Files
triton/lib/runtime/function.cc

475 lines
14 KiB
C++
Raw Normal View History

#include <string>
#include <mutex>
#include <regex>
#include <functional>
#include <algorithm>
#include <memory>
#include "triton/codegen/analysis/axes.h"
#include "triton/codegen/analysis/allocation.h"
#include "triton/codegen/analysis/liveness.h"
#include "triton/codegen/analysis/align.h"
#include "triton/codegen/transform/coalesce.h"
#include "triton/codegen/transform/dce.h"
#include "triton/codegen/transform/peephole.h"
#include "triton/codegen/transform/membar.h"
#include "triton/codegen/transform/reassociate.h"
#include "triton/codegen/transform/cts.h"
#include "triton/codegen/transform/disassociate.h"
#include "triton/codegen/selection/generator.h"
#include "triton/runtime/function.h"
#include "triton/lang/cpp.h"
#include "triton/lang/parser.h"
#include "triton/lang/code_gen.h"
#include "triton/driver/device.h"
#include "triton/driver/stream.h"
#include "triton/driver/kernel.h"
#include "triton/driver/module.h"
#include "triton/driver/error.h"
#include "triton/ir/module.h"
#include "triton/ir/function.h"
#include "triton/ir/print.h"
#include "triton/tools/bench.hpp"
#include "triton/tools/sha1.hpp"
#include "triton/tools/sys/getenv.hpp"
#include "triton/tools/sys/mkdir.hpp"
#include "llvm/IR/Module.h"
#include <mutex>
#include <fstream>
std::mutex mut;
namespace triton{
namespace runtime {
/* --------------------- */
/* HELPERS */
/* --------------------- */
void _loop_nest(std::vector<size_t> const & ranges,
std::function<void(std::vector<size_t> const &)> const & f){
size_t D = ranges.size();
std::vector<size_t> values(D, 0);
size_t i = D - 1;
while(true){
f(values);
while(values[i]++ == ranges[i] - 1){
if(i == 0)
return;
values[i--] = 0;
}
i = D - 1;
}
}
/* --------------------- */
/* OPTIONS */
/* --------------------- */
std::string function::options_t::to_str() const{
std::string ret = "nw-" + std::to_string(num_warps);
for(const auto& x : defines){
ret += '-';
ret += x.first;
ret += '-';
ret += x.second;
}
// legalize
for(char& x: ret){
if(x == ' ' || x == '^' || x == ',' || x == ':')
x = '_';
}
return ret;
}
/* --------------------- */
/* CALLER OBJECT */
/* --------------------- */
arg_type convert(ir::type *ty) {
if(ty->is_integer_ty(1))
return INT1_T;
if(ty->is_integer_ty(8))
return INT8_T;
if(ty->is_integer_ty(16))
return INT16_T;
if(ty->is_integer_ty(32))
return INT32_T;
if(ty->is_integer_ty(64))
return INT64_T;
if(ty->is_half_ty())
return HALF_T;
if(ty->is_float_ty())
return FLOAT_T;
if(ty->is_double_ty())
return DOUBLE_T;
if(ty->is_pointer_ty())
return BUFFER_T;
throw std::runtime_error("unknown type");
}
void function::caller::write(std::ofstream &ofs) {
// write name
ofs << name_ << std::endl;
// write signature
for(size_t i = 0; i < param_tys_.size(); i++)
ofs << param_tys_[i] << " ";
ofs << std::endl;
// write module
std::string source = ((driver::cu_module*)(&*parent_))->source();
ofs << source;
}
void function::caller::read(driver::context* ctx, std::ifstream &ifs) {
// read name
std::getline(ifs, name_);
// read signature
std::string line;
std::getline(ifs, line);
std::istringstream current(line);
int param;
param_tys_.clear();
while(current >> param)
param_tys_.push_back((arg_type)param);
// read module
std::string src((std::istreambuf_iterator<char>(ifs)),
std::istreambuf_iterator<char>());
parent_.reset(new driver::cu_module(ctx, src));
bin_.reset(driver::kernel::create(&*parent_, name_.c_str()));
}
function::caller::caller(driver::context* ctx, std::ifstream &ifs, const options_t& opt)
: opt_(opt) {
read(ctx, ifs);
}
function::caller::caller(ir::function *ir,
std::shared_ptr<driver::module> parent, const options_t& opt)
: parent_(parent), opt_(opt), name_(ir->get_name()) {
bin_.reset(driver::kernel::create(&*parent, name_.c_str()));
// extract signature
ir::function_type* ty = ir->get_fn_type();
for(size_t i = 0; i < ty->get_num_params(); i++)
param_tys_.push_back(convert(ty->get_param_ty(i)));
}
void function::caller::operator ()(driver::stream *stream, const grid_t& _grid, const std::vector<arg>& args) const {
if(args.size() != param_tys_.size())
throw std::runtime_error("invalid number of arguments");
// set arguments
for(size_t i = 0; i < args.size(); i++){
arg arg_i = args.at(i);
arg_type ty = arg_i.type();
if(ty != param_tys_.at(i))
throw std::runtime_error("invalid type for argument " + std::to_string(i));
if(ty == BUFFER_T)
bin_->setArg(i, *((driver::buffer**)arg_i.data()));
else
bin_->setArg(i, size_of(ty), arg_i.data());
}
// set grid
if(_grid.size() > 3)
throw std::runtime_error("grid size must be no greater than 3");
std::array<size_t, 3> grid;
for(size_t i = 0; i < 3; i++)
grid[i] = (i < _grid.size()) ? _grid[i] : 1;
// enqueue
stream->enqueue(&*bin_, grid, {opt_.num_warps * 32, 1, 1});
}
/* --------------------- */
/* FUNCTION */
/* --------------------- */
// create Triton-IR from AST
std::unique_ptr<ir::module> function::make_ir(Parser& parser) {
ir::module* module = new ir::module("", ctx_);
Generator gen(&parser);
gen.Gen(module);
return std::unique_ptr<ir::module>(module);
}
// create Binary from Triton-IR
std::unique_ptr<driver::module> function::make_bin(ir::module &module,
driver::context *context,
const options_t& opt) {
std::unique_ptr<codegen::target> target = context->device()->make_target();
// generate llvm code
llvm::LLVMContext ctx;
std::unique_ptr<llvm::Module> llvm(new llvm::Module(module.get_name(), ctx));
// create passes
codegen::analysis::align align;
codegen::analysis::axes axes;
codegen::transform::disassociate disassociate;
codegen::analysis::layouts layouts(&axes, &align, opt.num_warps);
codegen::analysis::liveness liveness(&layouts);
codegen::analysis::allocation allocation(&liveness);
codegen::transform::membar barriers(&liveness, &layouts, &allocation);
codegen::transform::dce dce;
codegen::transform::peephole peephole;
codegen::transform::reassociate reassociate;
codegen::transform::coalesce coalesce(&align, &layouts);
codegen::transform::cts cts;
codegen::generator isel(&axes, &layouts, &align, &allocation, target.get(), opt.num_warps);
// run passes
dce.run(module);
disassociate.run(module);
dce.run(module);
peephole.run(module);
dce.run(module);
align.run(module);
cts.run(module);
axes.run(module);
layouts.run(module);
coalesce.run(module);
dce.run(module);
align.run(module);
dce.run(module);
reassociate.run(module);
cts.run(module);
dce.run(module);
align.run(module);
axes.run(module);
layouts.run(module);
liveness.run(module);
allocation.run(module);
if(allocation.allocated_size() > context->device()->max_shared_memory())
return std::unique_ptr<driver::module>();
barriers.run(module);
isel.visit(module, *llvm);
std::unique_ptr<driver::module> res(driver::module::create(context, std::move(llvm)));
return res;
}
// create Binary from options
function::caller* function::make(driver::stream *stream, options_t opt) {
// cache path
std::string cache_path = cache_path_ + opt.to_str() + ".ptx";
int ref_mtime = tools::mtime(cache_ref_);
int ptx_mtime = tools::mtime(cache_path);
// if cached ptx is newer than reference library
if(!ref_mtime || !ptx_mtime || ref_mtime < ptx_mtime){
std::ifstream ifs(cache_path);
// file is empty -- invalid
if(ifs && ifs.peek() == std::ifstream::traits_type::eof())
return nullptr;
// load cached caller
if(ifs)
return new caller(stream->context(), ifs, opt);
}
// pre-process
TokenSequence tokens;
Preprocessor cpp(&src_, true);
for(auto it: opt.defines)
cpp.AddMacro(it.first, &it.second);
cpp.Process(tokens);
// src -> ast
Parser parser(tokens);
parser.Parse();
// ast -> triton-ir
auto ir = make_ir(parser);
// triton-ir -> binary
std::unique_ptr<driver::module> bin;
try{
bin = make_bin(*ir, stream->context(), opt);
}catch(const std::runtime_error&){
if(!cache_path_.empty())
std::ofstream ofs(cache_path);
return nullptr;
}
// create callable
ir::function *tmp = ir->get_function_list()[0];
caller* ret = new caller(tmp, std::move(bin), opt);
// serialize callable
if(!cache_path_.empty()){
std::ofstream ofs(cache_path);
ret->write(ofs);
}
return ret;
}
// precompile all kernels spanned by given options space
void function::precompile(driver::stream* stream,
const options_space_t& space) {
// all ranges
std::vector<size_t> ranges;
ranges.push_back(space.num_warps.size());
for(const auto& x: space.defines)
ranges.push_back(x.second.size());
// functor for source with given option
auto do_make = [&](std::vector<size_t> params) {
// compilation options
unsigned i = 0;
options_t opt;
opt.num_warps = space.num_warps[params[i++]];
for(auto D: space.defines)
opt.defines[D.first] = D.second[params[i++]];
// compile
caller* call = make(stream, opt);
if(!call)
return;
// copy constants
std::unique_ptr<driver::buffer> buffer;
for(const auto& cst: cst_){
buffer = call->parent()->symbol(cst.first.c_str());
stream->write(&*buffer, true, 0, cst.second);
}
callers_[opt].reset(call);
};
// multi-threaded compilation
_loop_nest(ranges, do_make);
if(callers_.empty())
throw std::runtime_error("could not find valid option in provided space");
}
// return auto-tuning key for given function arguments
function::cache_key_t function::get_key(driver::stream *stream, const std::vector<arg>& args) {
cache_key_t ret;
ret.first = stream->context()->device();
for(size_t i = 0; i < args.size(); i++){
arg_type ty = args.at(i).type();
if(!is_int_type(ty))
continue;
long val = 0;
std::memcpy((void*)&val, args.at(i).data(), size_of(ty));
ret.second.push_back(val);
}
return ret;
}
// returns program with best compilation options for given parameter
function::caller* function::autotune(driver::stream* stream, const grid_fn_ty& grid_fn,
const std::vector<arg>& args) {
// // copy buffer argument so that auto-tuning doesn't corrupt data
// std::list<std::shared_ptr<driver::cu_buffer>> copies;
// std::vector<arg> args = args;
// for(arg& x: args)
// if(x.type() == BUFFER_T){
// driver::buffer* old = x.buffer();
// driver::context* ctx = old->context();
// size_t size = old->size();
// copies.push_back(std::make_shared<driver::cu_buffer>(ctx, size));
// x = arg(copies.back().get());
// }
// fast path -- no autotuning necessary
if(callers_.size() == 1)
return &*callers_.begin()->second;
// slow path -- autotuning necessary
double best_ts = INFINITY;
caller* ret = nullptr;
for(auto &x : callers_){
if(x.second == nullptr)
throw std::runtime_error("configuration not compiled");
caller* current = &*x.second;
double ts = tools::bench([&]() { (*current)(stream, grid_fn(x.first), args); },
stream, true);
ret = (ts < best_ts) ? current : ret;
best_ts = std::min(ts, best_ts);
}
return ret;
}
// set copy host buffer "data" into constant memory buffer "name"
void function::set_cst(const std::string& name, void* data, size_t n_bytes) {
cst_[name] = std::vector<char>((char*)data, (char*)data + n_bytes);
}
std::string function::preheader() {
return R"(
#define bool _Bool
#define true 1
#define false 0
#define __readonly __attribute__((readonly))
#define __writeonly __attribute__((writeonly))
#define __noalias __attribute__((noalias))
#define __aligned(A) __attribute__((aligned(A)))
#define __multipleof(A) __attribute__((multipleof(A)))
extern int atomic_cas(int*, int, int);
extern int atomic_xchg(int*, int);
extern int get_program_id(int);
extern int get_num_programs(int);
extern float sqrtf(float);
extern int select(bool, int, int);
extern char __constant__ * calloc(int);
typedef unsigned char uint8;
typedef unsigned short uint16;
typedef unsigned int uint32;
typedef unsigned long uint64;
typedef char int8;
typedef short int16;
typedef int int32;
typedef long int64;
)";
}
std::string function::get_cache_prefix() {
//user-specified cache path
std::string result = tools::getenv("TRITON_CACHE_PATH");
if(!result.empty()){
if(tools::mkpath(result)==0)
return result;
}
//create in home
result = tools::getenv("HOME");
if(!result.empty())
{
result = result + "/.triton/cache/";
if(tools::mkpath(result)==0)
return result;
}
return "";
}
function::function(const std::string &src,
const options_space_t& opt,
const std::string &cache_ref):
src_(src), opt_(opt), cache_ref_(cache_ref) {
// hash source code
unsigned char hash[20];
sha1::calc((void*)src_.data(), src_.size(), hash);
// create cache path
char _hex[40];
sha1::toHexString(hash, _hex);
std::string hex(_hex, _hex + 40);
cache_path_ = get_cache_prefix() + hex + "/";
tools::mkpath(cache_path_);
// append pre-header to source
src_ = preheader() + src_;
}
void function::operator()(const std::vector<arg>& args,
const grid_fn_ty& grid_fn,
driver::stream *stream) {
// pre-compile kernels
if(callers_.empty())
precompile(stream, opt_);
// auto-tune if necessary
auto key = get_key(stream, args);
auto it = cache_.find(key);
if(it == cache_.end()){
auto best = autotune(stream, grid_fn, args);
it = cache_.insert({key, best}).first;
}
// run
(*it->second)(stream, grid_fn(it->second->opt()), args);
}
void function::operator()(const std::vector<arg>& args,
const grid_t& grid,
driver::stream *stream) {
return this->operator()(args, [&grid](const options_t&){ return grid; }, stream);
}
}
}