[GH-PAGES] Updated website
Before Width: | Height: | Size: 24 KiB After Width: | Height: | Size: 24 KiB |
Before Width: | Height: | Size: 15 KiB After Width: | Height: | Size: 15 KiB |
Before Width: | Height: | Size: 39 KiB After Width: | Height: | Size: 40 KiB |
Before Width: | Height: | Size: 24 KiB After Width: | Height: | Size: 24 KiB |
Before Width: | Height: | Size: 54 KiB After Width: | Height: | Size: 54 KiB |
Before Width: | Height: | Size: 31 KiB After Width: | Height: | Size: 31 KiB |
@@ -222,14 +222,14 @@ We can now run the decorated function above. Pass `show_plots=True` to see the p
|
||||
3 32768.0 76.800002 76.800002
|
||||
4 65536.0 127.999995 127.999995
|
||||
5 131072.0 219.428568 219.428568
|
||||
6 262144.0 384.000001 341.333321
|
||||
6 262144.0 341.333321 341.333321
|
||||
7 524288.0 472.615390 472.615390
|
||||
8 1048576.0 614.400016 614.400016
|
||||
9 2097152.0 722.823517 722.823517
|
||||
10 4194304.0 780.190482 780.190482
|
||||
11 8388608.0 812.429770 812.429770
|
||||
12 16777216.0 833.084721 833.084721
|
||||
13 33554432.0 843.811163 842.004273
|
||||
13 33554432.0 843.811163 843.811163
|
||||
14 67108864.0 849.278610 848.362445
|
||||
15 134217728.0 851.577704 850.656574
|
||||
|
||||
@@ -239,7 +239,7 @@ We can now run the decorated function above. Pass `show_plots=True` to see the p
|
||||
|
||||
.. rst-class:: sphx-glr-timing
|
||||
|
||||
**Total running time of the script:** ( 0 minutes 11.011 seconds)
|
||||
**Total running time of the script:** ( 0 minutes 11.009 seconds)
|
||||
|
||||
|
||||
.. _sphx_glr_download_getting-started_tutorials_01-vector-add.py:
|
||||
|
@@ -261,17 +261,17 @@ We will then compare its performance against (1) :code:`torch.softmax` and (2) t
|
||||
|
||||
softmax-performance:
|
||||
N Triton Torch (native) Torch (jit)
|
||||
0 256.0 512.000001 546.133347 282.482752
|
||||
0 256.0 512.000001 546.133347 273.066674
|
||||
1 384.0 585.142862 585.142862 267.130429
|
||||
2 512.0 655.360017 606.814814 264.258068
|
||||
3 640.0 682.666684 640.000002 269.473696
|
||||
2 512.0 630.153853 585.142849 264.258068
|
||||
3 640.0 682.666684 640.000002 265.974036
|
||||
4 768.0 702.171410 664.216187 273.066663
|
||||
.. ... ... ... ...
|
||||
93 12160.0 812.359066 405.755985 329.204728
|
||||
94 12288.0 812.429770 415.222812 329.602681
|
||||
93 12160.0 812.359066 405.755985 329.483481
|
||||
94 12288.0 812.429770 415.661740 329.602681
|
||||
95 12416.0 810.840807 412.149375 328.900662
|
||||
96 12544.0 810.925276 412.546756 329.292871
|
||||
97 12672.0 811.007961 412.097543 329.410251
|
||||
96 12544.0 809.290334 412.971190 329.022957
|
||||
97 12672.0 811.007961 412.097543 329.142870
|
||||
|
||||
[98 rows x 4 columns]
|
||||
|
||||
@@ -290,7 +290,7 @@ In the above plot, we can see that:
|
||||
|
||||
.. rst-class:: sphx-glr-timing
|
||||
|
||||
**Total running time of the script:** ( 1 minutes 8.194 seconds)
|
||||
**Total running time of the script:** ( 1 minutes 8.799 seconds)
|
||||
|
||||
|
||||
.. _sphx_glr_download_getting-started_tutorials_02-fused-softmax.py:
|
||||
|
@@ -371,37 +371,37 @@ We can now compare the performance of our kernel against that of cuBLAS. Here we
|
||||
matmul-performance:
|
||||
M cuBLAS ... Triton Triton (+ LeakyReLU)
|
||||
0 128.0 0.455111 ... 0.512000 0.512000
|
||||
1 256.0 2.730667 ... 3.276800 2.978909
|
||||
2 384.0 7.372800 ... 8.507077 7.899428
|
||||
3 512.0 14.563555 ... 15.420235 15.420235
|
||||
4 640.0 22.260869 ... 24.380953 24.380953
|
||||
1 256.0 2.978909 ... 2.978909 2.978909
|
||||
2 384.0 7.372800 ... 8.507077 8.507077
|
||||
3 512.0 14.563555 ... 16.384000 15.420235
|
||||
4 640.0 22.260869 ... 23.272727 23.272727
|
||||
5 768.0 32.768000 ... 34.028308 34.028308
|
||||
6 896.0 37.971025 ... 39.025776 37.971025
|
||||
6 896.0 39.025776 ... 39.025776 35.123201
|
||||
7 1024.0 49.932191 ... 52.428801 52.428801
|
||||
8 1152.0 44.566925 ... 45.938215 45.938215
|
||||
8 1152.0 45.242181 ... 46.656000 45.938215
|
||||
9 1280.0 51.200001 ... 56.109587 56.109587
|
||||
10 1408.0 64.138541 ... 64.902096 64.902096
|
||||
11 1536.0 80.430545 ... 75.296679 75.296679
|
||||
10 1408.0 64.138541 ... 65.684049 65.684049
|
||||
11 1536.0 80.430545 ... 76.106321 76.106321
|
||||
12 1664.0 63.372618 ... 61.636381 61.636381
|
||||
13 1792.0 72.983276 ... 68.533074 68.533074
|
||||
14 1920.0 66.782607 ... 66.782607 70.172588
|
||||
15 2048.0 73.908442 ... 75.915006 75.573044
|
||||
16 2176.0 81.803444 ... 79.855747 79.540109
|
||||
17 2304.0 68.251065 ... 72.607513 72.387489
|
||||
18 2432.0 71.125224 ... 79.813818 79.362895
|
||||
19 2560.0 77.649287 ... 76.382283 76.204654
|
||||
20 2688.0 82.823267 ... 82.642823 85.051697
|
||||
21 2816.0 81.827785 ... 78.726003 78.726003
|
||||
22 2944.0 81.698415 ... 80.251257 79.737653
|
||||
23 3072.0 82.420822 ... 84.892208 83.886078
|
||||
24 3200.0 84.099871 ... 89.012517 84.099871
|
||||
25 3328.0 82.653612 ... 82.275764 82.181847
|
||||
26 3456.0 80.300370 ... 82.183044 86.042231
|
||||
27 3584.0 87.381330 ... 91.938029 84.586450
|
||||
28 3712.0 84.301560 ... 82.902362 80.692524
|
||||
29 3840.0 83.402717 ... 86.535214 87.011801
|
||||
30 3968.0 92.864488 ... 85.510815 84.328915
|
||||
31 4096.0 93.727466 ... 88.768339 84.894196
|
||||
13 1792.0 72.983276 ... 68.953520 68.953520
|
||||
14 1920.0 69.467336 ... 70.172588 68.776119
|
||||
15 2048.0 73.908442 ... 75.573044 75.573044
|
||||
16 2176.0 83.500614 ... 79.855747 79.226957
|
||||
17 2304.0 68.251065 ... 72.607513 73.051599
|
||||
18 2432.0 71.305746 ... 79.813818 78.917033
|
||||
19 2560.0 77.833728 ... 76.382283 76.740048
|
||||
20 2688.0 82.823267 ... 80.880718 82.642823
|
||||
21 2816.0 83.873477 ... 77.882512 77.330158
|
||||
22 2944.0 82.102191 ... 80.122235 79.610276
|
||||
23 3072.0 78.643199 ... 81.707223 83.514905
|
||||
24 3200.0 84.321474 ... 89.012517 85.219705
|
||||
25 3328.0 83.226931 ... 86.320498 82.464255
|
||||
26 3456.0 81.026701 ... 84.508982 86.689860
|
||||
27 3584.0 87.211821 ... 91.750399 87.042978
|
||||
28 3712.0 84.230479 ... 83.526206 82.902362
|
||||
29 3840.0 80.197243 ... 82.102449 80.667046
|
||||
30 3968.0 88.231331 ... 81.079024 83.807647
|
||||
31 4096.0 93.596744 ... 90.504200 89.777746
|
||||
|
||||
[32 rows x 5 columns]
|
||||
|
||||
@@ -411,7 +411,7 @@ We can now compare the performance of our kernel against that of cuBLAS. Here we
|
||||
|
||||
.. rst-class:: sphx-glr-timing
|
||||
|
||||
**Total running time of the script:** ( 2 minutes 7.920 seconds)
|
||||
**Total running time of the script:** ( 2 minutes 26.808 seconds)
|
||||
|
||||
|
||||
.. _sphx_glr_download_getting-started_tutorials_03-matrix-multiplication.py:
|
||||
|
@@ -5,12 +5,12 @@
|
||||
|
||||
Computation times
|
||||
=================
|
||||
**03:27.125** total execution time for **getting-started_tutorials** files:
|
||||
**03:46.617** total execution time for **getting-started_tutorials** files:
|
||||
|
||||
+---------------------------------------------------------------------------------------------------------+-----------+--------+
|
||||
| :ref:`sphx_glr_getting-started_tutorials_03-matrix-multiplication.py` (``03-matrix-multiplication.py``) | 02:07.920 | 0.0 MB |
|
||||
| :ref:`sphx_glr_getting-started_tutorials_03-matrix-multiplication.py` (``03-matrix-multiplication.py``) | 02:26.808 | 0.0 MB |
|
||||
+---------------------------------------------------------------------------------------------------------+-----------+--------+
|
||||
| :ref:`sphx_glr_getting-started_tutorials_02-fused-softmax.py` (``02-fused-softmax.py``) | 01:08.194 | 0.0 MB |
|
||||
| :ref:`sphx_glr_getting-started_tutorials_02-fused-softmax.py` (``02-fused-softmax.py``) | 01:08.799 | 0.0 MB |
|
||||
+---------------------------------------------------------------------------------------------------------+-----------+--------+
|
||||
| :ref:`sphx_glr_getting-started_tutorials_01-vector-add.py` (``01-vector-add.py``) | 00:11.011 | 0.0 MB |
|
||||
| :ref:`sphx_glr_getting-started_tutorials_01-vector-add.py` (``01-vector-add.py``) | 00:11.009 | 0.0 MB |
|
||||
+---------------------------------------------------------------------------------------------------------+-----------+--------+
|
||||
|
@@ -311,19 +311,19 @@ for different problem sizes.</p>
|
||||
3 32768.0 76.800002 76.800002
|
||||
4 65536.0 127.999995 127.999995
|
||||
5 131072.0 219.428568 219.428568
|
||||
6 262144.0 384.000001 341.333321
|
||||
6 262144.0 341.333321 341.333321
|
||||
7 524288.0 472.615390 472.615390
|
||||
8 1048576.0 614.400016 614.400016
|
||||
9 2097152.0 722.823517 722.823517
|
||||
10 4194304.0 780.190482 780.190482
|
||||
11 8388608.0 812.429770 812.429770
|
||||
12 16777216.0 833.084721 833.084721
|
||||
13 33554432.0 843.811163 842.004273
|
||||
13 33554432.0 843.811163 843.811163
|
||||
14 67108864.0 849.278610 848.362445
|
||||
15 134217728.0 851.577704 850.656574
|
||||
</pre></div>
|
||||
</div>
|
||||
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 11.011 seconds)</p>
|
||||
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 11.009 seconds)</p>
|
||||
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-01-vector-add-py">
|
||||
<div class="sphx-glr-download sphx-glr-download-python docutils container">
|
||||
<p><a class="reference download internal" download="" href="../../_downloads/62d97d49a32414049819dd8bb8378080/01-vector-add.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">01-vector-add.py</span></code></a></p>
|
||||
|
@@ -346,17 +346,17 @@ We will then compare its performance against (1) <code class="code docutils lite
|
||||
<p class="sphx-glr-script-out">Out:</p>
|
||||
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>softmax-performance:
|
||||
N Triton Torch (native) Torch (jit)
|
||||
0 256.0 512.000001 546.133347 282.482752
|
||||
0 256.0 512.000001 546.133347 273.066674
|
||||
1 384.0 585.142862 585.142862 267.130429
|
||||
2 512.0 655.360017 606.814814 264.258068
|
||||
3 640.0 682.666684 640.000002 269.473696
|
||||
2 512.0 630.153853 585.142849 264.258068
|
||||
3 640.0 682.666684 640.000002 265.974036
|
||||
4 768.0 702.171410 664.216187 273.066663
|
||||
.. ... ... ... ...
|
||||
93 12160.0 812.359066 405.755985 329.204728
|
||||
94 12288.0 812.429770 415.222812 329.602681
|
||||
93 12160.0 812.359066 405.755985 329.483481
|
||||
94 12288.0 812.429770 415.661740 329.602681
|
||||
95 12416.0 810.840807 412.149375 328.900662
|
||||
96 12544.0 810.925276 412.546756 329.292871
|
||||
97 12672.0 811.007961 412.097543 329.410251
|
||||
96 12544.0 809.290334 412.971190 329.022957
|
||||
97 12672.0 811.007961 412.097543 329.142870
|
||||
|
||||
[98 rows x 4 columns]
|
||||
</pre></div>
|
||||
@@ -370,7 +370,7 @@ This means that – when temporary data is too large to fit entirely in the GPU
|
||||
Note that our Triton kernel is not only faster than PyTorch’s CUDA kernel, it is also <strong>easier to read, understand and maintain</strong>.</p></li>
|
||||
</ul>
|
||||
</div></blockquote>
|
||||
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 1 minutes 8.194 seconds)</p>
|
||||
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 1 minutes 8.799 seconds)</p>
|
||||
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-02-fused-softmax-py">
|
||||
<div class="sphx-glr-download sphx-glr-download-python docutils container">
|
||||
<p><a class="reference download internal" download="" href="../../_downloads/d91442ac2982c4e0cc3ab0f43534afbc/02-fused-softmax.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">02-fused-softmax.py</span></code></a></p>
|
||||
|
@@ -476,42 +476,42 @@ tensor(True, device='cuda:0')
|
||||
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>matmul-performance:
|
||||
M cuBLAS ... Triton Triton (+ LeakyReLU)
|
||||
0 128.0 0.455111 ... 0.512000 0.512000
|
||||
1 256.0 2.730667 ... 3.276800 2.978909
|
||||
2 384.0 7.372800 ... 8.507077 7.899428
|
||||
3 512.0 14.563555 ... 15.420235 15.420235
|
||||
4 640.0 22.260869 ... 24.380953 24.380953
|
||||
1 256.0 2.978909 ... 2.978909 2.978909
|
||||
2 384.0 7.372800 ... 8.507077 8.507077
|
||||
3 512.0 14.563555 ... 16.384000 15.420235
|
||||
4 640.0 22.260869 ... 23.272727 23.272727
|
||||
5 768.0 32.768000 ... 34.028308 34.028308
|
||||
6 896.0 37.971025 ... 39.025776 37.971025
|
||||
6 896.0 39.025776 ... 39.025776 35.123201
|
||||
7 1024.0 49.932191 ... 52.428801 52.428801
|
||||
8 1152.0 44.566925 ... 45.938215 45.938215
|
||||
8 1152.0 45.242181 ... 46.656000 45.938215
|
||||
9 1280.0 51.200001 ... 56.109587 56.109587
|
||||
10 1408.0 64.138541 ... 64.902096 64.902096
|
||||
11 1536.0 80.430545 ... 75.296679 75.296679
|
||||
10 1408.0 64.138541 ... 65.684049 65.684049
|
||||
11 1536.0 80.430545 ... 76.106321 76.106321
|
||||
12 1664.0 63.372618 ... 61.636381 61.636381
|
||||
13 1792.0 72.983276 ... 68.533074 68.533074
|
||||
14 1920.0 66.782607 ... 66.782607 70.172588
|
||||
15 2048.0 73.908442 ... 75.915006 75.573044
|
||||
16 2176.0 81.803444 ... 79.855747 79.540109
|
||||
17 2304.0 68.251065 ... 72.607513 72.387489
|
||||
18 2432.0 71.125224 ... 79.813818 79.362895
|
||||
19 2560.0 77.649287 ... 76.382283 76.204654
|
||||
20 2688.0 82.823267 ... 82.642823 85.051697
|
||||
21 2816.0 81.827785 ... 78.726003 78.726003
|
||||
22 2944.0 81.698415 ... 80.251257 79.737653
|
||||
23 3072.0 82.420822 ... 84.892208 83.886078
|
||||
24 3200.0 84.099871 ... 89.012517 84.099871
|
||||
25 3328.0 82.653612 ... 82.275764 82.181847
|
||||
26 3456.0 80.300370 ... 82.183044 86.042231
|
||||
27 3584.0 87.381330 ... 91.938029 84.586450
|
||||
28 3712.0 84.301560 ... 82.902362 80.692524
|
||||
29 3840.0 83.402717 ... 86.535214 87.011801
|
||||
30 3968.0 92.864488 ... 85.510815 84.328915
|
||||
31 4096.0 93.727466 ... 88.768339 84.894196
|
||||
13 1792.0 72.983276 ... 68.953520 68.953520
|
||||
14 1920.0 69.467336 ... 70.172588 68.776119
|
||||
15 2048.0 73.908442 ... 75.573044 75.573044
|
||||
16 2176.0 83.500614 ... 79.855747 79.226957
|
||||
17 2304.0 68.251065 ... 72.607513 73.051599
|
||||
18 2432.0 71.305746 ... 79.813818 78.917033
|
||||
19 2560.0 77.833728 ... 76.382283 76.740048
|
||||
20 2688.0 82.823267 ... 80.880718 82.642823
|
||||
21 2816.0 83.873477 ... 77.882512 77.330158
|
||||
22 2944.0 82.102191 ... 80.122235 79.610276
|
||||
23 3072.0 78.643199 ... 81.707223 83.514905
|
||||
24 3200.0 84.321474 ... 89.012517 85.219705
|
||||
25 3328.0 83.226931 ... 86.320498 82.464255
|
||||
26 3456.0 81.026701 ... 84.508982 86.689860
|
||||
27 3584.0 87.211821 ... 91.750399 87.042978
|
||||
28 3712.0 84.230479 ... 83.526206 82.902362
|
||||
29 3840.0 80.197243 ... 82.102449 80.667046
|
||||
30 3968.0 88.231331 ... 81.079024 83.807647
|
||||
31 4096.0 93.596744 ... 90.504200 89.777746
|
||||
|
||||
[32 rows x 5 columns]
|
||||
</pre></div>
|
||||
</div>
|
||||
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 2 minutes 7.920 seconds)</p>
|
||||
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 2 minutes 26.808 seconds)</p>
|
||||
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-03-matrix-multiplication-py">
|
||||
<div class="sphx-glr-download sphx-glr-download-python docutils container">
|
||||
<p><a class="reference download internal" download="" href="../../_downloads/d5fee5b55a64e47f1b5724ec39adf171/03-matrix-multiplication.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">03-matrix-multiplication.py</span></code></a></p>
|
||||
|
@@ -174,7 +174,7 @@
|
||||
|
||||
<div class="section" id="computation-times">
|
||||
<span id="sphx-glr-getting-started-tutorials-sg-execution-times"></span><h1>Computation times<a class="headerlink" href="#computation-times" title="Permalink to this headline">¶</a></h1>
|
||||
<p><strong>03:27.125</strong> total execution time for <strong>getting-started_tutorials</strong> files:</p>
|
||||
<p><strong>03:46.617</strong> total execution time for <strong>getting-started_tutorials</strong> files:</p>
|
||||
<table class="docutils align-default">
|
||||
<colgroup>
|
||||
<col style="width: 85%" />
|
||||
@@ -183,15 +183,15 @@
|
||||
</colgroup>
|
||||
<tbody>
|
||||
<tr class="row-odd"><td><p><a class="reference internal" href="03-matrix-multiplication.html#sphx-glr-getting-started-tutorials-03-matrix-multiplication-py"><span class="std std-ref">Matrix Multiplication</span></a> (<code class="docutils literal notranslate"><span class="pre">03-matrix-multiplication.py</span></code>)</p></td>
|
||||
<td><p>02:07.920</p></td>
|
||||
<td><p>02:26.808</p></td>
|
||||
<td><p>0.0 MB</p></td>
|
||||
</tr>
|
||||
<tr class="row-even"><td><p><a class="reference internal" href="02-fused-softmax.html#sphx-glr-getting-started-tutorials-02-fused-softmax-py"><span class="std std-ref">Fused Softmax</span></a> (<code class="docutils literal notranslate"><span class="pre">02-fused-softmax.py</span></code>)</p></td>
|
||||
<td><p>01:08.194</p></td>
|
||||
<td><p>01:08.799</p></td>
|
||||
<td><p>0.0 MB</p></td>
|
||||
</tr>
|
||||
<tr class="row-odd"><td><p><a class="reference internal" href="01-vector-add.html#sphx-glr-getting-started-tutorials-01-vector-add-py"><span class="std std-ref">Vector Addition</span></a> (<code class="docutils literal notranslate"><span class="pre">01-vector-add.py</span></code>)</p></td>
|
||||
<td><p>00:11.011</p></td>
|
||||
<td><p>00:11.009</p></td>
|
||||
<td><p>0.0 MB</p></td>
|
||||
</tr>
|
||||
</tbody>
|
||||
|