Files
triton/autotune/python/genetic.py

143 lines
5.8 KiB
Python
Raw Normal View History

2014-09-02 22:03:20 -04:00
import random
import time
2014-09-11 16:13:46 -04:00
import sys
2014-09-06 00:39:38 -04:00
import tools
2014-09-02 22:03:20 -04:00
import pyviennacl as vcl
import numpy as np
import copy
2014-09-11 16:13:46 -04:00
from deap import algorithms
2014-09-02 22:03:20 -04:00
from collections import OrderedDict as odict
def closest_divisor(N, x):
x_low=x_high=max(1,min(round(x),N))
while N % x_low > 0 and x_low>0:
x_low = x_low - 1
while N % x_high > 0 and x_high < N:
x_high = x_high + 1
return x_low if x - x_low < x_high - x else x_high
class GeneticOperators(object):
def __init__(self, device, statement, parameters, parameter_names, TemplateType, build_template):
self.device = device
self.statement = statement
self.parameters = parameters
self.parameter_names = parameter_names
self.TemplateType = TemplateType
self.ParameterType = TemplateType.Parameters
self.build_template = build_template
self.cache = {}
self.indpb = 0.15
2014-09-02 22:03:20 -04:00
def init(self):
2014-09-06 00:39:38 -04:00
while True:
2014-09-02 22:03:20 -04:00
result = [random.choice(L) for L in self.parameters]
2014-09-06 00:39:38 -04:00
template = self.build_template(self.TemplateType.Parameters(*result))
registers_usage = template.registers_usage(vcl.atidlas.StatementsTuple(self.statement))/4
lmem_usage = template.lmem_usage(vcl.atidlas.StatementsTuple(self.statement))
local_size = template.parameters.local_size_0*template.parameters.local_size_1
occupancy_record = tools.OccupancyRecord(self.device, local_size, lmem_usage, registers_usage)
2014-09-06 01:20:44 -04:00
if template.check(self.statement)==0 and occupancy_record.occupancy >= 10 :
2014-09-06 00:39:38 -04:00
return result
2014-09-02 22:03:20 -04:00
def mutate(self, individual):
while True:
new_individual = copy.deepcopy(individual)
for i in new_individual:
if random.random() < self.indpb:
coef = random.choice([1, 2])
funs = [lambda x:max(1, x/coef), lambda x:x*coef]
F = random.choice(funs)
nF = funs[1] if F==funs[0] else funs[0]
#swapping-based mutations
def m0():
new_individual[1], new_individual[3] = new_individual[3], new_individual[1]
def m1():
new_individual[4], new_individual[6] = new_individual[6], new_individual[4]
def m2():
new_individual[9], new_individual[10] = new_individual[10], new_individual[9]
#value modification mutations
def m3():
new_individual[0] = random.choice(self.parameters[0])
def m4():
new_individual[1] = F(new_individual[1])
new_individual[9] = F(new_individual[9])
def m5():
new_individual[2] = F(new_individual[2])
def m6():
new_individual[3] = F(new_individual[3])
new_individual[10] = F(new_individual[10])
def m7():
new_individual[4] = F(new_individual[4])
def m8():
new_individual[5] = F(new_individual[5])
def m9():
new_individual[6] = F(new_individual[6])
def m10():
new_individual[7] = random.choice([x for x in self.parameters[7] if x!=new_individual[7]])
def m11():
new_individual[8] = random.choice([x for x in self.parameters[8] if x!=new_individual[8]])
def m12():
new_individual[9] = F(new_individual[9])
new_individual[10] = nF(new_individual[10])
def m13():
new_individual[10] = F(new_individual[10])
new_individual[9] = nF(new_individual[9])
random.choice([m0, m1, m2, m3, m4, m5, m6, m7, m8, m9, m10, m11, m12, m13])()
template = self.build_template(self.TemplateType.Parameters(*new_individual))
if not tools.skip(template, self.statement, self.device):
2014-09-02 22:03:20 -04:00
break
return new_individual,
2014-09-02 22:03:20 -04:00
def evaluate(self, individual):
2014-09-11 16:13:46 -04:00
if tuple(individual) not in self.cache:
2014-09-02 22:03:20 -04:00
template = self.build_template(self.TemplateType.Parameters(*individual))
2014-09-11 16:13:46 -04:00
try:
self.cache[tuple(individual)] = tools.benchmark(template, self.statement, self.device)
except:
self.cache[tuple(individual)] = 10
return self.cache[tuple(individual)],
def eaMuPlusLambda(population, toolbox, mu, lambda_, cxpb, mutpb, maxtime, maxgen, halloffame, compute_perf, perf_metric):
# Evaluate the individuals with an invalid fitness
invalid_ind = [ind for ind in population if not ind.fitness.valid]
fitnesses = toolbox.map(toolbox.evaluate, invalid_ind)
for ind, fit in zip(invalid_ind, fitnesses):
ind.fitness.values = fit
if halloffame is not None:
halloffame.update(population)
# Begin the generational process
gen = 0
maxtime = time.strptime(maxtime, '%Mm%Ss')
maxtime = maxtime.tm_min*60 + maxtime.tm_sec
start_time = time.time()
while time.time() - start_time < maxtime and gen < maxgen:
# Vary the population
offspring = algorithms.varOr(population, toolbox, lambda_, cxpb, mutpb)
# Evaluate the individuals with an invalid fitness
invalid_ind = [ind for ind in offspring if not ind.fitness.valid]
fitnesses = toolbox.map(toolbox.evaluate, invalid_ind)
for ind, fit in zip(invalid_ind, fitnesses):
ind.fitness.values = fit
# Update the hall of fame with the generated individuals
if halloffame is not None:
halloffame.update(offspring)
# Select the next generation population
population[:] = toolbox.select(population + offspring, mu)
# Update the statistics with the new population
gen = gen + 1
best_profile = '(%s)'%','.join(map(str,halloffame[0]));
best_performance = compute_perf(halloffame[0].fitness.values[0])
2014-09-11 18:17:24 -04:00
sys.stdout.write('Generation %d | Time %d | Best %d %s [ for %s ]\r'%(gen, time.time() - start_time, best_performance, perf_metric, best_profile))
sys.stdout.flush()
2014-09-11 16:13:46 -04:00
sys.stdout.write('\n')
return population