141 lines
5.1 KiB
C++
141 lines
5.1 KiB
C++
#include <iostream>
|
|
|
|
#include "triton/driver/buffer.h"
|
|
#include "triton/driver/backend.h"
|
|
#include "triton/driver/stream.h"
|
|
#include "triton/runtime/jit.h"
|
|
#include "triton/tools/bench.hpp"
|
|
#include "triton/dnn/shift.h"
|
|
|
|
#define EIGEN_USE_GPU
|
|
#include "tensorflow/core/framework/op.h"
|
|
#include "tensorflow/core/framework/shape_inference.h"
|
|
#include "tensorflow/core/framework/op_kernel.h"
|
|
#include "tensorflow/core/util/cuda_kernel_helper.h"
|
|
#include "tensorflow/core/util/padding.h"
|
|
#include "tensorflow/core/util/tensor_format.h"
|
|
#include "tensorflow/core/framework/common_shape_fns.h"
|
|
|
|
using namespace tensorflow;
|
|
using GPUDevice = Eigen::GpuDevice;
|
|
|
|
template<triton::dnn::shift::type OP>
|
|
class ShiftConvOp : public OpKernel {
|
|
public:
|
|
explicit ShiftConvOp(OpKernelConstruction* context) : OpKernel(context) {
|
|
context->GetAttr("shift_h", &h_shift_h_);
|
|
context->GetAttr("shift_w", &h_shift_w_);
|
|
R_ = 3;
|
|
S_ = 3;
|
|
}
|
|
|
|
void FillShapes(OpKernelContext* context,
|
|
int64_t &C, int64_t &H, int64_t &W, int64_t &B, int64_t &F,
|
|
const Tensor& tf_a, const Tensor& tf_b) {
|
|
if(OP == triton::dnn::shift::WGRAD) {
|
|
// shapes for a
|
|
F = tf_a.dim_size(0);
|
|
int64_t Ha = tf_a.dim_size(1);
|
|
int64_t Wa = tf_a.dim_size(2);
|
|
int64_t Ba = tf_a.dim_size(3);
|
|
// shapes for b
|
|
C = tf_b.dim_size(0);
|
|
int64_t Hb = tf_b.dim_size(1);
|
|
int64_t Wb = tf_b.dim_size(2);
|
|
int64_t Bb = tf_b.dim_size(3);
|
|
OP_REQUIRES(context, Ha == Hb, tensorflow::errors::InvalidArgument("operands must have the same image height"));
|
|
OP_REQUIRES(context, Wa == Wb, tensorflow::errors::InvalidArgument("operands must have the same image width"));
|
|
OP_REQUIRES(context, Ba == Bb, tensorflow::errors::InvalidArgument("operands must have the same batch size"));
|
|
H = Ha;
|
|
W = Wa;
|
|
B = Ba;
|
|
}
|
|
else {
|
|
// shapes for a
|
|
int64_t Ca = tf_a.dim_size(0);
|
|
H = tf_a.dim_size(1);
|
|
W = tf_a.dim_size(2);
|
|
B = tf_a.dim_size(3);
|
|
// shapes for b
|
|
int64_t Cb = tf_b.dim_size(0);
|
|
F = tf_b.dim_size(1);
|
|
// checks
|
|
OP_REQUIRES(context, Ca == Cb, tensorflow::errors::InvalidArgument("operands must have the same number of channels"));
|
|
C = Ca;
|
|
}
|
|
|
|
}
|
|
|
|
void Compute(OpKernelContext* context){
|
|
// get device/stream
|
|
GPUDevice device = context->eigen_device<GPUDevice>();
|
|
triton::driver::cu_stream sstream(device.stream(), false);
|
|
triton::driver::context* ctx = sstream.context();
|
|
triton::driver::stream* stream = &sstream;
|
|
// get inputs
|
|
const Tensor& tf_a = context->input(0);
|
|
const Tensor& tf_b = context->input(1);
|
|
// shapes
|
|
int64_t C, H, W, B, F;
|
|
FillShapes(context, C, H, W, B, F, tf_a, tf_b);
|
|
// shift configuration
|
|
int32_t* shift_h_data = h_shift_h_.flat<int32_t>().data();
|
|
int32_t* shift_w_data = h_shift_w_.flat<int32_t>().data();
|
|
std::vector<int32_t> shift_h(shift_h_data, shift_h_data + C);
|
|
std::vector<int32_t> shift_w(shift_w_data, shift_w_data + C);
|
|
triton::dnn::shift shift(B, C, 1, H, W, 1, R_, S_, F, shift_h, shift_w, "fp32", "fp32", OP, false);
|
|
// shapes for c
|
|
std::vector<int64> c_shapes;
|
|
for(int32_t x: shift.c_shapes())
|
|
c_shapes.push_back(x);
|
|
TensorShape out_shapes(c_shapes);
|
|
Tensor* tf_c = nullptr;
|
|
OP_REQUIRES_OK(context, context->allocate_output(0, out_shapes, &tf_c));
|
|
// return early if possible
|
|
if (out_shapes.num_elements() == 0)
|
|
return;
|
|
// initialize default compute device
|
|
triton::jit jit(ctx);
|
|
// matrix multiplication parameters
|
|
triton::driver::cu_buffer da(ctx, (CUdeviceptr)tf_a.flat<float>().data(), false);
|
|
triton::driver::cu_buffer db(ctx, (CUdeviceptr)tf_b.flat<float>().data(), false);
|
|
triton::driver::cu_buffer dc(ctx, (CUdeviceptr)tf_c->flat<float>().data(), false);
|
|
// benchmark a given matrix multiplication kernel
|
|
auto benchmark = [&](triton::driver::kernel* kernel,
|
|
triton::jit::launch_information info) {
|
|
// launch info
|
|
unsigned TM = info.global_range_size[0];
|
|
unsigned TN = info.global_range_size[1];
|
|
unsigned nthreads = info.num_threads;
|
|
shift.init(stream, (triton::driver::cu_module*)kernel->module());
|
|
shift.enqueue(stream, kernel, &da, &db, &dc, TM, TN, nthreads);
|
|
stream->synchronize();
|
|
double ts = triton::tools::bench([&](){ shift.enqueue(stream, kernel, &da, &db, &dc, TM, TN, nthreads); },
|
|
[&](){ stream->synchronize(); }, ctx->device());
|
|
return shift.get_nflops() / ts * 1e-3;
|
|
};
|
|
|
|
std::ostringstream oss;
|
|
shift.src(oss);
|
|
std::string src = oss.str();
|
|
triton::jit::tune_res_t best = jit.autotune("shift", src.c_str(), benchmark);
|
|
}
|
|
|
|
private:
|
|
Tensor h_shift_h_;
|
|
Tensor h_shift_w_;
|
|
// triton::driver::buffer* d_shift_h_;
|
|
// triton::driver::buffer* d_shift_w_;
|
|
int R_;
|
|
int S_;
|
|
};
|
|
|
|
REGISTER_KERNEL_BUILDER(Name("ShiftConv").Device(DEVICE_GPU), ShiftConvOp<triton::dnn::shift::FPROP>);
|
|
REGISTER_OP("ShiftConv")
|
|
.Input("a: float32")
|
|
.Input("b: float32")
|
|
.Attr("shift_h: tensor")
|
|
.Attr("shift_w: tensor")
|
|
.Output("c: float32")
|
|
;
|