[python] modularized triton package
This commit is contained in:
@@ -1,121 +1,12 @@
|
||||
import numpy as np
|
||||
import tensorflow as tf
|
||||
import triton
|
||||
import numpy as np
|
||||
|
||||
|
||||
class dot(triton.function):
|
||||
|
||||
src = """
|
||||
void dot(TYPE * A, TYPE * B, TYPE * C,
|
||||
int M, int N, int K,
|
||||
int lda __multipleof(8),
|
||||
int ldb __multipleof(8),
|
||||
int ldc) {
|
||||
// prologue
|
||||
int ridx = get_program_id(0);
|
||||
int ridy = get_program_id(1);
|
||||
int rxa[TM] = ridx * TM + 0 ... TM;
|
||||
int ryb[TN] = ridy * TN + 0 ... TN;
|
||||
int rka[TK] = 0 ... TK;
|
||||
int rkb[TK] = 0 ... TK;
|
||||
float c[TM, TN] = 0;
|
||||
// pointers to operands
|
||||
TYPE* pa[SHAPE_A] = A + rka[BROADCAST_AK] * STRIDE_AK + rxa[BROADCAST_AM] * STRIDE_AM;
|
||||
TYPE* pb[SHAPE_B] = B + rkb[BROADCAST_BK] * STRIDE_BK + ryb[BROADCAST_BN] * STRIDE_BN;
|
||||
// prefetches operands
|
||||
TYPE a[SHAPE_A] = *pa;
|
||||
TYPE b[SHAPE_B] = *pb;
|
||||
// reduction loop
|
||||
for(int k = K; k > 0; k-= TK){
|
||||
c += USE_A @ USE_B;
|
||||
pa = pa + TK * STRIDE_AK;
|
||||
pb = pb + TK * STRIDE_BK;
|
||||
a = *pa;
|
||||
b = *pb;
|
||||
}
|
||||
// epilogue
|
||||
int rxc[TM] = ridx * TM + 0 ... TM;
|
||||
int ryc[TN] = ridy * TN + 0 ... TN;
|
||||
TYPE* pc[TM, TN] = C + ryc[newaxis, :] + rxc[:, newaxis] * ldc;
|
||||
bool checkc[TM, TN] = (rxc < M)[:, newaxis] && (ryc < N)[newaxis, :];
|
||||
*?(checkc) pc = c;
|
||||
}
|
||||
"""
|
||||
|
||||
op = triton.op(src, ['C'])
|
||||
|
||||
@staticmethod
|
||||
def _call(a, b, transpose_a, transpose_b):
|
||||
# extract shapes
|
||||
shape_a = triton.shape(a)
|
||||
shape_b = triton.shape(b)
|
||||
M, Ka = shape_a[0], shape_a[1]
|
||||
Kb, N = shape_b[0], shape_b[1]
|
||||
# transpose shapes
|
||||
if transpose_a:
|
||||
M, Ka = Ka, M
|
||||
if transpose_b:
|
||||
Kb, N = N, Kb
|
||||
# contiguous dimensions
|
||||
lda = M if transpose_a else Ka
|
||||
ldb = Kb if transpose_b else N
|
||||
ldc = N
|
||||
# data-type
|
||||
dtype = a.dtype
|
||||
# allocate output
|
||||
c = triton.empty([M, N], dtype = dtype)
|
||||
# compute
|
||||
grid = lambda opt: [triton.cdiv(M, opt.d('TM')), triton.cdiv(N, opt.d('TN'))]
|
||||
# macros -- not necessary but makes kernel source-code simpler
|
||||
macros = {# handle A transposition
|
||||
'USE_A' : '^a' if transpose_a else 'a',
|
||||
'STRIDE_AK' : 'lda' if transpose_a else '1',
|
||||
'STRIDE_AM' : '1' if transpose_a else 'lda',
|
||||
'BROADCAST_AK': ':, newaxis' if transpose_a else 'newaxis, :',
|
||||
'BROADCAST_AM': 'newaxis, :' if transpose_a else ':, newaxis',
|
||||
'SHAPE_A' : 'TK, TM' if transpose_a else 'TM, TK',
|
||||
# handle B transposition
|
||||
'USE_B' : '^b' if transpose_b else 'b',
|
||||
'STRIDE_BK' : '1' if transpose_b else 'ldb',
|
||||
'STRIDE_BN' : 'ldb' if transpose_b else '1',
|
||||
'BROADCAST_BK': 'newaxis, :' if transpose_b else ':, newaxis',
|
||||
'BROADCAST_BN': ':, newaxis' if transpose_b else 'newaxis, :',
|
||||
'SHAPE_B' : 'TN, TK' if transpose_b else 'TK, TN'}
|
||||
return dot.op(a, b, c, M, N, Ka, lda, ldb, ldc, grid,
|
||||
AT = transpose_a, BT = transpose_b, TYPE = dtype,
|
||||
TM = [64, 128], TN = [64, 128], TK = [8], **macros)
|
||||
|
||||
@staticmethod
|
||||
def forward(ctx, a, b, transpose_a = False, transpose_b = False):
|
||||
ctx.save_for_backward(a, b, transpose_a, transpose_b)
|
||||
return dot._call(a, b, transpose_a, transpose_b)
|
||||
|
||||
@staticmethod
|
||||
def backward(ctx, dy):
|
||||
a, b, t_a, t_b = ctx.saved_tensors
|
||||
if not t_a and not t_b:
|
||||
da = dot._call(dy, b, False, True)
|
||||
db = dot._call(a, dy, True, False)
|
||||
elif not t_a and t_b:
|
||||
da = dot._call(dy, b, False, False)
|
||||
db = dot._call(dy, a, True, False)
|
||||
elif t_a and not t_b:
|
||||
da = dot._call(b, dy, False, True)
|
||||
db = dot._call(a, dy, False, False)
|
||||
elif t_a and t_b:
|
||||
da = dot._call(b, dy, True, True)
|
||||
db = dot._call(dy, a, True, True)
|
||||
else:
|
||||
assert False
|
||||
return [da, db, None, None, None, None, None, None, None]
|
||||
|
||||
|
||||
|
||||
def run_dot():
|
||||
M, N, K = 128, 128, 128
|
||||
a = tf.placeholder(tf.float32, shape=[M, K])
|
||||
b = tf.placeholder(tf.float32, shape=[N, K])
|
||||
_dot = dot.apply
|
||||
_dot = triton.ops.dot.apply
|
||||
tr_c = _dot(a, b, transpose_a = False, transpose_b = True)
|
||||
tr_d = _dot(tr_c, b, transpose_a = True, transpose_b = False)
|
||||
tf_c = tf.matmul(a, b, transpose_a = False, transpose_b = True)
|
||||
|
@@ -82,7 +82,8 @@ setup(
|
||||
author_email='ptillet@g.harvard.edu',
|
||||
description='A language and compiler for custom Deep Learning operations',
|
||||
long_description='',
|
||||
packages=['triton'],
|
||||
packages=['triton',
|
||||
'triton/ops'],
|
||||
ext_modules=[CMakeExtension('triton')],
|
||||
cmdclass=dict(build_ext=CMakeBuild),
|
||||
zip_safe=False,
|
||||
|
@@ -1 +1,12 @@
|
||||
from .ops import *
|
||||
from .kernel import *
|
||||
from .function import *
|
||||
from .utils import *
|
||||
import triton.ops
|
||||
|
||||
|
||||
# clean-up libtriton resources
|
||||
import atexit
|
||||
import libtriton
|
||||
@atexit.register
|
||||
def cleanup():
|
||||
libtriton.cleanup()
|
46
python/triton/frameworks.py
Normal file
46
python/triton/frameworks.py
Normal file
@@ -0,0 +1,46 @@
|
||||
import sys
|
||||
import os
|
||||
import libtriton
|
||||
|
||||
torch_id = 'torch'
|
||||
tensorflow_id = 'tensorflow'
|
||||
|
||||
torch = None
|
||||
tensorflow = None
|
||||
tf_extra_ops = None
|
||||
|
||||
|
||||
def _import_torch():
|
||||
global torch
|
||||
if torch is None:
|
||||
import torch
|
||||
|
||||
def _import_tensorflow():
|
||||
global tensorflow
|
||||
if tensorflow is None:
|
||||
import tensorflow
|
||||
|
||||
def _import_tf_extra_ops():
|
||||
global tf_extra_ops
|
||||
if tf_extra_ops is None:
|
||||
path = os.path.dirname(libtriton.__file__)
|
||||
path = os.path.join(path, 'libextra_tf_ops.so')
|
||||
_import_tensorflow()
|
||||
tf_extra_ops = tensorflow.load_op_library(path)
|
||||
|
||||
|
||||
def _find_framework(default = None):
|
||||
is_tf_imported = 'tensorflow' in sys.modules
|
||||
is_torch_imported = 'torch' in sys.modules
|
||||
if default:
|
||||
if default not in [tensorflow_id, torch_id]:
|
||||
raise ValueError('unsupported framework')
|
||||
else:
|
||||
return default
|
||||
elif is_tf_imported and not is_torch_imported:
|
||||
return tensorflow_id
|
||||
elif is_torch_imported and not is_tf_imported:
|
||||
return torch_id
|
||||
else:
|
||||
raise ValueError('cannot determine imported framework, '
|
||||
'please provide framework argument')
|
54
python/triton/function.py
Normal file
54
python/triton/function.py
Normal file
@@ -0,0 +1,54 @@
|
||||
import triton.frameworks as fw
|
||||
|
||||
class OpContext(object):
|
||||
|
||||
def save_for_backward(self, *tensors):
|
||||
self.to_save = tensors
|
||||
|
||||
def mark_dirty(self, *args):
|
||||
self.dirty_tensors = args
|
||||
|
||||
@property
|
||||
def saved_tensors(self):
|
||||
return self.to_save
|
||||
|
||||
|
||||
class function_meta(type):
|
||||
|
||||
def __init__(cls, name, bases, attrs):
|
||||
cls.contexts = dict()
|
||||
cls.registered = False
|
||||
return super(function_meta, cls).__init__(name, bases, attrs)
|
||||
|
||||
class function(metaclass = function_meta):
|
||||
|
||||
def __init__(self, framework = None):
|
||||
self.framework = _find_framework(framework)
|
||||
pass
|
||||
|
||||
@staticmethod
|
||||
def forward(ctx, *args, **kwargs):
|
||||
raise NotImplementedError
|
||||
|
||||
@staticmethod
|
||||
def backward(ctx, grad_output):
|
||||
raise NotImplementedError
|
||||
|
||||
@classmethod
|
||||
def apply(cls, *args, **kwargs):
|
||||
# call forward
|
||||
ctx = OpContext()
|
||||
result = cls.forward(ctx, *args, **kwargs)
|
||||
id = result.op.get_attr('id')
|
||||
cls.contexts[id] = ctx
|
||||
# register backward
|
||||
fw._import_tensorflow()
|
||||
name = result.op.op_def.name
|
||||
if not cls.registered:
|
||||
@fw.tensorflow.RegisterGradient(name)
|
||||
def gradient(op, dy):
|
||||
id = op.get_attr('id')
|
||||
return cls.backward(cls.contexts[id], dy)
|
||||
cls.registered = True
|
||||
# return result tensor
|
||||
return result
|
215
python/triton/kernel.py
Normal file
215
python/triton/kernel.py
Normal file
@@ -0,0 +1,215 @@
|
||||
# import for cache
|
||||
import os
|
||||
import tempfile
|
||||
import shutil
|
||||
import hashlib
|
||||
import sysconfig
|
||||
import sys
|
||||
# import for just-in-time compilation
|
||||
import distutils
|
||||
import setuptools.command.build_ext
|
||||
import setuptools
|
||||
# triton
|
||||
import triton.frameworks as fw
|
||||
import triton.utils
|
||||
import libtriton
|
||||
|
||||
def _make_framework_src(src, out, grid, framework):
|
||||
if framework == fw.tensorflow_id:
|
||||
return libtriton.make_tensorflow_src(src, out, grid)
|
||||
elif framework == fw.torch_id:
|
||||
return libtriton.make_torch_src(src, out, grid)
|
||||
else:
|
||||
assert False
|
||||
|
||||
def _make_cache_path(src):
|
||||
md5 = hashlib.sha1(src.encode())
|
||||
hexhash = md5.hexdigest()
|
||||
home = os.path.expanduser('~')
|
||||
cacheroot = os.path.join(home, '.triton', 'cache')
|
||||
cachepath = os.path.join(cacheroot, str(hexhash))
|
||||
if not os.path.exists(cachepath):
|
||||
os.makedirs(cachepath)
|
||||
return cachepath
|
||||
|
||||
def _write_bindings(src, root, framework):
|
||||
cpp = os.path.join(root, '{framework}.cpp'.format(framework=framework))
|
||||
suffix = sysconfig.get_config_var('EXT_SUFFIX')
|
||||
so = os.path.join(root, '{framework}{suffix}'.format(framework=framework, suffix=suffix))
|
||||
recompile = False
|
||||
# recompile if .so does not exist
|
||||
if not os.path.exists(cpp) or not os.path.exists(so):
|
||||
recompile = True
|
||||
# recompile if cpp was modified after .so
|
||||
elif max(cpp, so, key=os.path.getctime) == cpp:
|
||||
recompile = True
|
||||
# write cpp file
|
||||
if recompile:
|
||||
with open(cpp, 'w+') as handle:
|
||||
handle.writelines(src)
|
||||
# return path of cpp file
|
||||
return (cpp, so)
|
||||
|
||||
def _build(src, path, framework):
|
||||
# include directories
|
||||
triton_include_dirs = ['/home/philippe/development/triton/include']
|
||||
include_dirs = triton_include_dirs
|
||||
# library directories
|
||||
triton_library_dirs = [os.path.realpath(os.path.join(libtriton.__file__, os.path.pardir))]
|
||||
library_dirs = triton_library_dirs
|
||||
# libraries
|
||||
libraries = ['triton']
|
||||
# add framework
|
||||
extra_compile_args = []
|
||||
if framework == fw.tensorflow_id:
|
||||
library_dirs += [fw.tensorflow.sysconfig.get_lib()]
|
||||
include_dirs += [fw.tensorflow.sysconfig.get_include()]
|
||||
include_dirs += ['/usr/local/cuda/include/']
|
||||
libraries += [fw.tensorflow.sysconfig.get_link_flags()[1].replace('-l', '')]
|
||||
ABI = fw.tensorflow.__cxx11_abi_flag__ if "__cxx11_abi_flag__" in fw.tensorflow.__dict__ else 0
|
||||
extra_compile_args += ['-D_GLIBCXX_USE_CXX11_ABI={ABI}'.format(ABI=ABI)]
|
||||
elif framework == fw.torch_id:
|
||||
prefix = os.path.dirname(torch.__file__)
|
||||
library_dirs += [os.path.join(prefix, 'lib')]
|
||||
include_dirs += [os.path.join(prefix, 'lib', 'include'),
|
||||
os.path.join(prefix, 'lib', 'include', 'torch', 'csrc', 'api', 'include'),
|
||||
os.path.join(prefix, 'include'),
|
||||
os.path.join(prefix, 'include', 'torch', 'csrc', 'api', 'include')]
|
||||
libraries += ['torch']
|
||||
else:
|
||||
assert False
|
||||
# extra arguments
|
||||
extra_link_args = []
|
||||
# dependences
|
||||
depends = [os.path.realpath(libtriton.__file__)]
|
||||
# create extension module
|
||||
ext = setuptools.Extension(
|
||||
name = 'tensorflow',
|
||||
language = 'c++',
|
||||
sources = [src],
|
||||
include_dirs = include_dirs,
|
||||
extra_compile_args = extra_compile_args,
|
||||
extra_link_args = extra_link_args,
|
||||
library_dirs = library_dirs,
|
||||
libraries = libraries,
|
||||
depends = depends
|
||||
)
|
||||
# build extension module
|
||||
args = ['build_ext']
|
||||
tmp = tempfile.mkdtemp()
|
||||
args.append('--build-temp=' + tmp)
|
||||
args.append('--build-lib=' + path)
|
||||
args.append('-q')
|
||||
args = dict(
|
||||
name = 'tensorflow',
|
||||
ext_modules = [ext],
|
||||
script_args = args,
|
||||
)
|
||||
setuptools.setup(**args)
|
||||
shutil.rmtree(tmp)
|
||||
|
||||
def _cvt_to_def_str(obj, framework):
|
||||
# bool
|
||||
if isinstance(obj, bool):
|
||||
return str(int(obj))
|
||||
# tensorflow type
|
||||
if framework == fw.tensorflow_id:
|
||||
if isinstance(obj, fw.tensorflow.DType):
|
||||
return {fw.tensorflow.int8: 'char',
|
||||
fw.tensorflow.int16: 'short',
|
||||
fw.tensorflow.int32: 'int',
|
||||
fw.tensorflow.int64: 'long',
|
||||
fw.tensorflow.float16: 'half',
|
||||
fw.tensorflow.float32: 'float',
|
||||
fw.tensorflow.float64: 'double'}[obj]
|
||||
# torch type
|
||||
elif framework == fw.torch_id:
|
||||
if isinstance(obj, torch.dtype):
|
||||
return {torch.int8: 'char',
|
||||
torch.int16: 'short',
|
||||
torch.int32: 'int',
|
||||
torch.int64: 'long',
|
||||
torch.float16: 'half',
|
||||
torch.float32: 'float',
|
||||
torch.float64: 'double'}[obj]
|
||||
else:
|
||||
assert False
|
||||
# default
|
||||
return str(obj)
|
||||
|
||||
|
||||
def _make_framework_op(src, outputs, options, framework):
|
||||
src, name = _make_framework_src(src, outputs, options, framework)
|
||||
cache_path = _make_cache_path(src)
|
||||
cpp, so = _write_bindings(src, cache_path, framework)
|
||||
_build(cpp, cache_path, framework)
|
||||
if framework == fw.tensorflow_id:
|
||||
return fw.tensorflow.load_op_library(so).__dict__[name]
|
||||
elif framework == fw.torch_id:
|
||||
torch.ops.load_library(so)
|
||||
return torch.ops.triton.__dict__[name]
|
||||
else:
|
||||
assert False
|
||||
|
||||
def _make_grid(args) :
|
||||
scalars = [x for x in args[:-1] if isinstance(x, triton.utils.scalar)]
|
||||
def grid(opt):
|
||||
for x in scalars:
|
||||
x.set_assume_initialized()
|
||||
result = args[-1](opt)
|
||||
for x in scalars:
|
||||
x.unset_assume_initialized()
|
||||
return result
|
||||
return grid
|
||||
|
||||
|
||||
class kernel:
|
||||
|
||||
def __init__(self, src, outputs, framework = None):
|
||||
self.fw_id = dict()
|
||||
self.fw_grids = dict()
|
||||
self.fw_op = None
|
||||
self.src = src
|
||||
self.outputs = outputs
|
||||
self.framework = fw._find_framework(framework)
|
||||
if self.framework == fw.tensorflow_id:
|
||||
fw._import_tensorflow()
|
||||
fw._import_tf_extra_ops()
|
||||
elif self.framework == fw.torch_id:
|
||||
fw._import_torch()
|
||||
else:
|
||||
assert False
|
||||
|
||||
|
||||
def __call__(self, *args, **kwargs):
|
||||
# create a new framework op when defines are different
|
||||
key = '-'.join(['{key}-{val}'.format(key=key, val=val) for key, val in kwargs.items()])
|
||||
if key not in self.fw_id.keys():
|
||||
# code generation options
|
||||
defines = []
|
||||
for k, v in kwargs.items():
|
||||
cvt = lambda x: _cvt_to_def_str(x, self.framework)
|
||||
if(isinstance(v, list)):
|
||||
values = list(map(cvt, v))
|
||||
else:
|
||||
values = [cvt(v)]
|
||||
defines.append((k, values))
|
||||
opt = libtriton.options_space()
|
||||
opt.defines = defines
|
||||
opt.num_warps = [4]
|
||||
# create unique id for this op
|
||||
op_id = libtriton.make_op_id()
|
||||
self.fw_id[key] = op_id
|
||||
# register function
|
||||
libtriton.register_fn(op_id, self.src, opt)
|
||||
if self.fw_op is None:
|
||||
self.fw_op = _make_framework_op(self.src, self.outputs, opt, self.framework)
|
||||
|
||||
# retrieve framework op
|
||||
op_id = self.fw_id[key]
|
||||
# register grid
|
||||
libtriton.register_grid(op_id, _make_grid(args))
|
||||
# create operands
|
||||
op_args = [x.handle if isinstance(x, triton.utils.scalar) else x for x in args[:-1]]
|
||||
# call framework function
|
||||
return self.fw_op(*op_args, id=op_id)
|
@@ -1,415 +0,0 @@
|
||||
# import for cache
|
||||
import os
|
||||
import tempfile
|
||||
import shutil
|
||||
import hashlib
|
||||
import sysconfig
|
||||
import sys
|
||||
# import for just-in-time compilation
|
||||
import distutils
|
||||
import setuptools.command.build_ext
|
||||
import setuptools
|
||||
# triton
|
||||
import libtriton
|
||||
|
||||
|
||||
# clean-up libtriton resources
|
||||
import atexit
|
||||
@atexit.register
|
||||
def cleanup():
|
||||
libtriton.cleanup()
|
||||
|
||||
|
||||
torch_id = 'torch'
|
||||
tensorflow_id = 'tensorflow'
|
||||
|
||||
torch = None
|
||||
tensorflow = None
|
||||
_gradient_registry = None
|
||||
tf_extra_ops = None
|
||||
|
||||
|
||||
|
||||
|
||||
def _import_torch():
|
||||
global torch
|
||||
if torch is None:
|
||||
import torch
|
||||
|
||||
def _import_tensorflow():
|
||||
global tensorflow
|
||||
if tensorflow is None:
|
||||
import tensorflow
|
||||
global _gradient_registry
|
||||
if _gradient_registry is None:
|
||||
from tensorflow.python.framework.ops import _gradient_registry
|
||||
|
||||
def _import_tf_extra_ops():
|
||||
global tf_extra_ops
|
||||
if tf_extra_ops is None:
|
||||
path = os.path.dirname(libtriton.__file__)
|
||||
path = os.path.join(path, 'libextra_tf_ops.so')
|
||||
_import_tensorflow()
|
||||
tf_extra_ops = tensorflow.load_op_library(path)
|
||||
|
||||
|
||||
def _find_framework(default = None):
|
||||
is_tf_imported = 'tensorflow' in sys.modules
|
||||
is_torch_imported = 'torch' in sys.modules
|
||||
if default:
|
||||
if default not in [tensorflow_id, torch_id]:
|
||||
raise ValueError('unsupported framework')
|
||||
else:
|
||||
return default
|
||||
elif is_tf_imported and not is_torch_imported:
|
||||
return tensorflow_id
|
||||
elif is_torch_imported and not is_tf_imported:
|
||||
return torch_id
|
||||
else:
|
||||
raise ValueError('cannot determine imported framework, '
|
||||
'please provide framework argument')
|
||||
|
||||
|
||||
def _make_framework_src(src, out, grid, framework):
|
||||
if framework == tensorflow_id:
|
||||
return libtriton.make_tensorflow_src(src, out, grid)
|
||||
elif framework == torch_id:
|
||||
return libtriton.make_torch_src(src, out, grid)
|
||||
else:
|
||||
assert False
|
||||
|
||||
def _make_cache_path(src):
|
||||
md5 = hashlib.sha1(src.encode())
|
||||
hexhash = md5.hexdigest()
|
||||
home = os.path.expanduser('~')
|
||||
cacheroot = os.path.join(home, '.triton', 'cache')
|
||||
cachepath = os.path.join(cacheroot, str(hexhash))
|
||||
if not os.path.exists(cachepath):
|
||||
os.makedirs(cachepath)
|
||||
return cachepath
|
||||
|
||||
def _write_bindings(src, root, framework):
|
||||
cpp = os.path.join(root, '{framework}.cpp'.format(framework=framework))
|
||||
suffix = sysconfig.get_config_var('EXT_SUFFIX')
|
||||
so = os.path.join(root, '{framework}{suffix}'.format(framework=framework, suffix=suffix))
|
||||
recompile = False
|
||||
# recompile if .so does not exist
|
||||
if not os.path.exists(cpp) or not os.path.exists(so):
|
||||
recompile = True
|
||||
# recompile if cpp was modified after .so
|
||||
elif max(cpp, so, key=os.path.getctime) == cpp:
|
||||
recompile = True
|
||||
# write cpp file
|
||||
if recompile:
|
||||
with open(cpp, 'w+') as handle:
|
||||
handle.writelines(src)
|
||||
# return path of cpp file
|
||||
return (cpp, so)
|
||||
|
||||
def _build(src, path, framework):
|
||||
# include directories
|
||||
triton_include_dirs = ['/home/philippe/development/triton/include']
|
||||
include_dirs = triton_include_dirs
|
||||
# library directories
|
||||
triton_library_dirs = [os.path.realpath(os.path.join(libtriton.__file__, os.path.pardir))]
|
||||
library_dirs = triton_library_dirs
|
||||
# libraries
|
||||
libraries = ['triton']
|
||||
# add framework
|
||||
extra_compile_args = []
|
||||
if framework == tensorflow_id:
|
||||
_import_tensorflow()
|
||||
library_dirs += [tensorflow.sysconfig.get_lib()]
|
||||
include_dirs += [tensorflow.sysconfig.get_include()]
|
||||
include_dirs += ['/usr/local/cuda/include/']
|
||||
libraries += [tensorflow.sysconfig.get_link_flags()[1].replace('-l', '')]
|
||||
ABI = tensorflow.__cxx11_abi_flag__ if "__cxx11_abi_flag__" in tensorflow.__dict__ else 0
|
||||
extra_compile_args += ['-D_GLIBCXX_USE_CXX11_ABI={ABI}'.format(ABI=ABI)]
|
||||
elif framework == torch_id:
|
||||
_import_torch()
|
||||
prefix = os.path.dirname(torch.__file__)
|
||||
library_dirs += [os.path.join(prefix, 'lib')]
|
||||
include_dirs += [os.path.join(prefix, 'lib', 'include'),
|
||||
os.path.join(prefix, 'lib', 'include', 'torch', 'csrc', 'api', 'include'),
|
||||
os.path.join(prefix, 'include'),
|
||||
os.path.join(prefix, 'include', 'torch', 'csrc', 'api', 'include')]
|
||||
libraries += ['torch']
|
||||
else:
|
||||
assert False
|
||||
# extra arguments
|
||||
extra_link_args = []
|
||||
# dependences
|
||||
depends = [os.path.realpath(libtriton.__file__)]
|
||||
# create extension module
|
||||
ext = setuptools.Extension(
|
||||
name = 'tensorflow',
|
||||
language = 'c++',
|
||||
sources = [src],
|
||||
include_dirs = include_dirs,
|
||||
extra_compile_args = extra_compile_args,
|
||||
extra_link_args = extra_link_args,
|
||||
library_dirs = library_dirs,
|
||||
libraries = libraries,
|
||||
depends = depends
|
||||
)
|
||||
# build extension module
|
||||
args = ['build_ext']
|
||||
tmp = tempfile.mkdtemp()
|
||||
args.append('--build-temp=' + tmp)
|
||||
args.append('--build-lib=' + path)
|
||||
args.append('-q')
|
||||
args = dict(
|
||||
name = 'tensorflow',
|
||||
ext_modules = [ext],
|
||||
script_args = args,
|
||||
)
|
||||
setuptools.setup(**args)
|
||||
shutil.rmtree(tmp)
|
||||
|
||||
def _cvt_to_def_str(obj, framework):
|
||||
# bool
|
||||
if isinstance(obj, bool):
|
||||
return str(int(obj))
|
||||
# tensorflow type
|
||||
if framework == tensorflow_id:
|
||||
_import_tensorflow()
|
||||
if isinstance(obj, tensorflow.DType):
|
||||
return {tensorflow.int8: 'char',
|
||||
tensorflow.int16: 'short',
|
||||
tensorflow.int32: 'int',
|
||||
tensorflow.int64: 'long',
|
||||
tensorflow.float16: 'half',
|
||||
tensorflow.float32: 'float',
|
||||
tensorflow.float64: 'double'}[obj]
|
||||
# torch type
|
||||
elif framework == torch_id:
|
||||
_import_torch()
|
||||
if isinstance(obj, torch.dtype):
|
||||
return {torch.int8: 'char',
|
||||
torch.int16: 'short',
|
||||
torch.int32: 'int',
|
||||
torch.int64: 'long',
|
||||
torch.float16: 'half',
|
||||
torch.float32: 'float',
|
||||
torch.float64: 'double'}[obj]
|
||||
else:
|
||||
assert False
|
||||
# default
|
||||
return str(obj)
|
||||
|
||||
|
||||
def _make_framework_op(src, outputs, options, framework):
|
||||
src, name = _make_framework_src(src, outputs, options, framework)
|
||||
cache_path = _make_cache_path(src)
|
||||
cpp, so = _write_bindings(src, cache_path, framework)
|
||||
_build(cpp, cache_path, framework)
|
||||
if framework == tensorflow_id:
|
||||
_import_tensorflow()
|
||||
return tensorflow.load_op_library(so).__dict__[name]
|
||||
elif framework == torch_id:
|
||||
_import_torch()
|
||||
torch.ops.load_library(so)
|
||||
return torch.ops.triton.__dict__[name]
|
||||
else:
|
||||
assert False
|
||||
|
||||
def _make_grid(args) :
|
||||
scalars = [x for x in args[:-1] if isinstance(x, scalar)]
|
||||
def grid(opt):
|
||||
for x in scalars:
|
||||
x.set_assume_initialized()
|
||||
result = args[-1](opt)
|
||||
for x in scalars:
|
||||
x.unset_assume_initialized()
|
||||
return result
|
||||
return grid
|
||||
|
||||
|
||||
|
||||
class OpContext(object):
|
||||
|
||||
def save_for_backward(self, *tensors):
|
||||
self.to_save = tensors
|
||||
|
||||
def mark_dirty(self, *args):
|
||||
self.dirty_tensors = args
|
||||
|
||||
@property
|
||||
def saved_tensors(self):
|
||||
return self.to_save
|
||||
|
||||
|
||||
class function_meta(type):
|
||||
|
||||
def __init__(cls, name, bases, attrs):
|
||||
cls.contexts = dict()
|
||||
cls.registered = False
|
||||
return super(function_meta, cls).__init__(name, bases, attrs)
|
||||
|
||||
class function(metaclass = function_meta):
|
||||
|
||||
def __init__(self, framework = None):
|
||||
self.framework = _find_framework(framework)
|
||||
pass
|
||||
|
||||
@staticmethod
|
||||
def forward(ctx, *args, **kwargs):
|
||||
raise NotImplementedError
|
||||
|
||||
@staticmethod
|
||||
def backward(ctx, grad_output):
|
||||
raise NotImplementedError
|
||||
|
||||
@classmethod
|
||||
def apply(cls, *args, **kwargs):
|
||||
# call forward
|
||||
ctx = OpContext()
|
||||
result = cls.forward(ctx, *args, **kwargs)
|
||||
id = result.op.get_attr('id')
|
||||
cls.contexts[id] = ctx
|
||||
# register backward
|
||||
_import_tensorflow()
|
||||
from tensorflow.python.framework.ops import _gradient_registry
|
||||
name = result.op.op_def.name
|
||||
if not cls.registered:
|
||||
@tensorflow.RegisterGradient(name)
|
||||
def gradient(op, dy):
|
||||
id = op.get_attr('id')
|
||||
return cls.backward(cls.contexts[id], dy)
|
||||
cls.registered = True
|
||||
# return result tensor
|
||||
return result
|
||||
|
||||
|
||||
|
||||
class op:
|
||||
|
||||
def __init__(self, src, outputs, framework = None):
|
||||
self.fw_id = dict()
|
||||
self.fw_grids = dict()
|
||||
self.fw_op = None
|
||||
self.src = src
|
||||
self.outputs = outputs
|
||||
self.framework = _find_framework(framework)
|
||||
|
||||
|
||||
def __call__(self, *args, **kwargs):
|
||||
# create a new op when defines are different
|
||||
key = '-'.join(['{key}-{val}'.format(key=key, val=val) for key, val in kwargs.items()])
|
||||
if key not in self.fw_id.keys():
|
||||
# code generation options
|
||||
defines = []
|
||||
for k, v in kwargs.items():
|
||||
cvt = lambda x: _cvt_to_def_str(x, self.framework)
|
||||
if(isinstance(v, list)):
|
||||
values = list(map(cvt, v))
|
||||
else:
|
||||
values = [cvt(v)]
|
||||
defines.append((k, values))
|
||||
opt = libtriton.options_space()
|
||||
opt.defines = defines
|
||||
opt.num_warps = [4]
|
||||
# create unique id for this op
|
||||
op_id = libtriton.make_op_id()
|
||||
self.fw_id[key] = op_id
|
||||
# register function
|
||||
libtriton.register_fn(op_id, self.src, opt)
|
||||
if self.fw_op is None:
|
||||
self.fw_op = _make_framework_op(self.src, self.outputs, opt, self.framework)
|
||||
|
||||
# retrieve framework op
|
||||
op_id = self.fw_id[key]
|
||||
# register grid
|
||||
libtriton.register_grid(op_id, _make_grid(args))
|
||||
# create operands
|
||||
op_args = [x.handle if isinstance(x, scalar) else x for x in args[:-1]]
|
||||
# call framework op
|
||||
return self.fw_op(*op_args, id=op_id)
|
||||
|
||||
|
||||
def empty(shapes, dtype, framework = None):
|
||||
framework = _find_framework(framework)
|
||||
if framework == tensorflow_id:
|
||||
_import_tensorflow()
|
||||
_import_tf_extra_ops
|
||||
args = [x.handle if isinstance(x, scalar) else x for x in shapes]
|
||||
args = tensorflow.stack(args)
|
||||
return tf_extra_ops.alloc_empty(args, T = dtype)
|
||||
elif framework == torch_id:
|
||||
_import_torch()
|
||||
return torch.empty(*shapes)
|
||||
|
||||
def cdiv(a, b):
|
||||
return -(-a // b)
|
||||
|
||||
class scalar:
|
||||
|
||||
def __init__(self, x):
|
||||
_import_tf_extra_ops()
|
||||
self.id = libtriton.make_scalar_id()
|
||||
self.handle = tf_extra_ops.register_scalar(x, id=self.id)
|
||||
self.assume_initialized = False
|
||||
|
||||
def set_assume_initialized(self):
|
||||
self.assume_initialized = True
|
||||
|
||||
def unset_assume_initialized(self):
|
||||
self.assume_initialized = False
|
||||
|
||||
def get_value(self):
|
||||
if self.assume_initialized:
|
||||
return libtriton.retrieve_scalar(self.id)
|
||||
else:
|
||||
return self.handle
|
||||
|
||||
def __add__(self, other):
|
||||
return self.get_value() + other
|
||||
|
||||
def __radd__(self, other):
|
||||
return other + self.get_value()
|
||||
|
||||
def __sub__(self, other):
|
||||
return self.get_value() - other
|
||||
|
||||
def __rsub(self, other):
|
||||
return other - self.get_value()
|
||||
|
||||
def __mul__(self, other):
|
||||
return self.get_value() * other
|
||||
|
||||
def __rmul(self, other):
|
||||
return other * self.get_value()
|
||||
|
||||
def __floordiv__(self, other):
|
||||
return self.get_value() // other
|
||||
|
||||
def __rfloordiv__(self, other):
|
||||
return other // self.get_value()
|
||||
|
||||
def __div__(self, other):
|
||||
return self.get_value() / other
|
||||
|
||||
def __rdiv__(self, other):
|
||||
return other / self.get_value()
|
||||
|
||||
def __truediv__(self, other):
|
||||
self.get_value().__truediv__(other)
|
||||
|
||||
def __rtruediv__(self, other):
|
||||
other.__truediv__(self.get_value())
|
||||
|
||||
def __neg__(self):
|
||||
return -self.get_value()
|
||||
|
||||
class lazy_shape:
|
||||
|
||||
def __init__(self, shape):
|
||||
self.shape = shape
|
||||
|
||||
def __getitem__(self, key):
|
||||
return scalar(self.shape[key])
|
||||
|
||||
def shape(A) :
|
||||
_import_tensorflow()
|
||||
return lazy_shape(tensorflow.shape(A))
|
||||
|
1
python/triton/ops/__init__.py
Normal file
1
python/triton/ops/__init__.py
Normal file
@@ -0,0 +1 @@
|
||||
from .dot import dot
|
107
python/triton/ops/dot.py
Normal file
107
python/triton/ops/dot.py
Normal file
@@ -0,0 +1,107 @@
|
||||
import triton
|
||||
|
||||
class dot(triton.function):
|
||||
|
||||
src = """
|
||||
void dot(TYPE * A, TYPE * B, TYPE * C,
|
||||
int M, int N, int K,
|
||||
int lda __multipleof(8),
|
||||
int ldb __multipleof(8),
|
||||
int ldc) {
|
||||
// prologue
|
||||
int ridx = get_program_id(0);
|
||||
int ridy = get_program_id(1);
|
||||
int rxa[TM] = ridx * TM + 0 ... TM;
|
||||
int ryb[TN] = ridy * TN + 0 ... TN;
|
||||
int rka[TK] = 0 ... TK;
|
||||
int rkb[TK] = 0 ... TK;
|
||||
float c[TM, TN] = 0;
|
||||
// pointers to operands
|
||||
TYPE* pa[SHAPE_A] = A + rka[BROADCAST_AK] * STRIDE_AK + rxa[BROADCAST_AM] * STRIDE_AM;
|
||||
TYPE* pb[SHAPE_B] = B + rkb[BROADCAST_BK] * STRIDE_BK + ryb[BROADCAST_BN] * STRIDE_BN;
|
||||
// prefetches operands
|
||||
TYPE a[SHAPE_A] = *pa;
|
||||
TYPE b[SHAPE_B] = *pb;
|
||||
// reduction loop
|
||||
for(int k = K; k > 0; k-= TK){
|
||||
c += USE_A @ USE_B;
|
||||
pa = pa + TK * STRIDE_AK;
|
||||
pb = pb + TK * STRIDE_BK;
|
||||
a = *pa;
|
||||
b = *pb;
|
||||
}
|
||||
// epilogue
|
||||
int rxc[TM] = ridx * TM + 0 ... TM;
|
||||
int ryc[TN] = ridy * TN + 0 ... TN;
|
||||
TYPE* pc[TM, TN] = C + ryc[newaxis, :] + rxc[:, newaxis] * ldc;
|
||||
bool checkc[TM, TN] = (rxc < M)[:, newaxis] && (ryc < N)[newaxis, :];
|
||||
*?(checkc) pc = c;
|
||||
}
|
||||
"""
|
||||
|
||||
kernel = triton.kernel(src, ['C'])
|
||||
|
||||
@staticmethod
|
||||
def _call(a, b, transpose_a, transpose_b):
|
||||
# extract shapes
|
||||
shape_a = triton.shape(a)
|
||||
shape_b = triton.shape(b)
|
||||
M, Ka = shape_a[0], shape_a[1]
|
||||
Kb, N = shape_b[0], shape_b[1]
|
||||
# transpose shapes
|
||||
if transpose_a:
|
||||
M, Ka = Ka, M
|
||||
if transpose_b:
|
||||
Kb, N = N, Kb
|
||||
# contiguous dimensions
|
||||
lda = M if transpose_a else Ka
|
||||
ldb = Kb if transpose_b else N
|
||||
ldc = N
|
||||
# data-type
|
||||
dtype = a.dtype
|
||||
# allocate output
|
||||
c = triton.empty([M, N], dtype = dtype)
|
||||
# compute
|
||||
grid = lambda opt: [triton.cdiv(M, opt.d('TM')), triton.cdiv(N, opt.d('TN'))]
|
||||
# macros -- not necessary but makes kernel source-code simpler
|
||||
macros = {# handle A transposition
|
||||
'USE_A' : '^a' if transpose_a else 'a',
|
||||
'STRIDE_AK' : 'lda' if transpose_a else '1',
|
||||
'STRIDE_AM' : '1' if transpose_a else 'lda',
|
||||
'BROADCAST_AK': ':, newaxis' if transpose_a else 'newaxis, :',
|
||||
'BROADCAST_AM': 'newaxis, :' if transpose_a else ':, newaxis',
|
||||
'SHAPE_A' : 'TK, TM' if transpose_a else 'TM, TK',
|
||||
# handle B transposition
|
||||
'USE_B' : '^b' if transpose_b else 'b',
|
||||
'STRIDE_BK' : '1' if transpose_b else 'ldb',
|
||||
'STRIDE_BN' : 'ldb' if transpose_b else '1',
|
||||
'BROADCAST_BK': 'newaxis, :' if transpose_b else ':, newaxis',
|
||||
'BROADCAST_BN': ':, newaxis' if transpose_b else 'newaxis, :',
|
||||
'SHAPE_B' : 'TN, TK' if transpose_b else 'TK, TN'}
|
||||
return dot.kernel(a, b, c, M, N, Ka, lda, ldb, ldc, grid,
|
||||
AT = transpose_a, BT = transpose_b, TYPE = dtype,
|
||||
TM = [64, 128], TN = [64, 128], TK = [8], **macros)
|
||||
|
||||
@staticmethod
|
||||
def forward(ctx, a, b, transpose_a = False, transpose_b = False):
|
||||
ctx.save_for_backward(a, b, transpose_a, transpose_b)
|
||||
return dot._call(a, b, transpose_a, transpose_b)
|
||||
|
||||
@staticmethod
|
||||
def backward(ctx, dy):
|
||||
a, b, t_a, t_b = ctx.saved_tensors
|
||||
if not t_a and not t_b:
|
||||
da = dot._call(dy, b, False, True)
|
||||
db = dot._call(a, dy, True, False)
|
||||
elif not t_a and t_b:
|
||||
da = dot._call(dy, b, False, False)
|
||||
db = dot._call(dy, a, True, False)
|
||||
elif t_a and not t_b:
|
||||
da = dot._call(b, dy, False, True)
|
||||
db = dot._call(a, dy, False, False)
|
||||
elif t_a and t_b:
|
||||
da = dot._call(b, dy, True, True)
|
||||
db = dot._call(dy, a, True, True)
|
||||
else:
|
||||
assert False
|
||||
return [da, db, None, None, None, None, None, None, None]
|
88
python/triton/utils.py
Normal file
88
python/triton/utils.py
Normal file
@@ -0,0 +1,88 @@
|
||||
import triton.frameworks as fw
|
||||
import libtriton
|
||||
|
||||
def cdiv(a, b):
|
||||
return -(-a // b)
|
||||
|
||||
def empty(shapes, dtype, framework = None):
|
||||
framework = fw._find_framework(framework)
|
||||
if framework == fw.tensorflow_id:
|
||||
args = [x.handle if isinstance(x, scalar) else x for x in shapes]
|
||||
args = fw.tensorflow.stack(args)
|
||||
return fw.tf_extra_ops.alloc_empty(args, T = dtype)
|
||||
elif framework == fw.torch_id:
|
||||
_import_torch()
|
||||
return fw.torch.empty(*shapes)
|
||||
|
||||
class lazy_shape:
|
||||
|
||||
def __init__(self, shape):
|
||||
self.shape = shape
|
||||
|
||||
def __getitem__(self, key):
|
||||
return scalar(self.shape[key])
|
||||
|
||||
def shape(A) :
|
||||
fw._import_tensorflow()
|
||||
return lazy_shape(fw.tensorflow.shape(A))
|
||||
|
||||
|
||||
class scalar:
|
||||
|
||||
def __init__(self, x):
|
||||
self.id = libtriton.make_scalar_id()
|
||||
self.handle = fw.tf_extra_ops.register_scalar(x, id=self.id)
|
||||
self.assume_initialized = False
|
||||
|
||||
def set_assume_initialized(self):
|
||||
self.assume_initialized = True
|
||||
|
||||
def unset_assume_initialized(self):
|
||||
self.assume_initialized = False
|
||||
|
||||
def get_value(self):
|
||||
if self.assume_initialized:
|
||||
return libtriton.retrieve_scalar(self.id)
|
||||
else:
|
||||
return self.handle
|
||||
|
||||
def __add__(self, other):
|
||||
return self.get_value() + other
|
||||
|
||||
def __radd__(self, other):
|
||||
return other + self.get_value()
|
||||
|
||||
def __sub__(self, other):
|
||||
return self.get_value() - other
|
||||
|
||||
def __rsub(self, other):
|
||||
return other - self.get_value()
|
||||
|
||||
def __mul__(self, other):
|
||||
return self.get_value() * other
|
||||
|
||||
def __rmul(self, other):
|
||||
return other * self.get_value()
|
||||
|
||||
def __floordiv__(self, other):
|
||||
return self.get_value() // other
|
||||
|
||||
def __rfloordiv__(self, other):
|
||||
return other // self.get_value()
|
||||
|
||||
def __div__(self, other):
|
||||
return self.get_value() / other
|
||||
|
||||
def __rdiv__(self, other):
|
||||
return other / self.get_value()
|
||||
|
||||
def __truediv__(self, other):
|
||||
self.get_value().__truediv__(other)
|
||||
|
||||
def __rtruediv__(self, other):
|
||||
other.__truediv__(self.get_value())
|
||||
|
||||
def __neg__(self):
|
||||
return -self.get_value()
|
||||
|
||||
|
Reference in New Issue
Block a user