[Triton-MLIR][BACKEND] insert_slice_async on GPUs < sm80 (#908)
`insert_slice_async` is decomposed into `load + insert_slice` in the backend. Not sure if V100 perf can match the master branch though in this way. Maybe the performance can be improved if instructions are arranged in the following form: ``` %0 = load %1 = load %2 = load ... insert_slice %0 insert_slice %1 insert_slice %2 ``` Tested on A100 when manually enabling this decomposition. Tests on V100 haven't been integrated yet, we can divide the tests into two phases: 1. Test only load, insert_slice, and insert_slice_async, given TritonGPU IRs in `test_backend.py`. 2. End to end gemm tests on V100.
This commit is contained in:
@@ -28,6 +28,12 @@ bool maybeSharedAllocationOp(Operation *op) {
|
||||
dialect->getTypeID() == mlir::TypeID::get<tensor::TensorDialect>());
|
||||
}
|
||||
|
||||
bool maybeAliasOp(Operation *op) {
|
||||
return isa<tensor::ExtractSliceOp>(op) ||
|
||||
isa<triton::gpu::InsertSliceAsyncOp>(op) ||
|
||||
isa<tensor::InsertSliceOp>(op);
|
||||
}
|
||||
|
||||
std::string getValueOperandName(Value value, AsmState &state) {
|
||||
std::string opName;
|
||||
llvm::raw_string_ostream ss(opName);
|
||||
|
Reference in New Issue
Block a user