More progress on TritonGPUTypeConverter & TritonGPUConversionTarget

This commit is contained in:
Yan Da
2022-05-01 22:06:54 +08:00
parent 4ece9fd1f3
commit 1428185c9c
12 changed files with 182 additions and 22 deletions

View File

@@ -0,0 +1,68 @@
#include "triton/Dialect/TritonGPU/Transforms/TritonGPUConversion.h"
#include "triton/Dialect/Triton/IR/Dialect.h"
#include "triton/Dialect/TritonGPU/IR/Dialect.h"
#include <algorithm>
using namespace mlir;
//
// TypeConverter
//
TritonGPUTypeConverter::TritonGPUTypeConverter(MLIRContext *context,
int numThreads)
: context(context), numThreads(numThreads) {
addConversion([&](RankedTensorType tensorType) -> RankedTensorType {
llvm::ArrayRef<int64_t> shape = tensorType.getShape();
Type elementType = tensorType.getElementType();
int64_t rank = tensorType.getRank();
int64_t numElements = tensorType.getNumElements();
// TODO: we should raise exception here.
assert(numElements > numThreads);
assert(numElements % numThreads == 0);
// assert no encoding?
// Now we assume:
// contiguous = 1, order = 0, 1, 2, ...,
llvm::SmallVector<unsigned> threadTileSize(rank, 1); // naive layout
llvm::SmallVector<unsigned> blockTileSize(rank);
llvm::SmallVector<unsigned> order(rank);
int remainingThreads = numThreads;
for (int64_t dim = 0; dim < rank; ++dim) {
blockTileSize[dim] = std::clamp(remainingThreads, 1, int(shape[dim]));
order[dim] = dim;
remainingThreads /= blockTileSize[dim];
// TODO: will we need repetition?
}
Attribute encoding = triton::gpu::TritonGPUDistributedEncodingAttr::get(
context, threadTileSize, blockTileSize, order);
return RankedTensorType::get(shape, elementType, encoding);
});
}
//
// TritonGPUConversion
//
TritonGPUConversionTarget::TritonGPUConversionTarget(MLIRContext &context)
: ConversionTarget(context) {
addLegalDialect<triton::TritonDialect,
arith::ArithmeticDialect,
scf::SCFDialect>();
// Some ops from SCF are illegal
addIllegalOp<scf::ExecuteRegionOp, scf::ParallelOp,
scf::ReduceOp, scf::ReduceReturnOp>();
// // We have requirements for the data layouts
// addDynamicallyLegalOp<triton::DotOp>([](triton::DotOp dotOp) -> bool {
// Attribute aEncoding = dotOp.a().getType().cast<RankedTensorType>().getEncoding();
// Attribute bEncoding = dotOp.b().getType().cast<RankedTensorType>().getEncoding();
// if (aEncoding && aEncoding.isa<triton::gpu::TritonGPUSharedEncodingAttr>() &&
// bEncoding && bEncoding.isa<triton::gpu::TritonGPUSharedEncodingAttr>())
// return true;
// return false;
// });
}