Added exhaustive search backend
This commit is contained in:
@@ -48,10 +48,10 @@ TYPES = { 'vector-axpy': {'template':vcl.atidlas.VectorAxpyTemplate,
|
||||
def parameter_space(operation):
|
||||
simd = [1, 2, 4, 8]
|
||||
pow2_1D = [2**k for k in range(12)]
|
||||
pow2_2D = [2**k for k in range(10)]
|
||||
pow2_2D_unrolled = [2**k for k in range(6)]
|
||||
pow2_2D = [8, 16]
|
||||
pow2_2D_unrolled = [1, 2, 4, 8]
|
||||
FetchingPolicy = vcl.atidlas.FetchingPolicy
|
||||
fetch = [FetchingPolicy.FETCH_FROM_LOCAL, FetchingPolicy.FETCH_FROM_GLOBAL_STRIDED, FetchingPolicy.FETCH_FROM_GLOBAL_CONTIGUOUS]
|
||||
fetch = [FetchingPolicy.FETCH_FROM_LOCAL]
|
||||
if operation == 'vector-axpy': return [simd, pow2_1D, pow2_1D, fetch]
|
||||
if operation == 'reduction': return [simd, pow2_1D, pow2_1D, fetch]
|
||||
if operation == 'matrix-axpy': return [simd, pow2_2D, pow2_2D, pow2_2D, pow2_2D, fetch]
|
||||
@@ -97,7 +97,7 @@ def do_tuning(config_fname, spec_fname, viennacl_root):
|
||||
fname = os.devnull
|
||||
with open(fname, "w+") as archive:
|
||||
with vcl.Statement(node) as statement:
|
||||
result = optimize.genetic(statement, ctx, TYPES[operation]['template'], lambda p: TYPES[operation]['template'](p, *other_params),
|
||||
result = optimize.exhaustive(statement, ctx, TYPES[operation]['template'], lambda p: TYPES[operation]['template'](p, *other_params),
|
||||
TYPES[operation]['parameter-names'], parameter_space(operation), lambda t: TYPES[operation]['perf-index']([datatype().itemsize, s, t]), TYPES[operation]['perf-measure'], archive)
|
||||
if result and viennacl_root:
|
||||
vclio.generate_viennacl_headers(viennacl_root, device, datatype, operation, other_params, result[1])
|
||||
|
@@ -1,9 +1,12 @@
|
||||
import random
|
||||
import time
|
||||
import sys
|
||||
import tools
|
||||
import pyviennacl as vcl
|
||||
import numpy
|
||||
|
||||
from deap import algorithms
|
||||
|
||||
from collections import OrderedDict as odict
|
||||
|
||||
def closest_divisor(N, x):
|
||||
@@ -154,28 +157,51 @@ class GeneticOperators(object):
|
||||
return individual,
|
||||
|
||||
def evaluate(self, individual):
|
||||
tupindividual = tuple(individual)
|
||||
if tupindividual not in self.cache:
|
||||
if tuple(individual) not in self.cache:
|
||||
template = self.build_template(self.TemplateType.Parameters(*individual))
|
||||
registers_usage = template.registers_usage(vcl.atidlas.StatementsTuple(self.statement))/4
|
||||
lmem_usage = template.lmem_usage(vcl.atidlas.StatementsTuple(self.statement))
|
||||
local_size = template.parameters.local_size_0*template.parameters.local_size_1
|
||||
occupancy_record = tools.OccupancyRecord(self.device, local_size, lmem_usage, registers_usage)
|
||||
if occupancy_record.occupancy < 15 :
|
||||
self.cache[tupindividual] = 10
|
||||
else:
|
||||
try:
|
||||
template.execute(self.statement, True)
|
||||
self.statement.result.context.finish_all_queues()
|
||||
N = 0
|
||||
current_time = 0
|
||||
while current_time < 1e-2:
|
||||
time_before = time.time()
|
||||
template.execute(self.statement,False)
|
||||
self.statement.result.context.finish_all_queues()
|
||||
current_time += time.time() - time_before
|
||||
N+=1
|
||||
self.cache[tupindividual] = current_time/N
|
||||
self.cache[tuple(individual)] = tools.benchmark(template, self.statement, self.device)
|
||||
except:
|
||||
self.cache[tupindividual] = 10
|
||||
return self.cache[tupindividual],
|
||||
self.cache[tuple(individual)] = 10
|
||||
return self.cache[tuple(individual)],
|
||||
|
||||
def eaMuPlusLambda(population, toolbox, mu, lambda_, cxpb, mutpb, maxtime, maxgen, halloffame, compute_perf, perf_metric):
|
||||
# Evaluate the individuals with an invalid fitness
|
||||
invalid_ind = [ind for ind in population if not ind.fitness.valid]
|
||||
fitnesses = toolbox.map(toolbox.evaluate, invalid_ind)
|
||||
for ind, fit in zip(invalid_ind, fitnesses):
|
||||
ind.fitness.values = fit
|
||||
|
||||
if halloffame is not None:
|
||||
halloffame.update(population)
|
||||
|
||||
# Begin the generational process
|
||||
gen = 0
|
||||
maxtime = time.strptime(maxtime, '%Mm%Ss')
|
||||
maxtime = maxtime.tm_min*60 + maxtime.tm_sec
|
||||
start_time = time.time()
|
||||
while time.time() - start_time < maxtime and gen < maxgen:
|
||||
# Vary the population
|
||||
offspring = algorithms.varOr(population, toolbox, lambda_, cxpb, mutpb)
|
||||
|
||||
# Evaluate the individuals with an invalid fitness
|
||||
invalid_ind = [ind for ind in offspring if not ind.fitness.valid]
|
||||
fitnesses = toolbox.map(toolbox.evaluate, invalid_ind)
|
||||
for ind, fit in zip(invalid_ind, fitnesses):
|
||||
ind.fitness.values = fit
|
||||
|
||||
# Update the hall of fame with the generated individuals
|
||||
if halloffame is not None:
|
||||
halloffame.update(offspring)
|
||||
|
||||
# Select the next generation population
|
||||
population[:] = toolbox.select(population + offspring, mu)
|
||||
|
||||
# Update the statistics with the new population
|
||||
gen = gen + 1
|
||||
|
||||
best_profile = '(%s)'%','.join(map(str,halloffame[0]));
|
||||
best_performance = compute_perf(halloffame[0].fitness.values[0])
|
||||
sys.stdout.write('Generation %d | Time %d | Best %d %s [ for %s ]\n'%(gen, time.time() - start_time, best_performance, perf_metric, best_profile))
|
||||
sys.stdout.write('\n')
|
||||
return population
|
@@ -1,56 +1,38 @@
|
||||
import array
|
||||
import numpy as np
|
||||
import random
|
||||
import time
|
||||
import sys
|
||||
|
||||
from deap import algorithms
|
||||
import itertools
|
||||
|
||||
import tools
|
||||
import deap.tools
|
||||
|
||||
from deap import base
|
||||
from deap import creator
|
||||
from deap import tools
|
||||
from genetic import GeneticOperators
|
||||
from genetic import eaMuPlusLambda
|
||||
|
||||
from genetic_operators import GeneticOperators
|
||||
def exhaustive(statement, context, TemplateType, build_template, parameter_names, all_parameters, compute_perf, perf_metric, out):
|
||||
device = context.devices[0]
|
||||
nvalid = 0
|
||||
current = 0
|
||||
minT = float('inf')
|
||||
for individual in itertools.product(*all_parameters):
|
||||
template = build_template(TemplateType.Parameters(*individual))
|
||||
if not tools.skip(template, statement, device):
|
||||
nvalid = nvalid + 1
|
||||
for individual in itertools.product(*all_parameters):
|
||||
template = build_template(TemplateType.Parameters(*individual))
|
||||
try:
|
||||
T = tools.benchmark(template,statement,device)
|
||||
current = current + 1
|
||||
if T < minT:
|
||||
minT = T
|
||||
best = individual
|
||||
print '%d / %d , Best is %d %s for %s\r'%(current, nvalid, compute_perf(minT), perf_metric, best)
|
||||
except:
|
||||
pass
|
||||
|
||||
def eaMuPlusLambda(population, toolbox, mu, lambda_, cxpb, mutpb, maxtime, maxgen, halloffame, compute_perf, perf_metric):
|
||||
# Evaluate the individuals with an invalid fitness
|
||||
invalid_ind = [ind for ind in population if not ind.fitness.valid]
|
||||
fitnesses = toolbox.map(toolbox.evaluate, invalid_ind)
|
||||
for ind, fit in zip(invalid_ind, fitnesses):
|
||||
ind.fitness.values = fit
|
||||
|
||||
if halloffame is not None:
|
||||
halloffame.update(population)
|
||||
|
||||
# Begin the generational process
|
||||
gen = 0
|
||||
maxtime = time.strptime(maxtime, '%Mm%Ss')
|
||||
maxtime = maxtime.tm_min*60 + maxtime.tm_sec
|
||||
start_time = time.time()
|
||||
while time.time() - start_time < maxtime and gen < maxgen:
|
||||
# Vary the population
|
||||
offspring = algorithms.varOr(population, toolbox, lambda_, cxpb, mutpb)
|
||||
|
||||
# Evaluate the individuals with an invalid fitness
|
||||
invalid_ind = [ind for ind in offspring if not ind.fitness.valid]
|
||||
fitnesses = toolbox.map(toolbox.evaluate, invalid_ind)
|
||||
for ind, fit in zip(invalid_ind, fitnesses):
|
||||
ind.fitness.values = fit
|
||||
|
||||
# Update the hall of fame with the generated individuals
|
||||
if halloffame is not None:
|
||||
halloffame.update(offspring)
|
||||
|
||||
# Select the next generation population
|
||||
population[:] = toolbox.select(population + offspring, mu)
|
||||
|
||||
# Update the statistics with the new population
|
||||
gen = gen + 1
|
||||
|
||||
best_profile = '(%s)'%','.join(map(str,halloffame[0]));
|
||||
best_performance = compute_perf(halloffame[0].fitness.values[0])
|
||||
sys.stdout.write('Generation %d | Time %d | Best %d %s [ for %s ]\n'%(gen, time.time() - start_time, best_performance, perf_metric, best_profile))
|
||||
sys.stdout.write('\n')
|
||||
return population
|
||||
|
||||
def genetic(statement, context, TemplateType, build_template, parameter_names, all_parameters, compute_perf, perf_metric, out):
|
||||
gen = GeneticOperators(context.devices[0], statement, all_parameters, parameter_names, TemplateType, build_template)
|
||||
@@ -68,12 +50,12 @@ def genetic(statement, context, TemplateType, build_template, parameter_names, a
|
||||
toolbox.register("select", tools.selBest)
|
||||
|
||||
pop = toolbox.population(n=30)
|
||||
hof = tools.HallOfFame(1)
|
||||
hof = deap.tools.HallOfFame(1)
|
||||
|
||||
best_performer = lambda x: max([compute_perf(hof[0].fitness.values[0]) for t in x])
|
||||
best_profile = lambda x: '(%s)'%','.join(map(str,hof[0]))
|
||||
|
||||
stats = tools.Statistics(lambda ind: ind.fitness.values)
|
||||
stats = deap.tools.Statistics(lambda ind: ind.fitness.values)
|
||||
stats.register("max (" + perf_metric + ")", lambda x: max([compute_perf(hof[0].fitness.values[0]) for t in x]))
|
||||
stats.register("profile ", lambda x: '(%s)'%','.join(map(str,hof[0])))
|
||||
|
||||
|
@@ -1,5 +1,7 @@
|
||||
from __future__ import division
|
||||
import pyopencl
|
||||
import time
|
||||
from pyviennacl.atidlas import StatementsTuple
|
||||
|
||||
class PhysicalLimits:
|
||||
def __init__(self, dev):
|
||||
@@ -101,4 +103,36 @@ class OccupancyRecord:
|
||||
self.occupancy = 100*self.warps_per_mp/physical_limits.warps_per_mp
|
||||
|
||||
|
||||
def skip(template, statement, device):
|
||||
statements = StatementsTuple(statement)
|
||||
registers_usage = template.registers_usage(statements)/4
|
||||
lmem_usage = template.lmem_usage(statements)
|
||||
local_size = template.parameters.local_size_0*template.parameters.local_size_1
|
||||
occupancy_record = OccupancyRecord(device, local_size, lmem_usage, registers_usage)
|
||||
if template.check(statement) or occupancy_record.occupancy < 15:
|
||||
return True
|
||||
return False
|
||||
|
||||
def benchmark(template, statement, device):
|
||||
statements = StatementsTuple(statement)
|
||||
registers_usage = template.registers_usage(statements)/4
|
||||
lmem_usage = template.lmem_usage(statements)
|
||||
local_size = template.parameters.local_size_0*template.parameters.local_size_1
|
||||
occupancy_record = OccupancyRecord(device, local_size, lmem_usage, registers_usage)
|
||||
if occupancy_record.occupancy < 15 :
|
||||
raise ValueError("Template has too low occupancy")
|
||||
else:
|
||||
try:
|
||||
template.execute(statement, True)
|
||||
statement.result.context.finish_all_queues()
|
||||
N = 0
|
||||
current_time = 0
|
||||
while current_time < 1e-2:
|
||||
time_before = time.time()
|
||||
template.execute(statement,False)
|
||||
statement.result.context.finish_all_queues()
|
||||
current_time += time.time() - time_before
|
||||
N+=1
|
||||
return current_time/N
|
||||
except:
|
||||
raise ValueError("Invalid template")
|
||||
|
Reference in New Issue
Block a user