stuff
This commit is contained in:
@@ -1,7 +1,9 @@
|
||||
import os
|
||||
import tensorflow as tf
|
||||
from tensorflow.python.framework import ops
|
||||
import numpy as np
|
||||
from time import time
|
||||
|
||||
data_files_path = tf.resource_loader.get_data_files_path()
|
||||
library_dir = os.path.dirname(os.path.realpath(__file__))
|
||||
module = tf.load_op_library(os.path.join(library_dir, 'libtf_blocksparse.so'))
|
||||
@@ -42,23 +44,45 @@ def run_conv():
|
||||
result = sess.run([c], feed_dict = {a: ha,
|
||||
b: hb})[0]
|
||||
|
||||
|
||||
@ops.RegisterGradient('ShiftConv')
|
||||
def blocksparse_matmul_grad(op, dy):
|
||||
shift_h = op.get_attr('shift_h')
|
||||
shift_w = op.get_attr('shift_w')
|
||||
x = op.inputs[0]
|
||||
w = op.inputs[1]
|
||||
dx = module.shift_conv_dx(dy, w, shift_h=shift_h, shift_w=shift_w)
|
||||
dw = module.shift_conv_dw(dy, x, shift_h=shift_h, shift_w=shift_w)
|
||||
return (dx, dw)
|
||||
|
||||
def run_shift():
|
||||
B, C, H, W = 16, 32, 32, 32
|
||||
R, S, F = 3, 3, 32
|
||||
B, C, H, W = 1, 16, 8, 8
|
||||
R, S, F = 3, 3, 16
|
||||
a = tf.placeholder(tf.float32, shape=[C, H, W, B])
|
||||
b = tf.placeholder(tf.float32, shape=[C, F])
|
||||
shift_h = tf.zeros(C, tf.int32)
|
||||
shift_w = tf.zeros(C, tf.int32)
|
||||
hshift_h = np.zeros(C, np.int32)
|
||||
hshift_w = np.zeros(C, np.int32)
|
||||
#hshift_h = np.random.randint(-R//2, R//2 + 1, size=C, dtype=np.int32)
|
||||
#hshift_w = np.random.randint(-S//2, R//2 + 1, size=C, dtype=np.int32)
|
||||
hshift_h = 0*np.ones(C, dtype=np.int32)
|
||||
hshift_w = 0*np.ones(C, dtype=np.int32)
|
||||
c = module.shift_conv(a, b, shift_h=tf.make_tensor_proto(hshift_h), shift_w=tf.make_tensor_proto(hshift_w))
|
||||
# Reference
|
||||
ha = np.random.rand(C, H, W, B)
|
||||
hb = np.random.rand(C, F)
|
||||
# Run
|
||||
ha = np.ones((C, H, W, B), dtype=np.int32)
|
||||
hb = np.ones((C, F), dtype=np.int32)
|
||||
sess = tf.InteractiveSession()
|
||||
grads = tf.test.compute_gradient([a, b], [(C, H, W, B), (C, F)], c, (C, H, W, B),
|
||||
extra_feed_dict={a: ha, b: hb})
|
||||
dx_t, dx_n = grads[0]
|
||||
dw_t, dw_n = grads[1]
|
||||
print(dw_t)
|
||||
print(dw_n)
|
||||
#print(np.max(dw_t - dw_n))
|
||||
#print(np.max(dx_t - dx_n))
|
||||
np.savetxt('theoretical.dat', dw_t, fmt='%4.2f')
|
||||
np.savetxt('numerical.dat', dw_n, fmt='%4.2f')
|
||||
# Run
|
||||
sess.run(tf.global_variables_initializer())
|
||||
result = sess.run([c], feed_dict = {a: ha,
|
||||
b: hb})[0]
|
||||
#print(result)
|
||||
|
||||
run_shift()
|
||||
|
Reference in New Issue
Block a user