[PYTHON] Add Blocksparse Attention Fwd/Bwd Test (#69)
Also includes small bugfix for block-sparse softmax
This commit is contained in:
committed by
Philippe Tillet
parent
7aa4d080b3
commit
045ab5d62a
@@ -3,44 +3,57 @@ import triton
|
||||
import pytest
|
||||
|
||||
|
||||
@pytest.mark.parametrize("MODE, TRANS_A, TRANS_B, BLOCK",
|
||||
@pytest.mark.parametrize(
|
||||
"MODE, TRANS_A, TRANS_B, BLOCK",
|
||||
[
|
||||
(mode, at, bt, block) for mode in ['sdd', 'dsd', 'dds']\
|
||||
for at in [False, True]\
|
||||
for bt in [False, True]\
|
||||
for block in [16, 32, 64]
|
||||
]
|
||||
)
|
||||
def test_matmul(MODE, TRANS_A, TRANS_B, BLOCK, DTYPE=torch.float16, Z=3, H=2, M=128, N=256, K=384):
|
||||
(mode, at, bt, block)
|
||||
for mode in ["sdd", "dsd", "dds"]
|
||||
for at in [False, True]
|
||||
for bt in [False, True]
|
||||
for block in [16, 32, 64]
|
||||
],
|
||||
)
|
||||
def test_matmul(
|
||||
MODE, TRANS_A, TRANS_B, BLOCK, DTYPE=torch.float16, Z=3, H=2, M=128, N=256, K=384
|
||||
):
|
||||
# set seed
|
||||
torch.random.manual_seed(0)
|
||||
# create inputs
|
||||
a = torch.randn((Z, H, K, M) if TRANS_A else (Z, H, M, K), dtype=DTYPE, device='cuda')
|
||||
b = torch.randn((Z, H, N, K) if TRANS_B else (Z, H, K, N), dtype=DTYPE, device='cuda')
|
||||
shape = {'sdd': (M, N), 'dsd': (a.shape[2], a.shape[3]), 'dds': (b.shape[2], b.shape[3])}[MODE]
|
||||
a = torch.randn(
|
||||
(Z, H, K, M) if TRANS_A else (Z, H, M, K), dtype=DTYPE, device="cuda"
|
||||
)
|
||||
b = torch.randn(
|
||||
(Z, H, N, K) if TRANS_B else (Z, H, K, N), dtype=DTYPE, device="cuda"
|
||||
)
|
||||
shape = {
|
||||
"sdd": (M, N),
|
||||
"dsd": (a.shape[2], a.shape[3]),
|
||||
"dds": (b.shape[2], b.shape[3]),
|
||||
}[MODE]
|
||||
layout = torch.randint(2, (H, shape[0] // BLOCK, shape[1] // BLOCK))
|
||||
# triton result
|
||||
op = triton.ops.blocksparse.matmul(layout, BLOCK, MODE, trans_a=TRANS_A, trans_b=TRANS_B)
|
||||
ra = triton.testing.sparsify_tensor(a, layout, BLOCK) if MODE == 'dsd' else a
|
||||
rb = triton.testing.sparsify_tensor(b, layout, BLOCK) if MODE == 'dds' else b
|
||||
op = triton.ops.blocksparse.matmul(
|
||||
layout, BLOCK, MODE, trans_a=TRANS_A, trans_b=TRANS_B
|
||||
)
|
||||
ra = triton.testing.sparsify_tensor(a, layout, BLOCK) if MODE == "dsd" else a
|
||||
rb = triton.testing.sparsify_tensor(b, layout, BLOCK) if MODE == "dds" else b
|
||||
rc = op(ra, rb)
|
||||
# torch result
|
||||
ta = triton.testing.mask_tensor(a, layout, BLOCK) if MODE == 'dsd' else a
|
||||
tb = triton.testing.mask_tensor(b, layout, BLOCK) if MODE == 'dds' else b
|
||||
ta = triton.testing.mask_tensor(a, layout, BLOCK) if MODE == "dsd" else a
|
||||
tb = triton.testing.mask_tensor(b, layout, BLOCK) if MODE == "dds" else b
|
||||
ta = ta.transpose(2, 3) if TRANS_A else ta
|
||||
tb = tb.transpose(2, 3) if TRANS_B else tb
|
||||
tc = torch.matmul(ta, tb)
|
||||
tc = triton.testing.mask_tensor(tc, layout, BLOCK) if MODE == 'sdd' else tc
|
||||
tc = triton.testing.sparsify_tensor(tc, layout, BLOCK) if MODE == 'sdd' else tc
|
||||
tc = triton.testing.mask_tensor(tc, layout, BLOCK) if MODE == "sdd" else tc
|
||||
tc = triton.testing.sparsify_tensor(tc, layout, BLOCK) if MODE == "sdd" else tc
|
||||
# compare
|
||||
assert triton.testing.allclose(rc, tc)
|
||||
|
||||
@pytest.mark.parametrize("BLOCK, WIDTH",
|
||||
[
|
||||
(block, width) for block in [32]\
|
||||
for width in [256, 576, 1024, 1792]
|
||||
]
|
||||
)
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"BLOCK, WIDTH",
|
||||
[(block, width) for block in [32] for width in [256, 576, 1024, 1792]],
|
||||
)
|
||||
def test_softmax(BLOCK, WIDTH, DTYPE=torch.float16):
|
||||
# set seed
|
||||
torch.random.manual_seed(0)
|
||||
@@ -48,31 +61,125 @@ def test_softmax(BLOCK, WIDTH, DTYPE=torch.float16):
|
||||
scale = 0.4
|
||||
# create inputs
|
||||
layout = torch.randint(2, (H, M // BLOCK, N // BLOCK))
|
||||
x = torch.randn((Z, H, M, N), dtype=DTYPE, requires_grad=True, device='cuda')
|
||||
at_mask = torch.randint(low=0, high=2, size=(N, N), \
|
||||
dtype=torch.bool, requires_grad=False, device='cuda')
|
||||
kp_mask = torch.randint(low=0, high=2, size=(Z, N), \
|
||||
dtype=DTYPE, requires_grad=False, device='cuda')
|
||||
kp_mask[kp_mask == 1.] = float('-inf')
|
||||
x = torch.randn((Z, H, M, N), dtype=DTYPE, requires_grad=True, device="cuda")
|
||||
at_mask = torch.randint(
|
||||
low=0, high=2, size=(N, N), dtype=torch.bool, requires_grad=False, device="cuda"
|
||||
)
|
||||
kp_mask = torch.randint(
|
||||
low=0, high=2, size=(Z, N), dtype=DTYPE, requires_grad=False, device="cuda"
|
||||
)
|
||||
kp_mask[kp_mask == 1.0] = float("-inf")
|
||||
# triton result
|
||||
op = triton.ops.blocksparse.softmax(layout, BLOCK)
|
||||
tx = triton.testing.sparsify_tensor(x, layout, BLOCK)
|
||||
ty = op(tx,
|
||||
scale=scale,
|
||||
key_padding_mask=kp_mask,
|
||||
key_padding_mask_mode='add',
|
||||
attn_mask=at_mask.to(DTYPE),
|
||||
attn_mask_mode='mul')
|
||||
ty = op(
|
||||
tx,
|
||||
scale=scale,
|
||||
key_padding_mask=kp_mask,
|
||||
key_padding_mask_mode="add",
|
||||
attn_mask=at_mask.to(DTYPE),
|
||||
attn_mask_mode="mul",
|
||||
)
|
||||
# torch result
|
||||
rx = triton.testing.mask_tensor(x, layout, BLOCK, value=float('-inf'))
|
||||
rx = triton.testing.mask_tensor(x, layout, BLOCK, value=float("-inf"))
|
||||
if at_mask is not None:
|
||||
# broadcast at_mask to the same shape as rx
|
||||
M = at_mask[None, None, :, :] + torch.zeros_like(rx)
|
||||
rx[M == 0] = float('-inf')
|
||||
rx[M == 0] = float("-inf")
|
||||
if kp_mask is not None:
|
||||
rx += kp_mask[:, None, None, :]
|
||||
ry = torch.softmax(rx * scale, -1)
|
||||
ry = torch.softmax(rx * scale, -1)
|
||||
ry = triton.testing.sparsify_tensor(ry, layout, BLOCK)
|
||||
# compare
|
||||
assert triton.testing.allclose(ry, ty)
|
||||
assert triton.testing.allclose(ry, ty)
|
||||
|
||||
|
||||
def test_attention_fwd_bwd(
|
||||
input_scale=1.0,
|
||||
tol=2e-2,
|
||||
scale=1 / 8.0,
|
||||
n_ctx=256,
|
||||
dtype=torch.float16,
|
||||
batch_size=2,
|
||||
n_heads=2,
|
||||
block=64,
|
||||
):
|
||||
# inputs
|
||||
qkv_shape = (batch_size, n_heads, n_ctx, 64)
|
||||
qkvs = [
|
||||
torch.nn.Parameter(input_scale * torch.randn(qkv_shape), requires_grad=True)
|
||||
.to(dtype)
|
||||
.cuda()
|
||||
for _ in range(3)
|
||||
]
|
||||
attn_mask = torch.tril(
|
||||
torch.ones(
|
||||
[n_ctx, n_ctx],
|
||||
device="cuda",
|
||||
dtype=dtype,
|
||||
),
|
||||
diagonal=0,
|
||||
)
|
||||
|
||||
# Triton:
|
||||
n_blocks = n_ctx // block
|
||||
layout = torch.tril(torch.ones([n_heads, n_blocks, n_blocks], dtype=torch.long))
|
||||
query, key, value = [x.clone() for x in qkvs]
|
||||
query.retain_grad()
|
||||
key.retain_grad()
|
||||
value.retain_grad()
|
||||
attn_out = triton_attention(
|
||||
layout, block, attn_mask, query=query, key=key, value=value, scale=scale
|
||||
)
|
||||
# ad hoc loss
|
||||
loss = (attn_out ** 2).mean()
|
||||
loss.backward()
|
||||
grads = [query.grad, key.grad, value.grad]
|
||||
|
||||
# Torch version:
|
||||
torch_q, torch_k, torch_v = [x.clone() for x in qkvs]
|
||||
attn_mask = 1e6 * (-1 + (attn_mask.reshape((1, 1, n_ctx, n_ctx)).cuda()))
|
||||
torch_q.retain_grad()
|
||||
torch_k.retain_grad()
|
||||
torch_v.retain_grad()
|
||||
scores = scale * torch.einsum("bhsd,bhtd->bhst", torch_q, torch_k)
|
||||
scores = scores + attn_mask
|
||||
probs = torch.softmax(scores, dim=-1)
|
||||
torch_attn_out = torch.einsum("bhst,bhtd->bhsd", probs, torch_v)
|
||||
# ad hoc loss
|
||||
torch_loss = (torch_attn_out ** 2).mean()
|
||||
torch_loss.backward()
|
||||
torch_grads = [torch_q.grad, torch_k.grad, torch_v.grad]
|
||||
|
||||
# comparison
|
||||
print(f"Triton loss {loss} and torch loss {torch_loss}. Also checking grads...")
|
||||
torch.testing.assert_allclose(loss, torch_loss, rtol=tol, atol=tol)
|
||||
for g1, g2 in zip(grads, torch_grads):
|
||||
torch.testing.assert_allclose(g1, g2, rtol=tol, atol=tol)
|
||||
|
||||
|
||||
def triton_attention(
|
||||
layout,
|
||||
block: int,
|
||||
attn_mask: torch.Tensor,
|
||||
query: torch.Tensor,
|
||||
key: torch.Tensor,
|
||||
value: torch.Tensor,
|
||||
scale: float,
|
||||
):
|
||||
sparse_dot_sdd_nt = triton.ops.blocksparse.matmul(
|
||||
layout, block, "sdd", trans_a=False, trans_b=True
|
||||
)
|
||||
sparse_dot_dsd_nn = triton.ops.blocksparse.matmul(
|
||||
layout, block, "dsd", trans_a=False, trans_b=False
|
||||
)
|
||||
sparse_softmax = triton.ops.blocksparse.softmax(
|
||||
layout,
|
||||
block,
|
||||
)
|
||||
|
||||
w = sparse_dot_sdd_nt(query, key)
|
||||
w = sparse_softmax(w, scale=scale, attn_mask=attn_mask, attn_mask_mode="mul")
|
||||
a = sparse_dot_dsd_nn(w, value)
|
||||
return a
|
||||
|
@@ -126,7 +126,7 @@ class _matmul(torch.autograd.Function):
|
||||
num_lock = 1
|
||||
key = (block, device, a.dtype, b.dtype, trans_a, trans_b, trans_c, pack, is_32_multiple, is_64_multiple)
|
||||
if key not in _matmul.sdd_cache:
|
||||
defines = {'TM': block*pack, 'TN': block*pack,
|
||||
defines = {'TM': block*pack, 'TN': block*pack,
|
||||
'TMN': block*block*pack*pack,
|
||||
'BLOCK': block,
|
||||
'TK': 32,
|
||||
|
@@ -110,7 +110,7 @@ class _softmax(torch.autograd.Function):
|
||||
kernel = _softmax.make_kernel(fwd_kernels, fwd_src, maxlut * block, x.device, x.dtype, block, apply_scale,
|
||||
apply_rpe, apply_kp_mask, apply_attn_mask, kp_mask_mode, attn_mask_mode)
|
||||
M = x.shape[0]
|
||||
grid = lambda opt: [triton.cdiv(spdims[0] * spdims[1] * block, opt.TM), M]
|
||||
grid = lambda opt: [spdims[0] * spdims[1] * block, M]
|
||||
|
||||
# run kernel
|
||||
kernel(x.data_ptr(),
|
||||
@@ -151,7 +151,7 @@ class _softmax(torch.autograd.Function):
|
||||
ctx.apply_scale, ctx.apply_rpe, ctx.apply_kp_mask, ctx.apply_attn_mask,
|
||||
ctx.kp_mask_mode, ctx.attn_mask_mode)
|
||||
M = x.shape[0]
|
||||
grid = lambda opt: [triton.cdiv(ctx.spdims[0] * ctx.spdims[1] * ctx.block, opt.TM), M]
|
||||
grid = lambda opt: [ctx.spdims[0] * ctx.spdims[1] * ctx.block, M]
|
||||
kernel(x.data_ptr(), ctx.scale, dx.data_ptr(), lut.data_ptr(), ctx.maxlut, x.stride(0), dx.stride(0), grid=grid)
|
||||
return dx, None, None, None, None, None, None, None, None, None, None, None, None, None, None
|
||||
|
||||
|
Reference in New Issue
Block a user