Files
triton/python/src/tensorflow.cc

321 lines
9.8 KiB
C++
Raw Normal View History

2019-08-25 21:26:09 -07:00
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>
2019-08-25 21:26:09 -07:00
#include <pybind11/functional.h>
#include <string>
#include <regex>
#include <algorithm>
2019-08-26 11:00:00 -07:00
#include "tensorflow/core/framework/tensor.h"
#include "triton/codegen/selection/selection.h"
#include "triton/runtime/function.h"
2019-08-25 21:26:09 -07:00
#include "triton/lang/code_gen.h"
#include "triton/lang/parser.h"
#include "triton/lang/cpp.h"
#include "triton/driver/device.h"
#include "triton/driver/stream.h"
#include "triton/driver/kernel.h"
#include "triton/driver/module.h"
#include "triton/ir/module.h"
#include "triton/ir/function.h"
#include "triton/tools/bench.hpp"
using namespace triton;
2019-08-25 21:26:09 -07:00
namespace rt = triton::runtime;
2019-08-26 11:00:00 -07:00
typedef std::vector<tensorflow::Tensor> tf_grid_t;
typedef std::function<tf_grid_t(const rt::function::options_t& opt)> tf_grid_fn_ty;
2019-08-25 21:26:09 -07:00
/* TF triton op properties */
2019-08-26 11:00:00 -07:00
std::map<size_t, tf_grid_fn_ty> id_grid_map;
2019-08-25 21:26:09 -07:00
std::map<size_t, rt::function*> id_fn_map;
void register_grid(size_t id,
2019-08-26 11:00:00 -07:00
const tf_grid_fn_ty& grid_fn) {
2019-08-25 21:26:09 -07:00
id_grid_map[id] = grid_fn;
}
size_t register_fn(const std::string& src,
const rt::function::options_space_t& opt) {
size_t id = id_grid_map.size();
bool is_inserted = id_fn_map.insert({id, new rt::function(src, opt)}).second;
if(!is_inserted)
assert(false);
return id;
}
/* TF source-code generation */
inline std::string to_tf_ty(ir::type *ty) {
if(ty->is_integer_ty(1))
return "bool";
if(ty->is_integer_ty(8))
return "int8";
if(ty->is_integer_ty(16))
return "int16";
if(ty->is_integer_ty(32))
return "int32";
if(ty->is_integer_ty(64))
return "int64";
if(ty->is_half_ty())
return "float16";
if(ty->is_float_ty())
return "float32";
if(ty->is_double_ty())
return "float64";
if(ty->is_pointer_ty())
return "Tensor";
throw std::runtime_error("unknown type");
}
inline std::string to_tf_scalar_ty(ir::type *ty) {
if(ty->is_pointer_ty())
return to_tf_ty(ty->get_pointer_element_ty());
else {
return to_tf_ty(ty);
}
}
inline std::string ref_to_tf_ty(ir::type *ty) {
std::string res = to_tf_ty(ty);
if(ty->is_pointer_ty())
res = "const " + res + "&";
return res;
}
void gen_extract_inputs(std::ostream &os, const std::vector<ir::argument*>& args) {
for(unsigned i = 0; i < args.size(); i++){
ir::value *arg = args[i];
std::string suffix = "";
ir::type *tr_ty = arg->get_type();
std::string tf_ty = ref_to_tf_ty(tr_ty);
if(!tr_ty->is_pointer_ty())
suffix = ".scalar<" + tf_ty + ">()()";
os << " " << tf_ty << " " << arg->get_name() << " = context->input(" << i << ")" << suffix << ";\n ";
}
}
void gen_set_outputs(std::ostream &os, const std::vector<std::string>& outputs) {
for(unsigned i = 0; i < outputs.size(); i++)
os << " context->set_output(" << i << ", " << outputs[i] << ");\n ";
}
void gen_make_handles(std::ostream &os, const std::vector<ir::argument*>& args) {
for(unsigned i = 0; i < args.size(); i++){
ir::argument *arg = args[i];
if(!arg->get_type()->is_pointer_ty())
continue;
const std::string& name = arg->get_name();
os << " drv::cu_buffer cu_" + name + "(ctx, " + name + ".tensor_data().size(), (CUdeviceptr)" + name + ".tensor_data().data(), false);\n ";
}
}
void gen_make_launch_function(std::ostream &os, const std::vector<ir::argument*>& args) {
2019-08-26 11:00:00 -07:00
os << " rt::function::grid_fn_ty grid_fn = [&](const rt::function::options_t& opt) {" << std::endl;
os << " auto tmp = id_grid_map.at(id_)(opt);" << std::endl;
os << " rt::grid_t result;" << std::endl;
os << " for(auto& x: tmp) { result.push_back(x.scalar<int>()()); }" << std::endl;
os << " return result; }; " << std::endl;
2019-08-25 21:26:09 -07:00
os << " (*id_fn_map.at(id_))({";
for(unsigned i = 0; i < args.size() ; i++){
ir::argument *arg = args[i];
std::string name = arg->get_name();
if(arg->get_type()->is_pointer_ty())
name = "&cu_" + name;
if(i > 0)
os << ", ";
os << name;
}
2019-08-26 11:00:00 -07:00
os << "}, grid_fn, stream); \n";
}
void gen_register_kernel_builder(std::ostream &os, const std::string &name,
2019-08-19 20:56:39 -07:00
const std::string &opname,
const std::vector<ir::argument*>& args){
os << "REGISTER_KERNEL_BUILDER(Name(\"" + name + "\").Device(DEVICE_GPU)";
for(size_t i = 0; i < args.size(); i++){
ir::argument *arg = args[i];
std::string name = arg->get_name();
auto tolower = [](char c) { return std::tolower(c);};
std::transform(name.begin(), name.end(), name.begin(), tolower);
if(!arg->get_type()->is_pointer_ty())
os << ".HostMemory(\"" + name + "\")";
}
2019-08-19 20:56:39 -07:00
os << ", " + opname << ");\n";
}
void gen_register_op(std::ostream &os, const std::string &name,
const std::vector<ir::argument*>& args,
const std::vector<std::string>& outputs){
os << "REGISTER_OP(\"" << name << "\")\n";
for(size_t i = 0; i < args.size(); i++){
ir::argument *arg = args[i];
std::string name = arg->get_name();
auto tolower = [](char c) { return std::tolower(c);};
std::transform(name.begin(), name.end(), name.begin(), tolower);
os << " .Input(\"" << name << ": " << to_tf_scalar_ty(arg->get_type()) << "\")\n";
}
for(size_t i = 0; i < outputs.size(); i++){
std::string name = outputs[i];
size_t idx;
for(idx = 0; idx < args.size(); idx++)
if(args[idx]->get_name() == name)
break;
if(idx == args.size())
throw std::runtime_error("unknown output");
os << " .Output(\"out" << i << ": " << to_tf_scalar_ty(args[idx]->get_type()) << "\")\n";
}
2019-08-25 21:26:09 -07:00
os << " .Attr(\"id: int\")" << std::endl;
os << ";\n";
}
2019-08-25 21:26:09 -07:00
inline std::string preheader() {
return
R"(
#define bool _Bool
#define true 1
#define false 0
#define __bool_true_false_are_defined 1
#define __readonly __attribute__((readonly))
#define __writeonly __attribute__((writeonly))
#define __noalias __attribute__((noalias))
#define __aligned(A) __attribute__((aligned(A)))
#define __multipleof(A) __attribute__((multipleof(A)))
extern int get_program_id(int);
)";
}
std::tuple<std::string,
std::string> make_tensorflow_src(std::string src,
2019-08-17 16:12:17 -07:00
const std::vector<std::string>& outputs,
2019-08-25 21:26:09 -07:00
const runtime::function::options_space_t& opt)
{
src = preheader() + src;
// pre-process
TokenSequence tokens;
Preprocessor cpp(&src, true);
for(auto it: opt.defines){
cpp.AddMacro(it.first, &it.second[0]);
}
cpp.Process(tokens);
// parse
Parser parser(tokens);
parser.Parse();
// triton-ir code-gen
ir::context ctx;
auto ir = std::unique_ptr<ir::module>(new ir::module("", ctx));
Generator gen(&parser);
gen.Gen(&*ir);
// function
ir::function* fn = ir->get_function_list().front();
std::string name = fn->get_name();
2019-08-25 21:26:09 -07:00
std::string cc_name = name;
cc_name[0] = static_cast<char>(std::toupper(cc_name[0]));
std::string opname = cc_name + "Op";
std::ostringstream oss;
oss << R"(
#include "triton/driver/buffer.h"
#include "triton/driver/backend.h"
#include "triton/driver/stream.h"
#include "triton/runtime/function.h"
#define EIGEN_USE_GPU
#include "tensorflow/core/framework/op.h"
#include "tensorflow/core/framework/shape_inference.h"
#include "tensorflow/core/framework/op_kernel.h"
#include "tensorflow/core/util/cuda_kernel_helper.h"
#include "tensorflow/core/util/padding.h"
#include "tensorflow/core/util/tensor_format.h"
#include "tensorflow/core/framework/common_shape_fns.h"
using namespace tensorflow;
using GPUDevice = Eigen::GpuDevice;
namespace rt = triton::runtime;
namespace drv = triton::driver;
2019-08-26 11:00:00 -07:00
typedef std::vector<tensorflow::Tensor> tf_grid_t;
typedef std::function<tf_grid_t(const rt::function::options_t& opt)> tf_grid_fn_ty;
extern std::map<size_t, tf_grid_fn_ty> id_grid_map;
2019-08-25 21:26:09 -07:00
extern std::map<size_t, rt::function*> id_fn_map;
2019-08-19 20:56:39 -07:00
class )" << opname << R"(: public OpKernel {
public:
2019-08-19 20:56:39 -07:00
explicit )" << opname << R"((OpKernelConstruction* context)
2019-08-25 21:26:09 -07:00
: OpKernel(context) {
OP_REQUIRES_OK(context, context->GetAttr("id", &id_));
}
void Compute(OpKernelContext* context){
// get device/stream
GPUDevice device = context->eigen_device<GPUDevice>();
drv::cu_stream sstream(device.stream(), false);
drv::context* ctx = sstream.context();
drv::stream* stream = &sstream;
// extract inputs
)";
gen_extract_inputs(oss, fn->args());
oss << R"(
// set outputs
)";
gen_set_outputs(oss, outputs);
oss << R"(
// wrap tensors
)";
gen_make_handles(oss, fn->args());
oss << R"(
)";
oss << R"(
// launch function
)";
gen_make_launch_function(oss, fn->args());
oss << R"(
}
private:
2019-08-25 21:26:09 -07:00
int id_;
};
// register kernel builder
)";
2019-08-25 21:26:09 -07:00
gen_register_kernel_builder(oss, cc_name, opname, fn->args());
oss << R"(
// register op
)";
2019-08-25 21:26:09 -07:00
gen_register_op(oss, cc_name, fn->args(), outputs);
2019-08-25 21:26:09 -07:00
return {oss.str(), name};
}
2019-08-25 21:26:09 -07:00
typedef triton::runtime::function::options_t options_t;
typedef triton::runtime::function::options_space_t options_space_t;
PYBIND11_MODULE(libtriton, m) {
m.doc() = "Python bindings to the C++ Triton API";
2019-08-25 21:26:09 -07:00
// framework binding source code generation
m.def("make_tensorflow_src", &make_tensorflow_src,
"Creates C++ source code for a custom Tensorflow op "
"corresponding to the specified Triton kernel");
// bindings for triton classes
pybind11::class_<options_t>(m, "options")
.def(pybind11::init<>())
.def("D", &options_t::D<int>);
pybind11::class_<options_space_t>(m, "options_space")
.def(pybind11::init<>())
.def_readwrite("defines", &options_space_t::defines)
.def_readwrite("num_warps", &options_space_t::num_warps);
// hooks into triton constructs since frameworks may not use pybind11
m.def("register_grid", &register_grid);
m.def("register_fn", &register_fn);
}