst: public unary_inst{
|
||||
class cvt_layout_inst: public unary_inst {
|
||||
private:
|
||||
using unary_inst::unary_inst;
|
||||
std::string repr_impl() const { return "recoalesce_inst"; }
|
||||
std::string repr_impl() const { return "cvt_layout_inst"; }
|
||||
|
||||
public:
|
||||
static recoalesce_inst* create(value *arg, const std::string &name = "", instruction *next = nullptr);
|
||||
_TRITON_DEFINE_CLONE(recoalesce_inst)
|
||||
_TRITON_DEFINE_ACCEPT(recoalesce_inst)
|
||||
static cvt_layout_inst* create(value *arg, const std::string &name = "", instruction *next = nullptr);
|
||||
_TRITON_DEFINE_CLONE(cvt_layout_inst)
|
||||
_TRITON_DEFINE_ACCEPT(cvt_layout_inst)
|
||||
};
|
||||
|
||||
class barrier_inst: public instruction{
|
||||
|
@@ -64,7 +64,7 @@ class sqrt_inst;
|
||||
class reduce_inst;
|
||||
class select_inst;
|
||||
|
||||
class recoalesce_inst;
|
||||
class cvt_layout_inst;
|
||||
class copy_to_shared_inst;
|
||||
class copy_from_shared_inst;
|
||||
class masked_load_async_inst;
|
||||
@@ -142,9 +142,11 @@ public:
|
||||
virtual void visit_reduce_inst(reduce_inst*) = 0;
|
||||
virtual void visit_select_inst(select_inst*) = 0;
|
||||
|
||||
virtual void visit_recoalesce_inst(recoalesce_inst*) = 0;
|
||||
virtual void visit_cvt_layout_inst(cvt_layout_inst*) = 0;
|
||||
virtual void visit_copy_to_shared_inst(copy_to_shared_inst*) = 0;
|
||||
virtual void visit_copy_from_shared_inst(copy_from_shared_inst*) = 0;
|
||||
|
||||
|
||||
virtual void visit_masked_load_async_inst(masked_load_async_inst*)= 0;
|
||||
virtual void visit_barrier_inst(barrier_inst*) = 0;
|
||||
virtual void visit_async_wait_inst(async_wait_inst*) = 0;
|
||||
|
@@ -6,6 +6,7 @@
|
||||
#include <map>
|
||||
#include <set>
|
||||
#include <vector>
|
||||
#include <iostream>
|
||||
|
||||
namespace triton {
|
||||
namespace tools{
|
||||
@@ -40,8 +41,9 @@ public:
|
||||
nmap->clear();
|
||||
std::set<node_t> nodes = nodes_;
|
||||
unsigned id = 0;
|
||||
while(!nodes.empty())
|
||||
while(!nodes.empty()){
|
||||
connected_components_impl(*nodes.begin(), nodes, nmap, cmap, id++);
|
||||
}
|
||||
}
|
||||
|
||||
void add_edge(node_t x, node_t y) {
|
||||
|
@@ -50,7 +50,6 @@ void allocation::run(ir::module &mod) {
|
||||
J.erase(j_it);
|
||||
}
|
||||
}
|
||||
|
||||
// Build interference graph
|
||||
std::map<shared_layout*, std::set<shared_layout*>> interferences;
|
||||
for(shared_layout* x: V)
|
||||
@@ -66,13 +65,10 @@ void allocation::run(ir::module &mod) {
|
||||
&& XS.intersect(YS))
|
||||
interferences[x].insert(y);
|
||||
}
|
||||
|
||||
// Initialize colors
|
||||
std::map<shared_layout*, int> colors;
|
||||
for(shared_layout* X: V)
|
||||
colors[X] = (X==V[0])?0:-1;
|
||||
|
||||
|
||||
// First-fit graph coloring
|
||||
std::vector<bool> available(V.size());
|
||||
for(shared_layout* x: V){
|
||||
@@ -87,7 +83,6 @@ void allocation::run(ir::module &mod) {
|
||||
auto It = std::find(available.begin(), available.end(), true);
|
||||
colors[x] = std::distance(available.begin(), It);
|
||||
}
|
||||
|
||||
// Finalize allocation
|
||||
for(shared_layout* x: V){
|
||||
unsigned Adj = 0;
|
||||
@@ -95,7 +90,6 @@ void allocation::run(ir::module &mod) {
|
||||
Adj = std::max<unsigned>(Adj, starts[y] + y->get_size());
|
||||
offsets_[x] = starts[x] + colors[x] * Adj;
|
||||
}
|
||||
|
||||
// Save maximum size of induced memory space
|
||||
allocated_size_ = 0;
|
||||
for(shared_layout* x: V)
|
||||
|
@@ -105,17 +105,17 @@ void axes::update_graph_no_edge(ir::instruction *i) {
|
||||
|
||||
void axes::update_graph(ir::instruction *i) {
|
||||
switch (i->get_id()) {
|
||||
case ir::INST_REDUCE: return update_graph_reduce(i);
|
||||
case ir::INST_RESHAPE: return update_graph_reshape(i);
|
||||
case ir::INST_SPLAT: return update_graph_no_edge(i);;
|
||||
case ir::INST_TRANS: return update_graph_trans(i);
|
||||
case ir::INST_BROADCAST: return update_graph_broadcast(i);
|
||||
case ir::INST_DOT: return update_graph_dot(i);
|
||||
case ir::INST_COPY_TO_SHARED: return update_graph_no_edge(i);
|
||||
case ir::INST_MASKED_LOAD_ASYNC:return update_graph_elementwise(i, false);
|
||||
case ir::INST_COPY_FROM_SHARED: return update_graph_no_edge(i);
|
||||
case ir::INST_RECOALESCE: return update_graph_no_edge(i);
|
||||
default: return update_graph_elementwise(i);
|
||||
case ir::INST_REDUCE: return update_graph_reduce(i);
|
||||
case ir::INST_RESHAPE: return update_graph_reshape(i);
|
||||
case ir::INST_SPLAT: return update_graph_no_edge(i);;
|
||||
case ir::INST_TRANS: return update_graph_trans(i);
|
||||
case ir::INST_BROADCAST: return update_graph_broadcast(i);
|
||||
case ir::INST_DOT: return update_graph_dot(i);
|
||||
case ir::INST_COPY_TO_SHARED: return update_graph_no_edge(i);
|
||||
case ir::INST_MASKED_LOAD_ASYNC: return update_graph_elementwise(i, false);
|
||||
case ir::INST_COPY_FROM_SHARED: return update_graph_no_edge(i);
|
||||
case ir::INST_CVT_LAYOUT: return update_graph_no_edge(i);
|
||||
default: return update_graph_elementwise(i);
|
||||
}
|
||||
return;
|
||||
}
|
||||
@@ -135,11 +135,15 @@ std::vector<int> axes::get(ir::value *value) {
|
||||
void axes::run(ir::module &mod) {
|
||||
// make graph
|
||||
graph_.clear();
|
||||
axes_.clear();
|
||||
ir::for_each_instruction(mod, [this](ir::instruction *x) {
|
||||
update_graph(x);
|
||||
});
|
||||
// find connected components
|
||||
graph_.connected_components(nullptr, &axes_);
|
||||
std::set<size_t> uniq;
|
||||
for(auto x: axes_)
|
||||
uniq.insert(x.second);
|
||||
}
|
||||
|
||||
}
|
||||
|
@@ -109,9 +109,6 @@ data_layout::data_layout(id_t id,
|
||||
max_contiguous = curr;
|
||||
}
|
||||
}
|
||||
bool is_recoalesce = false;
|
||||
for(ir::value* v: values)
|
||||
is_recoalesce = is_recoalesce || dynamic_cast<ir::recoalesce_inst*>(v);
|
||||
if(max_contiguous.size() > 0){
|
||||
std::sort(order_.begin(), order_.end(), [&](unsigned a, unsigned b) {
|
||||
return max_contiguous[a] > max_contiguous[b];
|
||||
@@ -129,6 +126,13 @@ int data_layout::find_axis(int to_find) const {
|
||||
}
|
||||
|
||||
|
||||
distributed_layout::distributed_layout(id_t id,
|
||||
const std::vector<int> &axes,
|
||||
const std::vector<unsigned> &shape,
|
||||
const std::vector<ir::value *> &values,
|
||||
analysis::align* align): data_layout(id, axes, shape, values, align)
|
||||
{ }
|
||||
|
||||
/* -------------------------------- *
|
||||
* MMA Layout *
|
||||
* -------------------------------- */
|
||||
@@ -138,20 +142,11 @@ mma_layout::mma_layout(size_t num_warps,
|
||||
const std::vector<unsigned>& shape,
|
||||
const std::vector<ir::value *> &values,
|
||||
analysis::align* align, target* tgt,
|
||||
shared_layout *layout_a, shared_layout *layout_b): data_layout(MMA, axes, shape, values, align) {
|
||||
shared_layout *layout_a, shared_layout *layout_b): distributed_layout(MMA, axes, shape, values, align) {
|
||||
/* fragments per warp */
|
||||
// try to make things as square as possible to maximize data re-use
|
||||
if(tgt->as_nvidia()->sm() < 80){
|
||||
fpw_ = {2, 2, 1};
|
||||
// std::vector<int> fpw_nm1;
|
||||
// unsigned num_fragments = std::min<unsigned>((shape_[0]/8)*(shape_[1]/8), 4);
|
||||
// do {
|
||||
// fpw_nm1 = fpw_;
|
||||
// if(fpw_[0]*fpw_[1] < num_fragments)
|
||||
// fpw_[0] = clamp(fpw_[0]*2, 1, shape_[0] / 8);
|
||||
// if(fpw_[0]*fpw_[1] < num_fragments)
|
||||
// fpw_[1] = clamp(fpw_[1]*2, 1, shape_[1] / 8);
|
||||
// }while(fpw_nm1 != fpw_);
|
||||
auto ord_a = layout_a->get_order();
|
||||
auto ord_b = layout_b->get_order();
|
||||
bool is_a_row = ord_a[0] != 0;
|
||||
@@ -168,6 +163,7 @@ mma_layout::mma_layout(size_t num_warps,
|
||||
spw_ = {16, 8, 1};
|
||||
rep_ = {2, 2, 1};
|
||||
}
|
||||
order_ = {0, 1};
|
||||
|
||||
/* warps per tile */
|
||||
// try to make things as square as possible to maximize data re-use
|
||||
@@ -182,7 +178,7 @@ mma_layout::mma_layout(size_t num_warps,
|
||||
}while(wpt_nm1 != wpt_);
|
||||
|
||||
/* shape per block */
|
||||
spt_ = {spw_[0]*wpt_[0], spw_[1]*wpt_[1], 1};
|
||||
shape_per_cta_ = {spw_[0]*wpt_[0], spw_[1]*wpt_[1], 1};
|
||||
}
|
||||
|
||||
|
||||
@@ -194,7 +190,7 @@ scanline_layout::scanline_layout(size_t num_warps,
|
||||
const std::vector<int>& axes,
|
||||
const std::vector<unsigned>& shape,
|
||||
const std::vector<ir::value *> &values,
|
||||
analysis::align* align, target *tgt): data_layout(SCANLINE, axes, shape, values, align){
|
||||
analysis::align* align, target *tgt): distributed_layout(SCANLINE, axes, shape, values, align){
|
||||
unsigned size = std::accumulate(shape_.begin(), shape_.end(), 1, std::multiplies<int>());
|
||||
unsigned num_threads = tgt->is_gpu() ? num_warps * 32 : 1;
|
||||
nts_.resize(shape_.size());
|
||||
@@ -230,6 +226,10 @@ scanline_layout::scanline_layout(size_t num_warps,
|
||||
mts_[i] = clamp(num_threads, 1, shape_[i] / nts_[i]);
|
||||
num_threads = num_threads / mts_[i];
|
||||
}
|
||||
|
||||
shape_per_cta_.resize(shape_.size());
|
||||
for(size_t d = 0; d < shape_.size(); d++)
|
||||
shape_per_cta_[d] = mts_[d]*nts_[d];
|
||||
}
|
||||
|
||||
|
||||
@@ -489,6 +489,9 @@ void layouts::create(size_t id, const std::vector<ir::value*>& values) {
|
||||
void layouts::run(ir::module &mod) {
|
||||
// make graph
|
||||
graph_.clear();
|
||||
layouts_.clear();
|
||||
groups_.clear();
|
||||
|
||||
ir::for_each_instruction(mod, [this](ir::instruction* i) {
|
||||
make_graph(i);
|
||||
});
|
||||
@@ -515,23 +518,18 @@ void layouts::run(ir::module &mod) {
|
||||
layouts_[id] = new shared_layout(layout, axes_->get(arg), shapes, {red}, red->get_type()->get_scalar_ty(), align_);
|
||||
tmp_[red] = id;
|
||||
}
|
||||
if(auto *recoalasce = dynamic_cast<ir::recoalesce_inst*>(i)){
|
||||
ir::value *val = recoalasce->get_operand(0);
|
||||
mma_layout* in_layout = get(val)->to_mma();
|
||||
scanline_layout* out_layout = get(i)->to_scanline();
|
||||
if(!in_layout || !out_layout)
|
||||
return;
|
||||
if(auto *val = dynamic_cast<ir::cvt_layout_inst*>(i)){
|
||||
distributed_layout* out_layout = dynamic_cast<distributed_layout*>(get(val));
|
||||
distributed_layout* in_layout = dynamic_cast<distributed_layout*>(get(i->get_operand(0)));
|
||||
id++;
|
||||
ir::type::block_shapes_t in_shape = val->get_type()->get_block_shapes();
|
||||
ir::type::block_shapes_t shape(in_shape.size());
|
||||
size_t ld = out_layout->get_order(0);
|
||||
shape[ld] = in_shape[ld];
|
||||
for(size_t k = 0; k < in_shape.size(); k++)
|
||||
if(k != ld)
|
||||
shape[k] = in_layout->to_mma()->spt(k);
|
||||
// create layout
|
||||
layouts_[id] = new shared_layout(out_layout, axes_->get(val), shape, {recoalasce}, val->get_type()->get_scalar_ty(), align_);
|
||||
tmp_[recoalasce] = id;
|
||||
size_t dim = val->get_type()->get_tile_rank();
|
||||
ir::type::block_shapes_t shape(dim);
|
||||
for(size_t k = 0; k < dim; k++){
|
||||
shape[k] = std::max(in_layout->shape_per_cta(k),
|
||||
out_layout->shape_per_cta(k));
|
||||
}
|
||||
layouts_[id] = new shared_layout(out_layout, axes_->get(val), shape, {val}, val->get_type()->get_scalar_ty(), align_);
|
||||
tmp_[val] = id;
|
||||
}
|
||||
if(auto *atom = dynamic_cast<ir::atomic_inst*>(i)){
|
||||
id++;
|
||||
|
@@ -56,10 +56,8 @@ void add_passes_to_emit_bin(ir::module &ir, driver::device *dev, int num_warps,
|
||||
dce.run(ir);
|
||||
peephole.run(ir);
|
||||
dce.run(ir);
|
||||
// ir::print(ir, std::cout);
|
||||
pipeline.run(ir);
|
||||
dce.run(ir);
|
||||
// ir::print(ir, std::cout);
|
||||
disassociate.run(ir);
|
||||
dce.run(ir);
|
||||
align.run(ir);
|
||||
@@ -74,14 +72,15 @@ void add_passes_to_emit_bin(ir::module &ir, driver::device *dev, int num_warps,
|
||||
layouts.run(ir);
|
||||
coalesce.run(ir);
|
||||
dce.run(ir);
|
||||
// exit(1);
|
||||
|
||||
align.run(ir);
|
||||
dce.run(ir);
|
||||
if (target->is_gpu()) {
|
||||
// reassociate.run(ir);
|
||||
if (target->is_gpu())
|
||||
cts.run(ir);
|
||||
}
|
||||
dce.run(ir);
|
||||
align.run(ir);
|
||||
// ir::print(ir, std::cout);
|
||||
axes.run(ir);
|
||||
layouts.run(ir);
|
||||
peephole.run(ir);
|
||||
@@ -93,10 +92,7 @@ void add_passes_to_emit_bin(ir::module &ir, driver::device *dev, int num_warps,
|
||||
liveness.run(ir);
|
||||
allocation.run(ir);
|
||||
prefetch_s.run(ir);
|
||||
// ir::print(ir, std::cout);
|
||||
barriers.run(ir);
|
||||
// ir::print(ir, std::cout);
|
||||
// ir::print(ir, std::cout);
|
||||
isel.visit(ir, *llvm);
|
||||
mod = driver::module::create(dev, std::move(llvm));
|
||||
ker = driver::kernel::create(&*mod, name.c_str());
|
||||
|
@@ -586,7 +586,7 @@ void generator::visit_load_inst(ir::load_inst* x){
|
||||
Type* ty = cvt(op->get_type()->get_scalar_ty()->get_pointer_element_ty());
|
||||
// compute vector width
|
||||
size_t vec = 1;
|
||||
if(op->get_type()->is_block_ty()){
|
||||
if(op->get_type()->is_block_ty() && op->get_type()->get_tile_rank() > 1){
|
||||
auto ord = ords_.at(op);
|
||||
size_t aln = alignment_->get(op, ord[0]);
|
||||
size_t nts = layouts_->get(x)->to_scanline()->nts(ord[0]);
|
||||
@@ -626,10 +626,10 @@ void generator::visit_load_inst(ir::load_inst* x){
|
||||
// -----
|
||||
std::ostringstream asm_oss;
|
||||
asm_oss << "@$" << n_words; // predicate
|
||||
if(force_nc_cache_)
|
||||
asm_oss << " ld.global.nc";
|
||||
else
|
||||
asm_oss << " ld.global.cg";
|
||||
// if(force_nc_cache_)
|
||||
asm_oss << " ld.global";
|
||||
// else
|
||||
// asm_oss << " ld.global.cg";
|
||||
if(n_words > 1)
|
||||
asm_oss << ".v" << n_words; // vector width
|
||||
asm_oss << ".b" << width; // word size
|
||||
@@ -1058,7 +1058,8 @@ void generator::visit_mma884(ir::dot_inst* C, ir::value *A, ir::value *B, ir::va
|
||||
/* --------------------------------- */
|
||||
BasicBlock* curr_bb = builder_->GetInsertBlock();
|
||||
BasicBlock* entry = &curr_bb->getParent()->getEntryBlock();
|
||||
builder_->SetInsertPoint(entry->getTerminator());
|
||||
if(entry != curr_bb)
|
||||
builder_->SetInsertPoint(entry->getTerminator());
|
||||
Value* off_a0 = is_a_row ? offset_a_k_[layout_c] : offset_a_m_[layout_c];
|
||||
Value* off_a1 = is_a_row ? offset_a_m_[layout_c] : offset_a_k_[layout_c];
|
||||
Value* phase_a = urem(udiv(off_a1, i32(per_phase_a)), i32(max_phase_a));
|
||||
@@ -1116,8 +1117,8 @@ void generator::visit_mma884(ir::dot_inst* C, ir::value *A, ir::value *B, ir::va
|
||||
for(indices_t idx: idxs_.at(C))
|
||||
acc.push_back(vals_[D][idx]);
|
||||
|
||||
unsigned num_m = layout_c->rep(0) * shape_c[0] / layout_c->spt(0);
|
||||
unsigned num_n = layout_c->rep(1) * shape_c[1] / layout_c->spt(1);
|
||||
unsigned num_m = layout_c->rep(0) * shape_c[0] / layout_c->shape_per_cta(0);
|
||||
unsigned num_n = layout_c->rep(1) * shape_c[1] / layout_c->shape_per_cta(1);
|
||||
|
||||
// create mma & unpack result
|
||||
auto call_mma = [&](unsigned m, unsigned n, unsigned K) {
|
||||
@@ -1333,7 +1334,8 @@ void generator::visit_mma16816(ir::dot_inst* C, ir::value *A, ir::value *B, ir::
|
||||
|
||||
BasicBlock* CurrBB = builder_->GetInsertBlock();
|
||||
BasicBlock* FirstBB = &CurrBB->getParent()->getEntryBlock();
|
||||
builder_->SetInsertPoint(FirstBB->getTerminator());
|
||||
if(FirstBB != CurrBB)
|
||||
builder_->SetInsertPoint(FirstBB->getTerminator());
|
||||
|
||||
Value* thread = tgt_->get_local_id(mod_, *builder_, 0);
|
||||
Value *lane = urem(thread, i32(32));
|
||||
@@ -1396,8 +1398,8 @@ void generator::visit_mma16816(ir::dot_inst* C, ir::value *A, ir::value *B, ir::
|
||||
"{$10, $11, $12, $13};",
|
||||
"=f,=f,=f,=f,r,r,r,r,r,r,0,1,2,3", true);
|
||||
|
||||
unsigned num_rep_0 = shapes[0] / layout->spt(0);
|
||||
unsigned num_rep_1 = shapes[1] / layout->spt(1);
|
||||
unsigned num_rep_0 = shapes[0] / layout->shape_per_cta(0);
|
||||
unsigned num_rep_1 = shapes[1] / layout->shape_per_cta(1);
|
||||
|
||||
// create mma & unpack result
|
||||
auto call_mma = [&](unsigned m, unsigned n, unsigned K) {
|
||||
@@ -1626,8 +1628,8 @@ void generator::visit_fmadot(ir::dot_inst* C, ir::value* A, ir::value* B, ir::va
|
||||
std::map<std::pair<int, int>, Value*> has, hbs;
|
||||
for(unsigned k = 0; k < NK; k++){
|
||||
int z = 0;
|
||||
for(unsigned m = 0; m < shape_c[0]; m+=layout_c->mts(0)*layout_c->nts(0))
|
||||
for(unsigned n = 0; n < shape_c[1]; n+=layout_c->mts(1)*layout_c->nts(1))
|
||||
for(unsigned m = 0; m < shape_c[0]; m += layout_c->shape_per_cta(0))
|
||||
for(unsigned n = 0; n < shape_c[1]; n += layout_c->shape_per_cta(1))
|
||||
for(unsigned mm = 0; mm < layout_c->nts(0); mm++)
|
||||
for(unsigned nn = 0; nn < layout_c->nts(1); nn++)
|
||||
{
|
||||
@@ -1818,6 +1820,7 @@ void generator::visit_reducend_inst(ir::reduce_inst* x, std::function<Value*(Val
|
||||
add_barrier();
|
||||
// update accumulator
|
||||
acc = do_acc(acc, load(read_ptr));
|
||||
add_barrier();
|
||||
store(acc, write_ptr);
|
||||
}
|
||||
}
|
||||
@@ -1884,54 +1887,74 @@ void generator::visit_select_inst(ir::select_inst* x) {
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* \brief Code Generation for `recoalesce`
|
||||
*/
|
||||
void generator::visit_recoalesce_inst(ir::recoalesce_inst* rc) {
|
||||
ir::value *op = rc->get_operand(0);
|
||||
ir::block_type::block_shapes_t shape = rc->get_type()->get_block_shapes();
|
||||
|
||||
|
||||
void generator::visit_layout_convert(ir::value *out, ir::value *in){
|
||||
ir::block_type::block_shapes_t shape = out->get_type()->get_block_shapes();
|
||||
// pointer to temporary shared memory
|
||||
Type *ty = cvt(rc->get_type()->get_scalar_ty());
|
||||
// layout
|
||||
analysis::mma_layout* in_layout = layouts_->get(op)->to_mma();
|
||||
analysis::scanline_layout* out_layout = layouts_->get(rc)->to_scanline();
|
||||
Type *ty = cvt(out->get_type()->get_scalar_ty());
|
||||
// Orders
|
||||
auto ord = layouts_->get(rc)->to_scanline()->get_order();
|
||||
analysis::distributed_layout* in_layout = dynamic_cast<analysis::distributed_layout*>(layouts_->get(in));
|
||||
analysis::distributed_layout* out_layout = dynamic_cast<analysis::distributed_layout*>(layouts_->get(out));
|
||||
auto in_ord = in_layout->get_order();
|
||||
auto out_ord = out_layout->get_order();
|
||||
Value *base;
|
||||
base = gep(shmem_, i32(alloc_->offset(layouts_->get(layouts_->tmp(rc)))));
|
||||
base = gep(shmem_, i32(alloc_->offset(layouts_->get(layouts_->tmp(out)))));
|
||||
base = bit_cast(base, ptr_ty(ty, 3));
|
||||
Value *ld = i32(shape[ord[0]]);
|
||||
auto in_ord0 = axes_.at(a_axes_->get(op, ord[0])).values;
|
||||
auto in_ord1 = axes_.at(a_axes_->get(op, ord[1])).values;
|
||||
auto out_ord0 = axes_.at(a_axes_->get(rc, ord[0])).values;
|
||||
auto out_ord1 = axes_.at(a_axes_->get(rc, ord[1])).values;
|
||||
int in_spt0 = in_layout->spt(ord[0]);
|
||||
int in_spt1 = in_layout->spt(ord[1]);
|
||||
int out_spt0 = out_layout->mts(ord[0])*out_layout->nts(ord[0]);
|
||||
int out_spt1 = out_layout->mts(ord[1])*out_layout->nts(ord[1]);
|
||||
int max_spt1 = std::max(in_spt1, out_spt1);
|
||||
indices_t idx(2);
|
||||
int num_packs = shape[ord[1]]/max_spt1;
|
||||
for(size_t j = 0; j < num_packs; j++){
|
||||
add_barrier();
|
||||
for(size_t k = 0; k < in_ord1.size()/num_packs; k++)
|
||||
for(size_t i = 0; i < in_ord0.size(); i++){
|
||||
idx[ord[0]] = in_ord0[i];
|
||||
idx[ord[1]] = in_ord1[j*in_ord1.size()/num_packs + k];
|
||||
Value *off = add(idx[ord[0]], mul(in_ord1[k], ld));
|
||||
Value *ptr = gep(base, off);
|
||||
store(vals_[op][idx], ptr);
|
||||
}
|
||||
add_barrier();
|
||||
for(size_t k = 0; k < out_ord1.size()/num_packs; k++)
|
||||
for(size_t i = 0; i < out_ord0.size(); i++){
|
||||
idx[ord[0]] = out_ord0[i];
|
||||
idx[ord[1]] = out_ord1[j*out_ord1.size()/num_packs + k];
|
||||
Value *off = add(idx[ord[0]], mul(out_ord1[k], ld));
|
||||
Value *ptr = gep(base, off);
|
||||
vals_[rc][idx] = load(ptr);
|
||||
}
|
||||
std::vector<int> n_reps;
|
||||
for(int i = 0; i < shape.size(); i++){
|
||||
int in_per_cta = in_layout->shape_per_cta(i);
|
||||
int out_per_cta = out_layout->shape_per_cta(i);
|
||||
int max_per_cta = std::max(in_per_cta, out_per_cta);
|
||||
n_reps.push_back(shape[i]/max_per_cta);
|
||||
}
|
||||
std::vector<std::vector<Value*>> in_ax;
|
||||
std::vector<std::vector<Value*>> out_ax;
|
||||
for(int d = 0; d < shape.size(); d++){
|
||||
in_ax.push_back(axes_.at(a_axes_->get(in, d)).values);
|
||||
out_ax.push_back(axes_.at(a_axes_->get(out, d)).values);
|
||||
}
|
||||
in_ord = in_layout->to_mma() ? out_ord : in_ord;
|
||||
out_ord = out_layout->to_mma() ? in_ord : out_ord;
|
||||
Value *in_ld = i32(shape[in_ord[0]]);
|
||||
Value *out_ld = i32(shape[out_ord[0]]);
|
||||
for(int i = 0; i < n_reps[0]; i++)
|
||||
for(int j = 0; j < n_reps[1]; j++){
|
||||
int max_ii, max_jj;
|
||||
add_barrier();
|
||||
max_ii = in_ax[0].size()/n_reps[0];
|
||||
max_jj = in_ax[1].size()/n_reps[1];
|
||||
for(int ii = 0; ii < max_ii; ii++)
|
||||
for(int jj = 0; jj < max_jj; jj++){
|
||||
// shared mem pointer
|
||||
indices_t offs = {in_ax[0][ii], in_ax[1][jj]};
|
||||
Value *off = add(offs[out_ord[0]], mul(out_ld, offs[out_ord[1]]));
|
||||
Value *ptr = gep(base, off);
|
||||
// stash value to shared mem
|
||||
indices_t idxs = {in_ax[0][i*max_ii + ii],
|
||||
in_ax[1][j*max_jj + jj]};
|
||||
store(vals_[in][idxs], ptr);
|
||||
}
|
||||
add_barrier();
|
||||
max_ii = out_ax[0].size()/n_reps[0];
|
||||
max_jj = out_ax[1].size()/n_reps[1];
|
||||
for(int ii = 0; ii < max_ii; ii++)
|
||||
for(int jj = 0; jj < max_jj; jj++){
|
||||
// shared mem pointer
|
||||
indices_t offs = {out_ax[0][ii], out_ax[1][jj]};
|
||||
Value *off = add(offs[out_ord[0]], mul(out_ld, offs[out_ord[1]]));
|
||||
Value *ptr = gep(base, off);
|
||||
// load value from shared rem
|
||||
indices_t idxs = {out_ax[0][i*max_ii + ii],
|
||||
out_ax[1][j*max_jj + jj]};
|
||||
vals_[out][idxs] = load(ptr);
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
void generator::visit_cvt_layout_inst(ir::cvt_layout_inst *rc) {
|
||||
visit_layout_convert(rc, rc->get_operand(0));
|
||||
}
|
||||
|
||||
void generator::visit_masked_load_async_inst(ir::masked_load_async_inst* x){
|
||||
@@ -2325,12 +2348,12 @@ void generator::visit_layout_mma(analysis::mma_layout* layout) {
|
||||
offset_b_k_[layout] = and_(lane, _3);
|
||||
// i indices
|
||||
Value *offset_c_m = add(and_(lane, _1), offset_a_m_[layout]);
|
||||
for(unsigned m = 0; m < shape[0]; m+=layout->spt(0))
|
||||
for(unsigned m = 0; m < shape[0]; m+=layout->shape_per_cta(0))
|
||||
for(unsigned mm = 0; mm < layout->rep(0); mm++)
|
||||
idx_m.push_back(add(offset_c_m, i32(m + mm*2)));
|
||||
// j indices
|
||||
Value *offset_c_n = add(and_(lane, _2), add(off_warp_n, off_pair_n));
|
||||
for(unsigned n = 0; n < shape[1]; n+=layout->spt(1))
|
||||
for(unsigned n = 0; n < shape[1]; n+=layout->shape_per_cta(1))
|
||||
for(unsigned nn = 0; nn < layout->rep(1); nn++){
|
||||
idx_n.push_back(add(offset_c_n, i32(n + nn/2*4 + (nn%2)*2*layout->fpw(1)*layout->rep(1))));
|
||||
idx_n.push_back(add(offset_c_n, i32(n + nn/2*4 + (nn%2)*2*layout->fpw(1)*layout->rep(1) + 1)));
|
||||
@@ -2366,11 +2389,11 @@ void generator::visit_layout_mma(analysis::mma_layout* layout) {
|
||||
// c offset
|
||||
Value *off_c_m = add(udiv(lane, _4), off_warp_m);
|
||||
Value *off_c_n = add(mul(_2, urem(lane, _4)), off_warp_n);
|
||||
for(unsigned m = 0; m < shape[0]; m+=layout->spt(0)){
|
||||
for(unsigned m = 0; m < shape[0]; m+=layout->shape_per_cta(0)){
|
||||
idx_m.push_back(add(off_c_m, i32(m)));
|
||||
idx_m.push_back(add(off_c_m, i32(m + 8)));
|
||||
}
|
||||
for(unsigned n = 0; n < shape[1]; n+=layout->spt(1)){
|
||||
for(unsigned n = 0; n < shape[1]; n+=layout->shape_per_cta(1)){
|
||||
idx_n.push_back(add(off_c_n, i32(n)));
|
||||
idx_n.push_back(add(off_c_n, i32(n + 1)));
|
||||
}
|
||||
@@ -2406,11 +2429,11 @@ void generator::visit_layout_scanline(analysis::scanline_layout* layout) {
|
||||
std::string str_k = std::to_string(k);
|
||||
Value *contiguous_k = i32(nts);
|
||||
Value *scaled_thread_id = mul(thread_id[k], contiguous_k);
|
||||
unsigned per_block = nts * mts;
|
||||
unsigned per_thread = nts * shape[k] / per_block;
|
||||
unsigned per_cta = layout->shape_per_cta(k);
|
||||
unsigned per_thread = nts * shape[k] / per_cta;
|
||||
std::vector<Value*> idx_list(per_thread);
|
||||
for(unsigned n = 0 ; n < per_thread; n++){
|
||||
unsigned offset = n / nts * per_block + n % nts;
|
||||
unsigned offset = n / nts * per_cta + n % nts;
|
||||
idx_list[n] = add(scaled_thread_id, i32(offset), "idx_" + str_k + "_" + std::to_string(n));
|
||||
}
|
||||
axes_[layout->get_axis(k)] = distributed_axis{nts, idx_list, thread_id[k]};
|
||||
|
@@ -15,128 +15,109 @@ namespace transform{
|
||||
coalesce::coalesce(analysis::align* align, analysis::layouts *layouts)
|
||||
: align_(align), layout_(layouts) { }
|
||||
|
||||
// Find all values that are used as pointer operands in LD/ST
|
||||
void coalesce::extract_io_use(ir::value *v, std::set<ir::io_inst*>& result) {
|
||||
for(ir::user* u: v->get_users()){
|
||||
auto i = dynamic_cast<ir::io_inst*>(u);
|
||||
if(i && i->get_pointer_operand() == v)
|
||||
result.insert(i);
|
||||
}
|
||||
}
|
||||
|
||||
void coalesce::extract_ld(ir::io_inst* i, std::map<int, std::vector<ir::io_inst*>>& result) {
|
||||
ir::value *ptr = i->get_pointer_operand();
|
||||
auto contiguous = align_->contiguous(ptr);
|
||||
auto it = std::max_element(contiguous.begin(), contiguous.end());
|
||||
int axis = std::distance(contiguous.begin(), it);
|
||||
result[axis].push_back(i);
|
||||
}
|
||||
|
||||
ir::value* coalesce::rematerialize(ir::value *x, ir::builder &builder,
|
||||
std::map<ir::value*, ir::value*>& seen) {
|
||||
if(seen.find(x) != seen.end())
|
||||
return seen.at(x);
|
||||
auto i = dynamic_cast<ir::instruction*>(x);
|
||||
// not an instruction -- forward value
|
||||
if(!i)
|
||||
return x;
|
||||
// already in shared memory -- forward value
|
||||
if(dynamic_cast<ir::copy_to_shared_inst*>(x)){
|
||||
return x;
|
||||
}
|
||||
// set insert point
|
||||
auto& inst_list = i->get_parent()->get_inst_list();
|
||||
auto pos = ++std::find(inst_list.begin(), inst_list.end(), i);
|
||||
builder.set_insert_point(pos);
|
||||
if(dynamic_cast<ir::load_inst*>(x)){
|
||||
ir::value *ret = builder.insert(ir::copy_to_shared_inst::create(x));
|
||||
return ret;
|
||||
}
|
||||
// default -- recursive clone
|
||||
ir::instruction *cloned = builder.insert(i->clone());
|
||||
seen[i] = cloned;
|
||||
// rematerialize operands
|
||||
for(ir::value *op: cloned->ops())
|
||||
cloned->replace_uses_of_with(op, rematerialize(op, builder, seen));
|
||||
return cloned;
|
||||
}
|
||||
// simplify layout conversions using the following simple rules:
|
||||
// - cvt_1(cvt_2(x)) if convert1 is the inverse of convert2
|
||||
// - cvt_1(elementwise(x, y)) = elementwise(convert(x), convert(y))
|
||||
//ir::value* coalesce::simplify(ir::instruction *inst, ir::builder& builder){
|
||||
// ir::value* _op = inst->get_operand(0);
|
||||
// ir::instruction* op = dynamic_cast<ir::instruction*>(_op);
|
||||
// analysis::mma_layout* mma_in = layout_->get(op) ->to_mma();
|
||||
// analysis::mma_layout* mma_out = layout_->get(inst)->to_mma();
|
||||
// std::cout << 1 << std::endl;
|
||||
// // i must be layout conversion instruction
|
||||
// if(!mma_in && !mma_out)
|
||||
// return inst;
|
||||
// // - cvt_1(cvt_2(x)) if convert1 is the inverse of convert2
|
||||
// bool is_op_cvt = op->get_id() == ir::INST_CVT_LAYOUT;
|
||||
// if((mma_in || mma_out) && is_op_cvt &&
|
||||
// (layout_->get(inst) == layout_->get(op->get_operand(0))))
|
||||
// return op->get_operand(0);
|
||||
// // - cvt_1(elementwise(x, y)) = elementwise(cvt_1(x), cvt_2(y))
|
||||
// if(op->get_id() != ir::INST_BINOP && op->get_id() != ir::INST_GETELEMENTPTR)
|
||||
// return inst;
|
||||
// std::cout << 1 << std::endl;
|
||||
// for(size_t i = 0; i < op->get_num_operands(); i++){
|
||||
// ir::value* arg_i = op->get_operand(i);
|
||||
// builder.set_insert_point(op);
|
||||
// // create new layout transform
|
||||
// ir::instruction* new_arg_i = inst->clone();
|
||||
// builder.insert(new_arg_i);
|
||||
// // set the right args
|
||||
// new_arg_i->replace_uses_of_with(new_arg_i->get_operand(0), arg_i);
|
||||
// op->replace_uses_of_with(arg_i, simplify(new_arg_i, builder));
|
||||
// }
|
||||
// std::cout << 2 << std::endl;
|
||||
// return op;
|
||||
//}
|
||||
|
||||
void coalesce::run(ir::module &mod) {
|
||||
size_t num_groups = layout_->num_layouts();
|
||||
|
||||
|
||||
for(size_t id = 0; id < num_groups; id++) {
|
||||
if(!layout_->get(id)->to_mma())
|
||||
continue;
|
||||
// extract memory stores
|
||||
const auto& values = layout_->values_of(id);
|
||||
ir::value* dot = nullptr;
|
||||
for(ir::value *v: values)
|
||||
if(auto x = dynamic_cast<ir::dot_inst*>(v))
|
||||
dot = x;
|
||||
|
||||
ir::builder& builder = mod.get_builder();
|
||||
std::vector<ir::value*> worklist = {dot};
|
||||
std::set<ir::value*> seen;
|
||||
while(!worklist.empty()) {
|
||||
ir::value *current = worklist.back();
|
||||
seen.insert(current);
|
||||
worklist.pop_back();
|
||||
// stop if trunc
|
||||
if(auto x = dynamic_cast<ir::fp_trunc_inst*>(current)){
|
||||
ir::builder& builder = mod.get_builder();
|
||||
// add layout conversion instructions
|
||||
for(ir::function *fn: mod.get_function_list())
|
||||
for(ir::basic_block *block: fn->blocks())
|
||||
for(ir::instruction* i: block->get_inst_list()){
|
||||
// coalesce before store
|
||||
if(auto x = dynamic_cast<ir::store_inst*>(i))
|
||||
if(ir::value* op = x->get_value_operand())
|
||||
if(op->get_type()->is_block_ty())
|
||||
if(layout_->get(op)->to_mma()){
|
||||
builder.set_insert_point(x);
|
||||
ir::instruction* new_op = ir::cvt_layout_inst::create(op);
|
||||
builder.insert(new_op);
|
||||
x->replace_uses_of_with(op, new_op);
|
||||
}
|
||||
// uncoalesce after load
|
||||
if(auto x = dynamic_cast<ir::load_inst*>(i))
|
||||
if(x->get_type()->is_block_ty())
|
||||
if(x->get_type()->get_tile_rank()==2)
|
||||
if(layout_->get(x)->to_mma()){
|
||||
builder.set_insert_point_after(x);
|
||||
ir::recoalesce_inst* rc = ir::recoalesce_inst::create(x);
|
||||
builder.insert(rc);
|
||||
x->replace_all_uses_with(rc);
|
||||
rc->replace_uses_of_with(rc, x);
|
||||
ir::instruction* new_x = ir::cvt_layout_inst::create(x);
|
||||
builder.insert(new_x);
|
||||
x->replace_all_uses_with(new_x);
|
||||
new_x->replace_uses_of_with(new_x, x);
|
||||
// new_x->replace_uses_of_with(new_x, new_x);
|
||||
}
|
||||
// re-arrange scanline to promote memory coalescing
|
||||
if(auto x = dynamic_cast<ir::store_inst*>(i)){
|
||||
ir::value* ptr = x->get_pointer_operand();
|
||||
ir::value* val = x->get_value_operand();
|
||||
auto out_contig = align_->contiguous(ptr);
|
||||
auto val_inst = dynamic_cast<ir::instruction*>(val);
|
||||
if(!val_inst)
|
||||
break;
|
||||
if(dynamic_cast<ir::cvt_layout_inst*>(val))
|
||||
break;
|
||||
std::vector<unsigned> in_contig;
|
||||
std::vector<ir::instruction*> queue = {val_inst};
|
||||
std::set<ir::instruction*> seen;
|
||||
std::vector<ir::io_inst*> ios;
|
||||
while(!queue.empty()){
|
||||
ir::instruction* curr = queue.back();
|
||||
seen.insert(curr);
|
||||
queue.pop_back();
|
||||
if(auto io_inst = dynamic_cast<ir::io_inst*>(curr)){
|
||||
in_contig = align_->contiguous(io_inst->get_pointer_operand());
|
||||
break;
|
||||
}
|
||||
for(ir::value* op: curr->ops()){
|
||||
auto inst_op = dynamic_cast<ir::instruction*>(op);
|
||||
if(!inst_op || seen.find(inst_op) != seen.end())
|
||||
continue;
|
||||
if(!op->get_type()->is_block_ty() ||
|
||||
!val->get_type()->is_block_ty())
|
||||
continue;
|
||||
if(op->get_type()->get_tile_num_elements() ==
|
||||
val->get_type()->get_tile_num_elements())
|
||||
queue.push_back(inst_op);
|
||||
}
|
||||
}
|
||||
// recurse
|
||||
for(ir::user *u: current->get_users())
|
||||
if(seen.find(u) == seen.end())
|
||||
worklist.push_back(u);
|
||||
}
|
||||
}
|
||||
|
||||
// find values to rematerialize
|
||||
std::vector<ir::io_inst*> remat;
|
||||
for(size_t id = 0; id < num_groups; id++) {
|
||||
const auto& values = layout_->values_of(id);
|
||||
// extract pointers used in ld/st operations
|
||||
std::set<ir::io_inst*> io;
|
||||
for(ir::value *v: values)
|
||||
extract_io_use(v, io);
|
||||
// extract leading axes
|
||||
std::map<int, std::vector<ir::io_inst*>> axes;
|
||||
for(ir::io_inst *i: io){
|
||||
if(i->get_pointer_operand()->get_type()->get_tile_rank() == layout_->get(id)->get_rank()){
|
||||
extract_ld(i, axes);
|
||||
}
|
||||
}
|
||||
// update list of values to rematerialize
|
||||
if(axes.empty())
|
||||
continue;
|
||||
for(auto it = ++axes.rbegin(); it != axes.rend(); it++){
|
||||
if(it->second.size() == 1)
|
||||
if(in_contig.empty() || out_contig==in_contig)
|
||||
continue;
|
||||
remat.insert(remat.begin(), it->second.begin(), it->second.end());
|
||||
}
|
||||
}
|
||||
// rematerialize values
|
||||
for(ir::io_inst *r: remat) {
|
||||
ir::builder& builder = mod.get_builder();
|
||||
// rematerialize operands
|
||||
std::map<ir::value*, ir::value*> seen;
|
||||
for(ir::value *op: r->ops())
|
||||
r->replace_uses_of_with(op, rematerialize(op, mod.get_builder(), seen));
|
||||
// copy to shared if load
|
||||
auto& inst_list = r->get_parent()->get_inst_list();
|
||||
auto pos = ++std::find(inst_list.begin(), inst_list.end(), r);
|
||||
builder.set_insert_point(pos);
|
||||
if(dynamic_cast<ir::load_inst*>(r)){
|
||||
ir::instruction *cts = builder.insert(ir::copy_to_shared_inst::create(r));
|
||||
r->replace_all_uses_with(cts);
|
||||
cts->replace_uses_of_with(cts, r);
|
||||
builder.set_insert_point_after(val_inst);
|
||||
auto new_val = builder.insert(ir::cvt_layout_inst::create(val_inst));
|
||||
x->replace_uses_of_with(val_inst, new_val);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@@ -9,67 +9,48 @@ namespace triton {
|
||||
namespace codegen{
|
||||
namespace transform{
|
||||
|
||||
void extract_retile_chain(ir::user *root,
|
||||
std::map<int, std::set<ir::user*>>& result,
|
||||
int depth,
|
||||
ir::instruction* rematerialize(ir::builder& bld, ir::instruction *root,
|
||||
std::set<ir::value*>& seen) {
|
||||
if(!seen.insert(root).second)
|
||||
return;
|
||||
result[depth].insert(root);
|
||||
if(dynamic_cast<ir::make_range*>(root) ||
|
||||
dynamic_cast<ir::splat_inst*>(root)){
|
||||
return;
|
||||
}
|
||||
return root;
|
||||
if(!root->get_type()->is_block_ty())
|
||||
return root;
|
||||
|
||||
bld.set_insert_point(root);
|
||||
ir::instruction *new_root = bld.insert(root->clone());
|
||||
for(ir::value *op: root->ops()){
|
||||
ir::user *u = dynamic_cast<ir::user*>(op);
|
||||
if(!u)
|
||||
ir::instruction *i = dynamic_cast<ir::instruction*>(op);
|
||||
if(!i || i->get_id() == ir::INST_REDUCE)
|
||||
continue;
|
||||
extract_retile_chain(u, result, depth + 1, seen);
|
||||
ir::instruction* new_op = rematerialize(bld, i, seen);
|
||||
new_root->replace_uses_of_with(op, new_op);
|
||||
}
|
||||
return new_root;
|
||||
}
|
||||
|
||||
void disassociate::run(ir::module &mod) {
|
||||
ir::builder &bld = mod.get_builder();
|
||||
|
||||
std::map<ir::user*, std::map<int, std::set<ir::user*>>> clone_info;
|
||||
// ir::for_each_instruction(mod, [&](ir::instruction *i){
|
||||
// bld.set_insert_point(i);
|
||||
// for(ir::value* op: i->ops()){
|
||||
// auto reshape = dynamic_cast<ir::make_range*>(op);
|
||||
// if(!reshape)
|
||||
// continue;
|
||||
// ir::instruction* new_op = bld.insert(reshape->clone());
|
||||
// i->replace_uses_of_with(op, new_op);
|
||||
// }
|
||||
// });
|
||||
|
||||
|
||||
ir::for_each_instruction(mod, [&](ir::instruction *i){
|
||||
if(dynamic_cast<ir::reshape_inst*>(i)){
|
||||
ir::value* op = i->get_operand(0);
|
||||
if(!dynamic_cast<ir::user*>(op))
|
||||
return;
|
||||
if(op->get_type()->get_tile_rank() > i->get_type()->get_tile_rank())
|
||||
return;
|
||||
std::map<int, std::set<ir::user*>> chains;
|
||||
if(dynamic_cast<ir::reshape_inst*>(i) || dynamic_cast<ir::splat_inst*>(i)){
|
||||
std::set<ir::value*> seen;
|
||||
extract_retile_chain(i, chains, 0, seen);
|
||||
if(chains.size())
|
||||
clone_info[i] = chains;
|
||||
ir::instruction* new_i = rematerialize(bld, i, seen);
|
||||
i->replace_all_uses_with(new_i);
|
||||
}
|
||||
});
|
||||
|
||||
for(const auto& x: clone_info){
|
||||
int depth = 1;
|
||||
std::map<ir::instruction*, ir::instruction*> clone_map;
|
||||
while(x.second.find(depth) != x.second.end()){
|
||||
// clone all users
|
||||
const auto& remat = x.second.at(depth);
|
||||
for(ir::user* u: remat){
|
||||
ir::instruction *y = (ir::instruction*)u;
|
||||
ir::instruction *cloned = y->clone();
|
||||
bld.set_insert_point(y);
|
||||
bld.insert(cloned);
|
||||
clone_map[y] = cloned;
|
||||
// replace operands of parents
|
||||
if(depth > 1)
|
||||
for(ir::user* ux: x.second.at(depth - 1))
|
||||
clone_map.at((ir::instruction*)ux)->replace_uses_of_with(y, cloned);
|
||||
else
|
||||
x.first->replace_uses_of_with(y, cloned);
|
||||
}
|
||||
depth += 1;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
|
||||
|
@@ -211,6 +211,42 @@ bool peephole::rewrite_select_masked_load(ir::instruction *value, ir::builder& b
|
||||
return true;
|
||||
}
|
||||
|
||||
bool peephole::rewrite_cvt_layout(ir::instruction *value, ir::builder& builder){
|
||||
auto cvt = dynamic_cast<ir::cvt_layout_inst*>(value);
|
||||
if(!cvt)
|
||||
return false;
|
||||
ir::instruction* op = dynamic_cast<ir::instruction*>(cvt->get_operand(0));
|
||||
if(!op)
|
||||
return false;
|
||||
// convert(elementwise(x, y)) = elementwise(convert(x), convert(y))
|
||||
if(op->get_id() == ir::INST_BINOP){
|
||||
for(size_t i = 0; i < op->get_num_operands(); i++){
|
||||
ir::value* arg_i = op->get_operand(i);
|
||||
builder.set_insert_point(op);
|
||||
// create new layout transform
|
||||
ir::instruction* new_arg_i = cvt->clone();
|
||||
layouts_->copy(new_arg_i, op);
|
||||
builder.insert(new_arg_i);
|
||||
// set the right args
|
||||
new_arg_i->replace_uses_of_with(new_arg_i->get_operand(0), arg_i);
|
||||
op->replace_uses_of_with(arg_i, new_arg_i);
|
||||
}
|
||||
cvt->replace_all_uses_with(op);
|
||||
return true;
|
||||
}
|
||||
auto cvt_op = dynamic_cast<ir::cvt_layout_inst*>(op);
|
||||
if(!cvt_op)
|
||||
return false;
|
||||
// convert1(convert2(x)) if convert1 is the inverse of convert2
|
||||
ir::value* op_op = cvt_op->get_operand(0);
|
||||
if(layouts_->has(cvt) && layouts_->has(op_op) &&
|
||||
layouts_->get(cvt) && layouts_->get(op_op)){
|
||||
cvt->replace_all_uses_with(op_op);
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
void peephole::run(ir::module &mod) {
|
||||
ir::builder &builder = mod.get_builder();
|
||||
// keep track of whether any modification was made
|
||||
@@ -248,6 +284,7 @@ void peephole::run(ir::module &mod) {
|
||||
was_modified = was_modified || rewrite_unit_red(i, builder);
|
||||
was_modified = was_modified || rewrite_gep_ptr_min_off_plus_off(i, builder);
|
||||
was_modified = was_modified || rewrite_select_masked_load(i, builder);
|
||||
was_modified = was_modified || rewrite_cvt_layout(i, builder);
|
||||
if(tgt_->as_nvidia()->sm() >= 80)
|
||||
was_modified = was_modified || rewrite_load_to_shared(i, builder);
|
||||
if(was_modified)
|
||||
|
@@ -311,4 +311,4 @@ void pipeline::run(ir::module &mod) {
|
||||
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@@ -126,12 +126,6 @@ bool dispatch::nvmlinit(){
|
||||
return res;
|
||||
}
|
||||
|
||||
bool dispatch::spvllvminit(){
|
||||
if(spvllvm_==nullptr)
|
||||
spvllvm_ = dlopen("libLLVMSPIRVLib.so", RTLD_LAZY);
|
||||
return spvllvm_ != nullptr;
|
||||
}
|
||||
|
||||
//CUDA
|
||||
CUDA_DEFINE1(CUresult, cuCtxDestroy_v2, CUcontext)
|
||||
CUDA_DEFINE2(CUresult, cuEventCreate, CUevent *, unsigned int)
|
||||
@@ -185,14 +179,6 @@ NVML_DEFINE3(nvmlReturn_t, nvmlDeviceGetClockInfo, nvmlDevice_t, nvmlClockType_t
|
||||
NVML_DEFINE3(nvmlReturn_t, nvmlDeviceGetMaxClockInfo, nvmlDevice_t, nvmlClockType_t, unsigned int*)
|
||||
NVML_DEFINE3(nvmlReturn_t, nvmlDeviceSetApplicationsClocks, nvmlDevice_t, unsigned int, unsigned int)
|
||||
|
||||
// LLVM to SPIR-V
|
||||
int dispatch::initializeLLVMToSPIRVPass(llvm::PassRegistry ®istry){
|
||||
return f_impl<dispatch::spvllvminit>(spvllvm_, initializeLLVMToSPIRVPass, initializeLLVMToSPIRVPass_, "initializeLLVMToSPIRVPass", std::ref(registry));
|
||||
}
|
||||
|
||||
bool dispatch::writeSpirv(llvm::Module *M, std::ostream &OS, std::string &ErrMsg){
|
||||
return f_impl<dispatch::spvllvminit>(spvllvm_, writeSpirv, writeSpirv_, "writeSpirv", M, std::ref(OS), std::ref(ErrMsg));
|
||||
}
|
||||
|
||||
// Release
|
||||
void dispatch::release(){
|
||||
@@ -204,7 +190,6 @@ void dispatch::release(){
|
||||
|
||||
void* dispatch::cuda_;
|
||||
void* dispatch::nvml_;
|
||||
void* dispatch::spvllvm_;
|
||||
|
||||
//CUDA
|
||||
void* dispatch::cuCtxGetCurrent_;
|
||||
@@ -261,9 +246,5 @@ void* dispatch::nvmlDeviceGetClockInfo_;
|
||||
void* dispatch::nvmlDeviceGetMaxClockInfo_;
|
||||
void* dispatch::nvmlDeviceSetApplicationsClocks_;
|
||||
|
||||
// SPIR-V
|
||||
void* dispatch::initializeLLVMToSPIRVPass_;
|
||||
void* dispatch::writeSpirv_;
|
||||
|
||||
}
|
||||
}
|
||||
|
@@ -374,12 +374,15 @@ ir::value *dispatch::broadcast(ir::value *input, shape_t shape, ir::builder *bui
|
||||
auto src_shape = input->get_type()->get_block_shapes();
|
||||
if (src_shape.size() != shape.size())
|
||||
throw std::runtime_error("Cannot broadcast");
|
||||
if(shape == src_shape)
|
||||
return input;
|
||||
return builder->create_broadcast(input, shape);
|
||||
}
|
||||
|
||||
std::tuple<ir::value*, ir::value*> dispatch::broadcast(ir::value *lhs, ir::value* rhs, ir::builder *builder) {
|
||||
ir::type *lhs_ty = lhs->get_type();
|
||||
ir::type *rhs_ty = rhs->get_type();
|
||||
|
||||
// make_shape_compatible(block, scalar)
|
||||
if (lhs_ty->is_block_ty() && !rhs_ty->is_block_ty())
|
||||
rhs = builder->create_splat(rhs, lhs_ty->get_block_shapes());
|
||||
|
@@ -806,6 +806,11 @@ instruction* log_inst::create(value *val, const std::string& name, instruction *
|
||||
// intrinsic instructions
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
// cvt_scanline
|
||||
cvt_layout_inst* cvt_layout_inst::create(value *arg, const std::string &name, instruction *next) {
|
||||
return new cvt_layout_inst(arg->get_type(), INST_CVT_LAYOUT, arg, name, next);
|
||||
}
|
||||
|
||||
// copy to shared
|
||||
copy_to_shared_inst* copy_to_shared_inst::create(value *arg, const std::string &name,
|
||||
instruction *next) {
|
||||
@@ -818,13 +823,6 @@ copy_from_shared_inst* copy_from_shared_inst::create(value *arg, const std::stri
|
||||
return new copy_from_shared_inst(arg->get_type(), INST_COPY_FROM_SHARED, arg, name, next);
|
||||
}
|
||||
|
||||
// recoalesce
|
||||
recoalesce_inst* recoalesce_inst::create(value *arg, const std::string &name, instruction *next) {
|
||||
return new recoalesce_inst(arg->get_type(), INST_RECOALESCE, arg, name, next);
|
||||
}
|
||||
|
||||
|
||||
|
||||
// barrier
|
||||
barrier_inst::barrier_inst(context &ctx, const std::string &name,
|
||||
instruction *next)
|
||||
|
@@ -363,6 +363,133 @@ def test_reduce1d(dtype, shape, device='cuda'):
|
||||
triton.testing.assert_almost_equal(z_tri, z_ref)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("dtype, shape, axis",
|
||||
[(dtype, shape, 1) \
|
||||
for dtype in ['float32']\
|
||||
for shape in [(1, 1024)]])
|
||||
def test_reduce2d(dtype, shape, axis, device='cuda'):
|
||||
dtype = cvt[dtype]
|
||||
# triton kernel
|
||||
@triton.jit
|
||||
def kernel(X, Z, **meta):
|
||||
range_m = tl.arange(0, meta['BLOCK_M'])
|
||||
range_n = tl.arange(0, meta['BLOCK_N'])
|
||||
x = tl.load(X + range_m[:, None]*meta['BLOCK_N'] + range_n[None, :])
|
||||
z = tl.sum(x, axis=meta['AXIS'])
|
||||
tl.store(Z + range_m, z)
|
||||
# input
|
||||
x = triton.testing.random(shape, dtype=dtype, device=device)
|
||||
# triton result
|
||||
z_tri = torch.empty((shape[0],), dtype=dtype, device=device)
|
||||
kernel[(1,)](x, z_tri, BLOCK_M=shape[0], BLOCK_N=shape[1], AXIS=axis)
|
||||
# torch result
|
||||
z_ref = torch.sum(x, axis=axis).to(dtype)
|
||||
# compare
|
||||
triton.testing.assert_almost_equal(z_tri, z_ref)
|
||||
|
||||
# ---------------
|
||||
# test permute
|
||||
# ---------------
|
||||
|
||||
# ---------------
|
||||
# test permute
|
||||
# ---------------
|
||||
|
||||
@pytest.mark.parametrize("dtype, shape, perm",
|
||||
[(dtype, shape, perm) \
|
||||
for dtype in ['float32']\
|
||||
for shape in [(128, 128)]\
|
||||
for perm in [(1, 0)]])
|
||||
def test_permute(dtype, shape, perm, device='cuda'):
|
||||
dtype = cvt[dtype]
|
||||
# triton kernel
|
||||
@triton.jit
|
||||
def kernel(X, stride_xm, stride_xn,
|
||||
Z, stride_zm, stride_zn, **meta):
|
||||
BLOCK_M = meta['BLOCK_M']
|
||||
BLOCK_N = meta['BLOCK_N']
|
||||
off_m = tl.arange(0, BLOCK_M)
|
||||
off_n = tl.arange(0, BLOCK_N)
|
||||
Xs = X + off_m[:, None] * stride_xm + off_n[None, :] * stride_xn
|
||||
Zs = Z + off_m[:, None] * stride_zm + off_n[None, :] * stride_zn
|
||||
tl.store(Zs, tl.load(Xs))
|
||||
# input
|
||||
x = triton.testing.random(shape, dtype=dtype, device=device)
|
||||
# triton result
|
||||
z_tri = torch.empty_like(x)
|
||||
pgm = kernel[(1, 1)](x, x.stride(0), x.stride(1),
|
||||
z_tri, z_tri.stride(1), z_tri.stride(0),
|
||||
BLOCK_M=shape[0], BLOCK_N=shape[1])
|
||||
# torch result
|
||||
z_ref = x.permute(*perm).contiguous()
|
||||
# compare
|
||||
triton.testing.assert_almost_equal(z_tri, z_ref)
|
||||
# parse ptx to make sure ld/st are vectorized
|
||||
ptx = pgm.asm('ptx')
|
||||
assert 'ld.global.v4' in ptx
|
||||
assert 'st.global.v4' in ptx
|
||||
|
||||
# ---------------
|
||||
# test dot
|
||||
# ---------------
|
||||
|
||||
@pytest.mark.parametrize("epilogue", ['none', 'add-matrix', 'add-rows', 'add-cols'])
|
||||
def test_dot(epilogue, device='cuda'):
|
||||
torch.manual_seed(0)
|
||||
# triton kernel
|
||||
@triton.jit
|
||||
def kernel(X, stride_xm, stride_xk,
|
||||
Y, stride_yk, stride_yn,
|
||||
Z, stride_zm, stride_zn, **meta):
|
||||
BLOCK_M = meta['BLOCK_M']
|
||||
BLOCK_K = meta['BLOCK_K']
|
||||
BLOCK_N = meta['BLOCK_N']
|
||||
off_m = tl.arange(0, BLOCK_M)
|
||||
off_n = tl.arange(0, BLOCK_N)
|
||||
off_k = tl.arange(0, BLOCK_K)
|
||||
Xs = X + off_m[:, None] * stride_xm + off_k[None, :] * stride_xk
|
||||
Ys = Y + off_k[:, None] * stride_yk + off_n[None, :] * stride_yn
|
||||
Zs = Z + off_m[:, None] * stride_zm + off_n[None, :] * stride_zn
|
||||
z = tl.dot(tl.load(Xs), tl.load(Ys))
|
||||
if meta['ADD_MATRIX']:
|
||||
z += tl.load(Zs)
|
||||
if meta['ADD_ROWS']:
|
||||
ZRs = Z + off_m * stride_zm
|
||||
z += tl.load(ZRs)[:, None]
|
||||
if meta['ADD_COLS']:
|
||||
ZCs = Z + off_n * stride_zn
|
||||
z += tl.load(ZCs)[None, :]
|
||||
tl.store(Zs, z)
|
||||
# input
|
||||
M, N, K = 64, 64, 32
|
||||
x = triton.testing.random((M, K), dtype=torch.float16, device=device)
|
||||
y = triton.testing.random((K, N), dtype=torch.float16, device=device)
|
||||
# triton result
|
||||
z = triton.testing.random((M, N), dtype=torch.float16, device=device)
|
||||
z_tri = z.clone()
|
||||
pgm = kernel[(1, 1)](x, x.stride(0), x.stride(1),
|
||||
y, y.stride(0), y.stride(1),
|
||||
z_tri, z_tri.stride(0), z_tri.stride(1),
|
||||
BLOCK_M=M, BLOCK_K=K, BLOCK_N=N,
|
||||
ADD_MATRIX = epilogue=='add-matrix',
|
||||
ADD_ROWS = epilogue=='add-rows',
|
||||
ADD_COLS = epilogue=='add-cols')
|
||||
# torch result
|
||||
z_ref = torch.matmul(x.float(), y.float())
|
||||
if epilogue == 'add-matrix':
|
||||
z_ref += z
|
||||
if epilogue == 'add-rows':
|
||||
z_ref += z[:,0][:, None]
|
||||
if epilogue == 'add-cols':
|
||||
z_ref += z[0,:][None, :]
|
||||
z_ref = z_ref.to(torch.float16)
|
||||
# compare
|
||||
ptx = pgm.asm('ptx')
|
||||
# print(ptx)
|
||||
triton.testing.assert_almost_equal(z_tri, z_ref)
|
||||
# make sure ld/st are vectorized
|
||||
assert 'ld.global.v4' in ptx
|
||||
assert 'st.global.v4' in ptx
|
||||
|
||||
|
||||
# ---------------
|
||||
|
@@ -624,6 +624,14 @@ def max_contiguous(input, value, _builder=None):
|
||||
return frontend.max_contiguous(input, value, _builder)
|
||||
|
||||
|
||||
@builtin
|
||||
def max_contiguous(input, value, _builder=None):
|
||||
"""
|
||||
Let the compiler knows that the `value` first values in :code:`input` are contiguous.
|
||||
"""
|
||||
return frontend.max_contiguous(input, value, _builder)
|
||||
|
||||
|
||||
# -----------------------
|
||||
# Standard library
|
||||
# -----------------------
|
||||
|
@@ -46,8 +46,8 @@ def _kernel(A, B, C, M, N, K,
|
||||
pid_n = (pid % width) // (group_size)
|
||||
# do matrix multiplication
|
||||
rm = pid_m * BLOCK_M + tl.arange(0, BLOCK_M)
|
||||
ram = tl.max_contiguous(tl.multiple_of(rm % M, BLOCK_M), BLOCK_M)
|
||||
rn = pid_n * BLOCK_N + tl.arange(0, BLOCK_N)
|
||||
ram = tl.max_contiguous(tl.multiple_of(rm % M, BLOCK_M), BLOCK_M)
|
||||
rbn = tl.max_contiguous(tl.multiple_of(rn % N, BLOCK_N), BLOCK_N)
|
||||
rk = tl.arange(0, BLOCK_K)
|
||||
# pointers
|
||||
|
@@ -87,6 +87,7 @@ def assert_allclose(x, y, tol=1e-2):
|
||||
|
||||
|
||||
def random(shape, dtype, device):
|
||||
torch.manual_seed(0)
|
||||
if isinstance(shape, int):
|
||||
shape = (shape, )
|
||||
if dtype == torch.bool:
|
||||
|
Reference in New Issue
Block a user