[PYTHON][TENSORFLOW] Got rid of alloc_empty entirely; now doing

generating allocation code inside the tensorflow op
This commit is contained in:
Philippe Tillet
2019-10-30 01:38:30 -04:00
parent d65a94c768
commit 2b9355c9e4
6 changed files with 164 additions and 44 deletions

View File

@@ -89,9 +89,9 @@ inline std::string to_tf_ty(ir::type *ty) {
if(ty->is_half_ty())
return "float16";
if(ty->is_float_ty())
return "float32";
return "float";
if(ty->is_double_ty())
return "float64";
return "double";
if(ty->is_pointer_ty())
return "Tensor";
throw std::runtime_error("unknown type");
@@ -113,21 +113,50 @@ inline std::string ref_to_tf_ty(ir::type *ty) {
}
void gen_extract_inputs(std::ostream &os, const std::vector<ir::argument*>& args) {
void gen_extract_inputs(std::ostream &os, const std::vector<ir::argument*>& args, const std::vector<std::string>& outputs) {
for(unsigned i = 0; i < args.size(); i++){
ir::value *arg = args[i];
std::string suffix = "";
ir::type *tr_ty = arg->get_type();
std::string tf_ty = ref_to_tf_ty(tr_ty);
if(!tr_ty->is_pointer_ty())
suffix = ".scalar<" + tf_ty + ">()()";
os << " " << tf_ty << " " << arg->get_name() << " = context->input(" << i << ")" << suffix << ";\n ";
const std::string& name = arg->get_name();
std::string ty = to_tf_ty(arg->get_type());
if(!arg->get_type()->is_pointer_ty())
os << " " << ty << " " << name << " = context->input(" << i << ").scalar<" << ty << ">()();\n ";
else if(std::find(outputs.begin(), outputs.end(), arg->get_name()) == outputs.end())
os << " const Tensor* " << name << " = &context->input(" << i << ");\n ";
else
os << " Tensor* " << name << " = nullptr;\n ";
}
}
void gen_set_outputs(std::ostream &os, const std::vector<std::string>& outputs) {
void gen_set_outputs(std::ostream &os, const std::vector<ir::argument*>& args, const std::vector<std::string>& outputs) {
for(unsigned i = 0; i < outputs.size(); i++)
os << " context->set_output(" << i << ", " << outputs[i] << ");\n ";
os << " TensorShape shape" << i << ";\n ";
// initialize shapes
std::vector<int> out_idx;
for(size_t i = 0; i < outputs.size(); i++){
std::string name = outputs[i];
size_t idx;
for(idx = 0; idx < args.size(); idx++)
if(args[idx]->get_name() == name)
break;
if(idx == args.size())
throw std::runtime_error("unknown output");
out_idx.push_back(idx);
}
for(unsigned i = 0; i < outputs.size(); i++)
os << " const Tensor& " << outputs[i] << "_shape = context->input(" << out_idx[i] << ");\n ";
for(unsigned i = 0; i < outputs.size(); i++)
os << " const int32* " << outputs[i] << "_shape_data = (const int32*)" << outputs[i] << "_shape.tensor_data().data();\n ";
for(unsigned i = 0; i < outputs.size(); i++)
os << " size_t " << outputs[i] << "_rank = " << outputs[i] << "_shape.dim_size(0);\n ";
for(unsigned i = 0; i < outputs.size(); i++)
os << " for(size_t d = 0; d < " << outputs[i] << "_rank ; d++) "
<< "shape" << i << ".AddDim(" << outputs[i] << "_shape_data[d]);\n ";
// allocate
for(unsigned i = 0; i < outputs.size(); i++)
os << " OP_REQUIRES_OK(context, context->allocate_output(" << i << ", shape" << i << ", &" << outputs[i] << "));\n ";
}
void gen_make_handles(std::ostream &os, const std::vector<ir::argument*>& args) {
@@ -136,7 +165,7 @@ void gen_make_handles(std::ostream &os, const std::vector<ir::argument*>& args)
if(!arg->get_type()->is_pointer_ty())
continue;
const std::string& name = arg->get_name();
os << " drv::cu_buffer cu_" + name + "(ctx, " + name + ".tensor_data().size(), (CUdeviceptr)" + name + ".tensor_data().data(), false);\n ";
os << " drv::cu_buffer cu_" + name + "(ctx, " + name + "->tensor_data().size(), (CUdeviceptr)" + name + "->tensor_data().data(), false);\n ";
}
}
@@ -161,7 +190,8 @@ void gen_make_launch_function(std::ostream &os, int num_outputs, const std::vect
void gen_tf_register_kernel_builder(std::ostream &os, const std::string &name,
const std::string &opname,
const std::vector<ir::argument*>& args){
const std::vector<ir::argument*>& args,
const std::vector<std::string>& outputs){
os << "REGISTER_KERNEL_BUILDER(Name(\"" + name + "\").Device(DEVICE_GPU)";
for(size_t i = 0; i < args.size(); i++){
ir::argument *arg = args[i];
@@ -171,20 +201,31 @@ void gen_tf_register_kernel_builder(std::ostream &os, const std::string &name,
if(!arg->get_type()->is_pointer_ty())
os << ".HostMemory(\"" + name + "\")";
}
for(size_t i = 0; i < outputs.size(); i++){
std::string name = outputs[i];
name[0] = std::tolower(name[0]);
os << ".HostMemory(\"" << name << "_shape\")";
}
os << ", " + opname << ");\n";
}
void gen_tf_register_op(std::ostream &os, const std::string &name,
const std::vector<ir::argument*>& args,
const std::vector<std::string>& outputs){
auto tolower = [](char c) { return std::tolower(c);};
os << "REGISTER_OP(\"" << name << "\")\n";
for(size_t i = 0; i < args.size(); i++)
os << " .Attr(\"T" << i << " : {bool, int8, int16, int32, int64, float16, float32, float64}\")" << std::endl;
for(size_t i = 0; i < args.size(); i++){
ir::argument *arg = args[i];
std::string name = arg->get_name();
auto tolower = [](char c) { return std::tolower(c);};
std::transform(name.begin(), name.end(), name.begin(), tolower);
os << " .Attr(\"T" << i << " : {bool, int8, int16, int32, int64, float16, float32, float64}\")" << std::endl;
os << " .Input(\"" << name << ": T" << i << "\")\n";
if(std::find(outputs.begin(), outputs.end(), arg->get_name()) == outputs.end())
os << " .Input(\"" << name << ": T" << i << "\")\n";
else
os << " .Input(\"" << name << "_shape: int32\")\n";
}
std::vector<int> out_idx;
for(size_t i = 0; i < outputs.size(); i++){
@@ -197,15 +238,22 @@ void gen_tf_register_op(std::ostream &os, const std::string &name,
throw std::runtime_error("unknown output");
out_idx.push_back(idx);
}
for(size_t i = 0; i < out_idx.size(); i++)
os << " .Output(\"out" << i << ": T" << out_idx[i] << "\")\n";
for(size_t i = 0; i < out_idx.size(); i++){
std::string name = outputs[i];
std::transform(name.begin(), name.end(), name.begin(), tolower);
os << " .Output(\"" << name << ": T" << out_idx[i] << "\")\n";
}
os << " .Attr(\"id: int\")\n";
os << " .Attr(\"bench: int\")\n";
os << " .Attr(\"bench_id: int\")\n";
os << " .SetShapeFn([](::tensorflow::shape_inference::InferenceContext* c) {\n";
os << " .SetShapeFn([](::tensorflow::shape_inference::InferenceContext* ctx) {\n";
for(size_t i = 0; i < out_idx.size(); i++)
os << " c->set_output(" << i << ", c->input(" << out_idx[i] << "));\n";
os << " return Status::OK();\n";
os << " shape_inference::ShapeHandle handle" << i << ";\n";
for(size_t i = 0; i < out_idx.size(); i++)
os << " ctx->MakeShapeFromShapeTensor(" << out_idx[i] << ", &handle" << i << ");\n";
for(size_t i = 0; i < out_idx.size(); i++)
os << " ctx->set_output(" << i << ", handle" << i << ");\n";
os << " return Status::OK();\n";
os << " })\n";
os << ";\n";
@@ -237,6 +285,7 @@ std::tuple<std::string,
ir::context ctx;
auto ir = std::shared_ptr<ir::module>(new ir::module("", ctx));
make_module(src, &*ir, opt);
// function
ir::function* fn = ir->get_function_list().front();
std::string name = fn->get_name();
@@ -276,18 +325,20 @@ class )" << opname << R"(: public OpKernel {
}
void Compute(OpKernelContext* context){
// get device/stream
GPUDevice device = context->eigen_device<GPUDevice>();
drv::cu_stream sstream(device.stream(), false);
drv::context* ctx = sstream.context();
drv::stream* stream = &sstream;
// extract inputs
)";
gen_extract_inputs(oss, fn->args());
gen_extract_inputs(oss, fn->args(), outputs);
oss << R"(
// set outputs
)";
gen_set_outputs(oss, outputs);
gen_set_outputs(oss, fn->args(), outputs);
oss << R"(
// wrap tensors
)";
@@ -309,7 +360,7 @@ private:
// register kernel builder
)";
gen_tf_register_kernel_builder(oss, cc_name, opname, fn->args());
gen_tf_register_kernel_builder(oss, cc_name, opname, fn->args(), outputs);
oss << R"(
// register op
)";

View File

@@ -8,6 +8,7 @@ class AllocEmptyOp : public OpKernel {
explicit AllocEmptyOp(OpKernelConstruction* context) : OpKernel(context) {}
void Compute(OpKernelContext* context) override {
std::cout << "executing allocempty" << std::endl;
// fetch input
const Tensor& x = context->input(0);
const int32* x_data = (const int32*)x.tensor_data().data();

View File

@@ -44,12 +44,7 @@ class function(metaclass = function_meta):
@classmethod
def apply_tensorflow(cls, *args, **kwargs):
ctx = OpContext()
# Acquire a mutex here to ensure that calls to alloc_empty()
# are handled properly
mutex = fw.gen_resource_variable_ops.mutex_v2()
lock = fw.gen_resource_variable_ops.mutex_lock(mutex)
with fw.tensorflow.control_dependencies([lock]):
result = cls.forward(ctx, *args, **kwargs)
result = cls.forward(ctx, *args, **kwargs)
# Find a mapping between ::forward arguments and tensorflow op arguments
remap = dict()
for i, ix in enumerate(result.op.inputs):

View File

@@ -222,11 +222,17 @@ class kernel:
libtriton.register_grid(op_id, _make_grid(args))
# id for the benchmark result
bench_id = libtriton.make_scalar_id() if bench > 0 else -1
# create operands
# call framework function
if fw.has_tensorflow():
args = [x for x in args[:-1]]
ret = self.fw_op(*args, id=op_id, bench=bench, bench_id=bench_id)
# operands
operands = [x.shape if isinstance(x, triton.utils.tf_empty_proxy) else x for x in args[:-1]]
# output data types
kwargs = {'id': op_id, 'bench': bench, 'bench_id': bench_id}
for i, x in enumerate(args[:-1]):
if isinstance(x, triton.utils.tf_empty_proxy):
kwargs['T' + str(i)] = x.dtype
# launch
ret = self.fw_op(*operands, **kwargs)
if bench > 0:
bench_registry[ret] = triton.utils.id_dict.lazy_entry(bench_id)
elif fw.has_torch():

View File

@@ -4,7 +4,7 @@ import math
class _batchnorm(triton.function):
fwd_src = """
void batchnormForward(float *Y, float *M, float *V,
void fwdbatchnorm(float *Y, float *M, float *V,
float *X, float *G, float *B,
int N, float rcpN, float eps) {
int rx[TM] = 0 ... TM;
@@ -52,6 +52,58 @@ void batchnormForward(float *Y, float *M, float *V,
fwd_kernel = triton.kernel(fwd_src, ['Y', 'M', 'V'])
bwd_src = """
void batchnormBackward(float *DX, float *DG, float *DB,
float *DY, float *X, float *G,
float *M, float *V,
int DHWN, float rcpDHWN, float epsilon) {
int rx[TM] = 0 ... TM;
int c = get_program_id(1);
int offset = c*DHWN;
float g = *(G + c);
float mean = *(M + c);
float var = *(V + c);
float rstd = 1 / sqrtf(var + epsilon);
float* px[TM];
float* pdx[TM];
float* pdy[TM];
px = X + rx + offset;
pdy = DY + rx + offset;
float dg[TM] = 0;
float db[TM] = 0;
for(int i = 0; i < DHWN; i = i + TM){
float x[TM] = *px;
float dy[TM] = *pdy;
dg = dg + dy*(x - mean)*rstd;
db = db + dy;
px = px + TM;
pdy = pdy + TM;
}
float sdg = dg[+];
float sdb = db[+];
float *pdg = DG + c;
float *pdb = DB + c;
*pdg = sdg;
*pdb = sdb;
px = X + rx + offset;
pdy = DY + rx + offset;
pdx = DX + rx + offset;
for(int i = 0; i < DHWN; i = i + TM){
float x[TM] = *px;
float dy[TM] = *pdy;
float xhat[TM] = (x - mean) * rstd;
float xtmp[TM] = (xhat * dg + db) * rcpDHWN;
float dx[TM] = (dy - xtmp) * rstd * g;
*pdx = dx;
px = px + TM;
pdy = pdy + TM;
pdx = pdx + TM;
}
}
"""
bwd_kernel = triton.kernel(bwd_src, ['DX', 'DG', 'DB'])
@staticmethod
def forward(ctx, x, gamma, beta, eps):
shape = triton.shape(x)
@@ -63,13 +115,29 @@ void batchnormForward(float *Y, float *M, float *V,
var = triton.empty([C], dtype=dtype)
# execute kernels
N = H*W*B
_batchnorm.fwd_kernel(y, mean, var, x, gamma, beta, N, 1./N, eps,
y, mean, var = _batchnorm.fwd_kernel(y, mean, var, x, gamma, beta, N, 1./N, eps,
lambda opt: [1, C],
TM = 128)
# save
ctx.eps = eps
ctx.save_for_backward(x, gamma, beta, mean, var)
return y, mean, var
return y
@staticmethod
def backward(ctx, dy):
eps = ctx.eps
x, gamma, beta, mean, var = ctx.saved_tensors
dx = triton.empty(x.shape, dtype=x.dtype)
dgamma = triton.empty(gamma.shape, dtype=gamma.dtype)
dbeta = triton.empty(beta.shape, dtype=beta.dtype)
# launch
C, H, W, B = x.shape
N = H*W*B
_batchnorm.bwd_kernel(dx, dgamma, dbeta, dy,
x, gamma, mean, var,
N, 1./N, eps,
lambda opt: [1, C],
TM = 128)
return dx, dgamma, dbeta, None
batchnorm = _batchnorm.apply

View File

@@ -7,17 +7,16 @@ def cdiv(a, b):
class tf_empty_proxy:
def __init__(self, args, dtype):
self.args = args
def __init__(self, shape, dtype):
self.shape = shape
self.dtype = dtype
def empty(shapes, dtype):
def empty(shape, dtype):
if fw.has_tensorflow():
#return fw.tensorflow.Variable(np.empty(shapes),shape=shapes, dtype=dtype)
args = [x.handle if isinstance(x, scalar) else fw.tensorflow.constant(x) for x in shapes]
args = fw.tensorflow.stack(args)
#return tf_empty_proxy(args, dtype)
return fw.tf_extra_ops.alloc_empty(args, T = dtype)
shape = [x.handle if isinstance(x, scalar) else fw.tensorflow.constant(x) for x in shape]
shape = fw.tensorflow.stack(shape)
return tf_empty_proxy(shape, dtype)
#return fw.tf_extra_ops.alloc_empty(args, T = dtype)
elif fw.has_torch():
return fw.torch.empty(*shapes).cuda()