fixup
This commit is contained in:
@@ -19,6 +19,7 @@
|
||||
using namespace tensorflow;
|
||||
using GPUDevice = Eigen::GpuDevice;
|
||||
|
||||
template<triton::dnn::shift::type OP>
|
||||
class ShiftConvOp : public OpKernel {
|
||||
public:
|
||||
explicit ShiftConvOp(OpKernelConstruction* context) : OpKernel(context) {
|
||||
@@ -28,7 +29,40 @@ public:
|
||||
S_ = 3;
|
||||
}
|
||||
|
||||
void ComputeCommon(OpKernelContext* context){
|
||||
void FillShapes(OpKernelContext* context,
|
||||
int64_t &C, int64_t &H, int64_t &W, int64_t &B, int64_t &F,
|
||||
const Tensor& tf_a, const Tensor& tf_b) {
|
||||
if(OP == triton::dnn::shift::WGRAD) {
|
||||
// shapes for a
|
||||
F = tf_a.dim_size(0);
|
||||
int64_t Ha = tf_a.dim_size(1);
|
||||
int64_t Wa = tf_a.dim_size(2);
|
||||
int64_t Ba = tf_a.dim_size(3);
|
||||
// shapes for b
|
||||
C = tf_b.dim_size(0);
|
||||
int64_t Hb = tf_b.dim_size(1);
|
||||
int64_t Wb = tf_b.dim_size(2);
|
||||
int64_t Bb = tf_b.dim_size(3);
|
||||
OP_REQUIRES(context, Ha == Hb, tensorflow::errors::InvalidArgument("operands must have the same image height"));
|
||||
OP_REQUIRES(context, Wa == Wb, tensorflow::errors::InvalidArgument("operands must have the same image width"));
|
||||
OP_REQUIRES(context, Ba == Bb, tensorflow::errors::InvalidArgument("operands must have the same batch size"));
|
||||
H = Ha;
|
||||
W = Wa;
|
||||
B = Ba;
|
||||
}
|
||||
else {
|
||||
// shapes for a
|
||||
int64_t Ca = tf_a.dim_size(0);
|
||||
H = tf_a.dim_size(1);
|
||||
W = tf_a.dim_size(2);
|
||||
B = tf_a.dim_size(3);
|
||||
// shapes for b
|
||||
int64_t Cb = tf_b.dim_size(0);
|
||||
F = tf_b.dim_size(1);
|
||||
// checks
|
||||
OP_REQUIRES(context, Ca == Cb, tensorflow::errors::InvalidArgument("operands must have the same number of channels"));
|
||||
C = Ca;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
@@ -41,23 +75,24 @@ public:
|
||||
// get inputs
|
||||
const Tensor& tf_a = context->input(0);
|
||||
const Tensor& tf_b = context->input(1);
|
||||
// shapes for a
|
||||
int64_t Ca = tf_a.dim_size(0);
|
||||
int64_t H = tf_a.dim_size(1);
|
||||
int64_t W = tf_a.dim_size(2);
|
||||
int64_t B = tf_a.dim_size(3);
|
||||
// shapes for b
|
||||
int64_t Cb = tf_b.dim_size(0);
|
||||
int64_t F = tf_b.dim_size(1);
|
||||
// checks
|
||||
OP_REQUIRES(context, Ca == Cb, tensorflow::errors::InvalidArgument("operands must have the same number of channels"));
|
||||
int64_t C = Ca;
|
||||
// shapes
|
||||
int64_t C, H, W, B, F;
|
||||
FillShapes(context, C, H, W, B, F, tf_a, tf_b);
|
||||
// shift configuration
|
||||
int32_t* shift_h_data = h_shift_h_.flat<int32_t>().data();
|
||||
int32_t* shift_w_data = h_shift_w_.flat<int32_t>().data();
|
||||
std::vector<int32_t> shift_h(shift_h_data, shift_h_data + C);
|
||||
std::vector<int32_t> shift_w(shift_w_data, shift_w_data + C);
|
||||
triton::dnn::shift shift(B, C, 1, H, W, 1, R_, S_, F, shift_h, shift_w, "fp32", "fp32", OP, false);
|
||||
// shapes for c
|
||||
std::vector<int64> c_shapes;
|
||||
for(int32_t x: shift.c_shapes())
|
||||
c_shapes.push_back(x);
|
||||
TensorShape out_shapes(c_shapes);
|
||||
Tensor* tf_c = nullptr;
|
||||
TensorShape out_shape({Ca, H, W, B});
|
||||
OP_REQUIRES_OK(context, context->allocate_output(0, out_shape, &tf_c));
|
||||
OP_REQUIRES_OK(context, context->allocate_output(0, out_shapes, &tf_c));
|
||||
// return early if possible
|
||||
if (out_shape.num_elements() == 0)
|
||||
if (out_shapes.num_elements() == 0)
|
||||
return;
|
||||
// initialize default compute device
|
||||
triton::jit jit(ctx);
|
||||
@@ -65,12 +100,6 @@ public:
|
||||
triton::driver::cu_buffer da(ctx, (CUdeviceptr)tf_a.flat<float>().data(), false);
|
||||
triton::driver::cu_buffer db(ctx, (CUdeviceptr)tf_b.flat<float>().data(), false);
|
||||
triton::driver::cu_buffer dc(ctx, (CUdeviceptr)tf_c->flat<float>().data(), false);
|
||||
// shift configuration
|
||||
int32_t* shift_h_data = h_shift_h_.flat<int32_t>().data();
|
||||
int32_t* shift_w_data = h_shift_w_.flat<int32_t>().data();
|
||||
std::vector<int32_t> shift_h(shift_h_data, shift_h_data + C);
|
||||
std::vector<int32_t> shift_w(shift_w_data, shift_w_data + C);
|
||||
triton::dnn::shift shift(B, C, 1, H, W, 1, R_, S_, F, shift_h, shift_w, "fp32", "fp32", triton::dnn::shift::FPROP, false);
|
||||
// benchmark a given matrix multiplication kernel
|
||||
auto benchmark = [&](triton::driver::kernel* kernel,
|
||||
triton::jit::launch_information info) {
|
||||
@@ -101,7 +130,7 @@ private:
|
||||
int S_;
|
||||
};
|
||||
|
||||
REGISTER_KERNEL_BUILDER(Name("ShiftConv").Device(DEVICE_GPU), ShiftConvOp);
|
||||
REGISTER_KERNEL_BUILDER(Name("ShiftConv").Device(DEVICE_GPU), ShiftConvOp<triton::dnn::shift::FPROP>);
|
||||
REGISTER_OP("ShiftConv")
|
||||
.Input("a: float32")
|
||||
.Input("b: float32")
|
||||
|
Reference in New Issue
Block a user