Files
triton/python/examples/dot.py

31 lines
1001 B
Python
Raw Normal View History

2019-09-04 21:55:47 -04:00
import numpy as np
import tensorflow as tf
import triton
2019-08-25 21:26:09 -07:00
def run_dot():
M, N, K = 128, 128, 128
a = tf.placeholder(tf.float32, shape=[M, K])
b = tf.placeholder(tf.float32, shape=[N, K])
2019-09-04 21:55:47 -04:00
_dot = triton.ops.dot.apply
tr_c = _dot(a, b, transpose_a = False, transpose_b = True)
tr_d = _dot(tr_c, b, transpose_a = True, transpose_b = False)
tf_c = tf.matmul(a, b, transpose_a = False, transpose_b = True)
tf_d = tf.matmul(tf_c, b, transpose_a = True, transpose_b = False)
# Gradient
tr_da = tf.gradients(tr_d, [a])
tf_da = tf.gradients(tf_d, [a])
# Reference
ha = np.random.rand(M, K).astype(np.float32)
hb = np.random.rand(K, N).astype(np.float32)
# Run
sess = tf.InteractiveSession()
sess.run(tf.global_variables_initializer())
result = sess.run([tr_da, tf_da], feed_dict = {a: ha,
b: hb})
# Test
print(result[0][0])
print(result[1][0])
dif = np.abs(result[0][0] - result[1][0])
print("dif: %f" % np.max(dif))
run_dot()