Files
triton/autotune/python/genetic.py

185 lines
7.8 KiB
Python
Raw Normal View History

2014-09-02 22:03:20 -04:00
import random
import time
2014-09-11 16:13:46 -04:00
import sys
2014-09-06 00:39:38 -04:00
import tools
2014-09-02 22:03:20 -04:00
import pyviennacl as vcl
import numpy as np
import copy
2014-09-15 18:30:30 -04:00
2014-09-11 16:13:46 -04:00
from deap import algorithms
2014-09-15 18:30:30 -04:00
from deap import base
from deap import creator
from deap import tools as deap_tools
2014-09-11 16:13:46 -04:00
2014-09-02 22:03:20 -04:00
from collections import OrderedDict as odict
2014-09-29 03:01:33 +02:00
2014-09-02 22:03:20 -04:00
def closest_divisor(N, x):
2014-09-29 03:01:33 +02:00
x_low=x_high=max(1,min(round(x),N))
while N % x_low > 0 and x_low>0:
x_low = x_low - 1
while N % x_high > 0 and x_high < N:
x_high = x_high + 1
return x_low if x - x_low < x_high - x else x_high
def b_gray_to_bin(A='00000000', endian='big'):
assert type(endian) is str
assert endian == 'little' or endian == 'big'
if endian == 'little': A = A[::-1] # Make sure endianness is big before conversion
b = A[0]
for i in range(1, len(A)): b += str( int(b[i-1] != A[i]) )
if endian == 'little': b = b[::-1] # Convert back to little endian if necessary
return b
2014-09-29 03:01:33 +02:00
class GeneticOperators(object):
2014-09-29 03:01:33 +02:00
def __init__(self, device, statement, parameter_names, TemplateType, build_template, out):
self.device = device
self.statement = statement
self.parameter_names = parameter_names
self.TemplateType = TemplateType
self.ParameterType = TemplateType.Parameters
self.build_template = build_template
self.cache = {}
self.indpb = 0.05
self.out = out
creator.create("FitnessMin", base.Fitness, weights=(-1.0,))
creator.create("Individual", list, fitness=creator.FitnessMin)
self.toolbox = base.Toolbox()
self.toolbox.register("population", self.init)
self.toolbox.register("evaluate", self.evaluate)
self.toolbox.register("mate", deap_tools.cxTwoPoint)
self.toolbox.register("mutate", self.mutate)
self.toolbox.register("select", deap_tools.selNSGA2)
@staticmethod
def decode(s):
FetchingPolicy = vcl.atidlas.FetchingPolicy
fetch = [FetchingPolicy.FETCH_FROM_LOCAL, FetchingPolicy.FETCH_FROM_GLOBAL_CONTIGUOUS, FetchingPolicy.FETCH_FROM_GLOBAL_STRIDED]
fetchA = fetch[s[0]]
fetchB = fetch[s[1]]
bincode = ''.join(s[2:])
decode_element = lambda x:2**int(b_gray_to_bin(x), 2)
simd = decode_element(bincode[0:3])
ls0 = decode_element(bincode[2:5])
ls1 = decode_element(bincode[5:8])
kL = decode_element(bincode[8:11])
mS = decode_element(bincode[11:14])
kS = decode_element(bincode[14:17])
nS = decode_element(bincode[17:20])
if fetchA==FetchingPolicy.FETCH_FROM_LOCAL or fetchB==FetchingPolicy.FETCH_FROM_LOCAL:
lf0 = decode_element(bincode[20:23])
lf1 = ls0*ls1/lf0
else:
lf0, lf1 = 0, 0
return [simd, ls0, kL, ls1, mS, kS, nS, fetchA, fetchB, lf0, lf1]
def init(self, N):
result = []
fetchcount = [0, 0, 0]
while len(result) < N:
while True:
fetch = random.randint(0,2)
bincode = [fetch, fetch] + [str(random.randint(0,1)) for i in range(23)]
parameters = self.decode(bincode)
template = self.build_template(self.TemplateType.Parameters(*parameters))
registers_usage = template.registers_usage(vcl.atidlas.StatementsTuple(self.statement))/4
lmem_usage = template.lmem_usage(vcl.atidlas.StatementsTuple(self.statement))
local_size = template.parameters.local_size_0*template.parameters.local_size_1
occupancy_record = tools.OccupancyRecord(self.device, local_size, lmem_usage, registers_usage)
if not tools.skip(template, self.statement, self.device):
fetchcount[fetch] = fetchcount[fetch] + 1
if max(fetchcount) - min(fetchcount) <= 1:
result.append(creator.Individual(bincode))
break
else:
fetchcount[fetch] = fetchcount[fetch] - 1
return result
def mutate(self, individual):
while True:
new_individual = copy.deepcopy(individual)
for i in range(len(new_individual)):
if i < 2 and random.random() < self.indpb:
while new_individual[i] == individual[i]:
new_individual[i] = random.randint(0, 2)
elif i >= 2 and random.random() < self.indpb:
new_individual[i] = '1' if new_individual[i]=='0' else '0'
parameters = self.decode(new_individual)
template = self.build_template(self.TemplateType.Parameters(*parameters))
#print tools.skip(template, self.statement, self.device), parameters
if not tools.skip(template, self.statement, self.device):
break
return new_individual,
def evaluate(self, individual):
if tuple(individual) not in self.cache:
parameters = self.decode(individual)
template = self.build_template(self.TemplateType.Parameters(*parameters))
try:
tt = tools.benchmark(template, self.statement, self.device)
self.out.write(','.join([str(tt)]+map(str,map(int,parameters)))+'\n')
self.cache[tuple(individual)] = tt
except:
self.cache[tuple(individual)] = 10
return self.cache[tuple(individual)],
def optimize(self, maxtime, maxgen, compute_perf, perf_metric):
hof = deap_tools.HallOfFame(1)
# Begin the generational process
gen = 0
maxtime = time.strptime(maxtime, '%Mm%Ss')
maxtime = maxtime.tm_min*60 + maxtime.tm_sec
start_time = time.time()
mu = 30
cxpb = 0.2
mutpb = 0.7
population = self.init(mu)
invalid_ind = [ind for ind in population if not ind.fitness.valid]
2014-09-15 18:30:30 -04:00
fitnesses = self.toolbox.map(self.evaluate, invalid_ind)
2014-09-11 16:13:46 -04:00
for ind, fit in zip(invalid_ind, fitnesses):
ind.fitness.values = fit
2014-09-29 03:01:33 +02:00
hof.update(population)
while time.time() - start_time < maxtime:
# Vary the population
offspring = []
for _ in xrange(mu):
op_choice = random.random()
if op_choice < cxpb: # Apply crossover
ind1, ind2 = map(self.toolbox.clone, random.sample(population, 2))
ind1, ind2 = self.toolbox.mate(ind1, ind2)
del ind1.fitness.values
offspring.append(ind1)
elif op_choice < cxpb + mutpb: # Apply mutation
ind = self.toolbox.clone(random.choice(population))
ind, = self.toolbox.mutate(ind)
del ind.fitness.values
offspring.append(ind)
else: # Apply reproduction
offspring.append(random.choice(population))
#~ for x in offspring:
#~ print self.decode(x)
# Evaluate the individuals with an invalid fitness
invalid_ind = [ind for ind in offspring if not ind.fitness.valid]
fitnesses = self.toolbox.map(self.evaluate, invalid_ind)
for ind, fit in zip(invalid_ind, fitnesses):
ind.fitness.values = fit
# Update the hall of fame with the generated individuals
hof.update(offspring)
# Select the next generation population
population[:] = self.toolbox.select(population + offspring, mu)
#Update
gen = gen + 1
best_profile = '(%s)'%','.join(map(str,GeneticOperators.decode(hof[0])));
best_performance = compute_perf(hof[0].fitness.values[0])
sys.stdout.write('Time %d | Best %d %s [ for %s ]\r'%(time.time() - start_time, best_performance, perf_metric, best_profile))
sys.stdout.flush()
sys.stdout.write('\n')
return population