This commit is contained in:
Phil Tillet
2022-12-28 14:23:59 -08:00
parent 54ae3e8d6e
commit 263ad883a6

View File

@@ -0,0 +1,104 @@
#include "mlir/Analysis/SliceAnalysis.h"
#include "mlir/Dialect/SCF/SCF.h"
#include "mlir/IR/BlockAndValueMapping.h"
#include "mlir/IR/BuiltinAttributes.h"
#include "mlir/IR/Matchers.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/IR/Verifier.h"
#include "mlir/Interfaces/InferTypeOpInterface.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Pass/PassManager.h"
#include "mlir/Support/LogicalResult.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
#include "mlir/Transforms/Passes.h"
#include "mlir/Transforms/RegionUtils.h"
#include "triton/Analysis/Utility.h"
#include "triton/Dialect/TritonGPU/IR/Dialect.h"
#include "triton/Dialect/TritonGPU/Transforms/Passes.h"
#include "triton/Dialect/TritonGPU/Transforms/TritonGPUConversion.h"
#define GEN_PASS_CLASSES
#include "triton/Dialect/TritonGPU/Transforms/Passes.h.inc"
using namespace mlir;
class LoadConvertToInsertSlice : public mlir::RewritePattern{
public:
explicit LoadConvertToInsertSlice(mlir::MLIRContext *context)
: mlir::RewritePattern(triton::gpu::ConvertLayoutOp::getOperationName(), 2, context) {}
mlir::LogicalResult
matchAndRewrite(mlir::Operation *op,
mlir::PatternRewriter &rewriter) const override {
auto cvt = cast<triton::gpu::ConvertLayoutOp>(op);
auto origRetType = cvt.getResult().getType().cast<RankedTensorType>();
auto shape = origRetType.getShape();
auto eltType = origRetType.getElementType();
auto dotOpEncoding = origRetType.getEncoding().dyn_cast<triton::gpu::DotOperandEncodingAttr>();
if(!dotOpEncoding){
return failure();
}
auto cvtArg = cvt.getOperand().getDefiningOp();
if(!cvtArg)
return failure();
auto loadOp = dyn_cast<triton::LoadOp>(*cvtArg);
if(!loadOp){
return failure();
}
auto blockedEncoding = loadOp.getType().cast<RankedTensorType>().getEncoding().dyn_cast<triton::gpu::BlockedEncodingAttr>();
if(!blockedEncoding)
return failure();
auto sharedEncoding = triton::gpu::SharedEncodingAttr::get(getContext(), dotOpEncoding, shape,
blockedEncoding.getOrder(), eltType);
auto srcTy = RankedTensorType::get({1, shape[0], shape[1]},
eltType,
sharedEncoding);
auto loadTensor = rewriter.create<triton::gpu::AllocTensorOp>(op->getLoc(), srcTy);
auto newOp = rewriter.create<triton::gpu::InsertSliceAsyncOp>(
op->getLoc(), loadTensor.getType(),
loadOp.ptr(),
loadTensor, rewriter.create<arith::ConstantIntOp>(op->getLoc(), 0, 32),
loadOp.mask(),
loadOp.other(), loadOp.cache(),
loadOp.evict(), loadOp.isVolatile(), /*axis*/ 0);
rewriter.create<triton::gpu::AsyncWaitOp>(op->getLoc(), 0);
auto tmpType = RankedTensorType::get({shape[0], shape[1]}, eltType, sharedEncoding);
auto _0 = rewriter.getI64IntegerAttr(0);
auto _1 = rewriter.getI64IntegerAttr(1);
auto tmp = rewriter.create<tensor::ExtractSliceOp>(op->getLoc(), tmpType, newOp,
SmallVector<OpFoldResult>{_0, _0, _0},
SmallVector<OpFoldResult>{_1,
rewriter.getI64IntegerAttr(shape[0]),
rewriter.getI64IntegerAttr(shape[1])},
SmallVector<OpFoldResult>{_1, _1, _1});
rewriter.replaceOpWithNewOp<triton::gpu::ConvertLayoutOp>(op, origRetType, tmp);
return success();
}
};
class TritonGPUOptimizeLoadConvertPass
: public TritonGPUOptimizeLoadConvertBase<TritonGPUOptimizeLoadConvertPass> {
public:
TritonGPUOptimizeLoadConvertPass() = default;
void runOnOperation() override {
MLIRContext *context = &getContext();
ModuleOp m = getOperation();
mlir::RewritePatternSet patterns(context);
patterns.add<LoadConvertToInsertSlice>(context);
if (applyPatternsAndFoldGreedily(m, std::move(patterns)).failed()) {
signalPassFailure();
}
}
};
std::unique_ptr<Pass>
mlir::createTritonGPUOptimizeLoadConvertPass() {
return std::make_unique<TritonGPUOptimizeLoadConvertPass>();
}