[FRONTEND] Backport new runtime from master (#706)

This PR merges the new runtime back into the `triton-mlir` branch. This
adds caching and just-in-time compilation functionality to the
triton-mlir project, and paves the way for re-using tests from the
master branch.
This commit is contained in:
Philippe Tillet
2022-09-23 16:09:43 -07:00
committed by GitHub
parent ecd1bc33df
commit 22ec22c257
13 changed files with 790 additions and 419 deletions

View File

@@ -2,8 +2,9 @@ import triton
import triton.language as tl
# TODO: function with no arguments don't work
@triton.jit
def cast_check():
def cast_check(X):
zero_0d = tl.zeros([], dtype=tl.float32)
zero_1d = tl.zeros([2], dtype=tl.float32)
zero_2d_21 = tl.zeros([2, 1], dtype=tl.float32)
@@ -48,9 +49,9 @@ def cast_check():
def test_cast_check():
kernel = triton.compile(cast_check,
signature="",
device=0,
output="ttir")
kernel = triton.compiler._compile(cast_check,
signature="*fp32",
device=0,
output="ttgir")
assert (kernel)
# TODO: Check types of the results

View File

@@ -2,7 +2,6 @@ import torch
import triton
import triton.language as tl
import triton.runtime as runtime
# trigger the torch.device implicitly to ensure cuda context initialization
torch.zeros([10], device=torch.device('cuda'))
@@ -16,30 +15,18 @@ def empty_kernel(X, stride_xm, BLOCK: tl.constexpr):
def test_empty_kernel_cubin_compile():
device = torch.cuda.current_device()
cubin = triton.compile(empty_kernel,
"*fp32,i32,i32",
device=device,
constants={"BLOCK": 256},
output="cubin")
kernel = triton.compile(empty_kernel,
"*fp32,i32,i32",
device=device,
constants={"BLOCK": 256})
print('cubin size:', len(cubin))
assert len(cubin) > 0
assert len(kernel.asm["cubin"]) > 0
def test_empty_kernel_launch():
device = torch.cuda.current_device()
binary = runtime.build_kernel(empty_kernel, "*fp32,i32,i32",
constants={"BLOCK": 256},
num_warps=4,
num_stages=3)
grid = lambda META: (
triton.cdiv(1024, META['BLOCK']) * triton.cdiv(1024, META['BLOCK']),
)
A = torch.zeros([1024], device="cuda")
runtime.launch_kernel(kernel=binary,
grid=grid,
device=device,
X=A,
stride_xm=256,
BLOCK=tl.constexpr(256))
empty_kernel[grid](X=A, stride_xm=256, BLOCK=256)

View File

@@ -23,11 +23,11 @@ def math_kernel(x1_ptr, x2_ptr, x3_ptr, x4_ptr, n, BLOCK_SIZE: tl.constexpr):
def test_empty_kernel_cubin_compile():
kernel = triton.compile(math_kernel,
"*fp32,*fp32,*fp32,*fp32,i32",
device=0,
constants={"BLOCK_SIZE": 256},
output="ttgir") # "cubin"
kernel = triton.compiler._compile(math_kernel,
"*fp32,*fp32,*fp32,*fp32,i32",
device=0,
constants={"BLOCK_SIZE": 256},
output="ttgir") # "cubin"
assert kernel
# TODO: Check if the values are correct.
# TODO: Cover all the math operators

View File

@@ -4,7 +4,6 @@ from torch.testing import assert_allclose
import triton
import triton.language as tl
import triton.runtime as runtime
@triton.jit
@@ -40,29 +39,9 @@ def kernel(x_ptr, stride_xm,
[2, 128, 64]
])
def test_convert_layout_impl(NUM_WARPS, SIZE_M, SIZE_N):
# TODO: this is to initialize the cuda context since it is not properly
# dealed with in the existing runtime, remove this when the runtime
# is updated
torch.zeros([10], device=torch.device('cuda'))
device = torch.cuda.current_device()
binary = runtime.build_kernel(kernel,
"*fp32,i32,*fp32,i32",
constants={"SIZE_M": SIZE_M,
"SIZE_N": SIZE_N},
num_warps=NUM_WARPS,
num_stages=3)
grid = lambda META: (1, )
x = torch.randn((SIZE_M, SIZE_N), device='cuda', dtype=torch.float32)
z = torch.empty((SIZE_N, SIZE_M), device=x.device, dtype=x.dtype)
runtime.launch_kernel(kernel=binary,
device=device,
grid=grid,
x_ptr=x,
stride_xm=x.stride(0),
z_ptr=z,
stride_zn=z.stride(0),
SIZE_M=tl.constexpr(SIZE_M),
SIZE_N=tl.constexpr(SIZE_N))
kernel[grid](x_ptr=x, stride_xm=x.stride(0), z_ptr=z, stride_zn=z.stride(0), SIZE_M=SIZE_M, SIZE_N=SIZE_N, num_warps=NUM_WARPS)
golden_z = torch.t(x)
assert_allclose(z, golden_z, rtol=1e-7, atol=1e-7)

View File

@@ -3,7 +3,6 @@ from torch.testing import assert_allclose
import triton
import triton.language as tl
import triton.runtime as runtime
def vecadd_no_scf_tester(num_warps, block_size):
@@ -22,27 +21,13 @@ def vecadd_no_scf_tester(num_warps, block_size):
z_ptrs = z_ptr + offset
tl.store(z_ptrs, z)
torch.zeros([10], device=torch.device('cuda'))
device = torch.cuda.current_device()
binary = runtime.build_kernel(kernel, "*fp32,*fp32,*fp32,i32",
constants={"BLOCK_SIZE_N": block_size},
num_warps=num_warps,
num_stages=3)
x = torch.randn((block_size,), device='cuda', dtype=torch.float32)
y = torch.randn((block_size,), device='cuda', dtype=torch.float32)
z = torch.empty((block_size,), device=x.device, dtype=x.dtype)
assert x.shape.numel() % block_size == 0, "Only test load without mask here"
grid = lambda EA: (x.shape.numel() // block_size,)
kernel[grid](x_ptr=x, y_ptr=y, z_ptr=z, BLOCK_SIZE_N=block_size, num_warps=num_warps)
runtime.launch_kernel(kernel=binary,
grid=grid,
device=device,
x_ptr=x,
y_ptr=y,
z_ptr=z,
BLOCK_SIZE_N=tl.constexpr(block_size))
golden_z = x + y
assert_allclose(z, golden_z, rtol=1e-7, atol=1e-7)