nn?
This commit is contained in:
@@ -17,7 +17,7 @@ def resample(X, tbincount, densities, step):
|
||||
r = random.random()
|
||||
while(True):
|
||||
if(len(tbincount)==0 or len(densities)==0 or r<=1.0/len(densities)):
|
||||
x = np.array([step*random.randint(1,40), step*random.randint(1,40), step*random.randint(1,40)]);
|
||||
x = np.array([step*random.randint(1,40), step*random.randint(1,40), step*random.randint(1,40)])
|
||||
else:
|
||||
probs = [1.0/x if x>0 else 0 for x in tbincount]
|
||||
distr = np.random.choice(range(tbincount.size), p = probs/np.sum(probs))
|
||||
@@ -28,67 +28,46 @@ def resample(X, tbincount, densities, step):
|
||||
return x.astype(int)
|
||||
|
||||
def generate_dataset(TemplateType, execution_handler):
|
||||
I = 0
|
||||
I = 10
|
||||
step = 64
|
||||
max_size = 4000
|
||||
path = "./data"
|
||||
|
||||
#Tries to resume
|
||||
try:
|
||||
X = np.loadtxt(open(os.path.join(path, "X.csv"),"rb"))
|
||||
t = np.loadtxt(open(os.path.join(path, "t.csv"),"rb"))
|
||||
profiles = np.loadtxt(open(os.path.join(path, "profiles.csv"),"rb")).tolist()
|
||||
if not isinstance(profiles[0], list):
|
||||
profiles = [profiles]
|
||||
N = t.size
|
||||
X.resize((N+I, 3), refcheck=False)
|
||||
t.resize(N+I, refcheck=False)
|
||||
print 'Resuming dataset generation...'
|
||||
except:
|
||||
X = np.empty((I,I))
|
||||
t = np.empty(I)
|
||||
profiles = []
|
||||
N = 0
|
||||
pass
|
||||
|
||||
|
||||
#Generates new data
|
||||
print "Getting some good profiles..."
|
||||
densities = [KernelDensity(kernel='gaussian', bandwidth=2*step).fit(X[t==i,:]) for i in range(int(max(t))+1)] if N else [];
|
||||
X.resize((N+I, 3), refcheck=False)
|
||||
t.resize(N+I, refcheck=False)
|
||||
|
||||
for i in range(I):
|
||||
tbincount = np.bincount(t[0:i+1].astype(int))
|
||||
x = resample(X, tbincount, densities, step)
|
||||
y = execution_handler(x)
|
||||
if y not in profiles:
|
||||
profiles.append(y)
|
||||
densities.append(KernelDensity(kernel='gaussian', bandwidth=2*step))
|
||||
idx = profiles.index(y)
|
||||
X[N+i,:] = x
|
||||
t[N+i] = idx
|
||||
densities[idx].fit(X[t[0:N+i+1]==idx,:])
|
||||
np.savetxt(os.path.join(path,"X.csv"), X)
|
||||
np.savetxt(os.path.join(path,"t.csv"), t)
|
||||
np.savetxt(os.path.join(path,"profiles.csv"), profiles)
|
||||
|
||||
print "Generating the dataset..."
|
||||
N = 500
|
||||
Y = np.empty((N, len(profiles)))
|
||||
X = np.empty((N,3))
|
||||
t = []
|
||||
for i in range(N):
|
||||
x = resample(X, np.bincount(t), densities, step)
|
||||
for j,y in enumerate(profiles):
|
||||
T = execution_handler(x, os.devnull, decode(map(int, y)))
|
||||
Y[i,j] = 2*1e-9*x[0]*x[1]*x[2]/T
|
||||
idx = np.argmax(Y[i,:])
|
||||
X[i,:] = x
|
||||
t = np.argmax(Y[:i+1,], axis=1)
|
||||
densities[idx].fit(X[t==idx,:])
|
||||
|
||||
np.savetxt(os.path.join(path,"Y.csv"), Y)
|
||||
# print "Getting some good profiles..."
|
||||
# X = np.empty((I, 3))
|
||||
# t = np.empty(I)
|
||||
# profiles = []
|
||||
# for i in range(I):
|
||||
# x = resample(X, [], [], step)
|
||||
# y = execution_handler(x)
|
||||
# if y not in profiles:
|
||||
# profiles.append(y)
|
||||
# idx = profiles.index(y)
|
||||
# X[i,:] = x
|
||||
# t[i] = idx
|
||||
# densities = [KernelDensity(kernel='gaussian', bandwidth=2*step).fit(X[t==i,:]) for i in range(int(max(t))+1)];
|
||||
#
|
||||
# print "Generating the dataset..."
|
||||
# N = 1000
|
||||
# Y = np.empty((N, len(profiles)))
|
||||
# X = np.empty((N,3))
|
||||
# t = []
|
||||
#
|
||||
# for i in range(N):
|
||||
# x = resample(X, np.bincount(t), densities, step)
|
||||
# for j,y in enumerate(profiles):
|
||||
# T = execution_handler(x, os.devnull, decode(map(int, y)))
|
||||
# Y[i,j] = 2*1e-9*x[0]*x[1]*x[2]/T
|
||||
# idx = np.argmax(Y[i,:])
|
||||
# X[i,:] = x
|
||||
# t = np.argmax(Y[:i+1,], axis=1)
|
||||
# densities[idx].fit(X[t==idx,:])
|
||||
#
|
||||
# np.savetxt(os.path.join(path,"profiles.csv"), profiles)
|
||||
# np.savetxt(os.path.join(path,"X.csv"), X)
|
||||
# np.savetxt(os.path.join(path,"Y.csv"), Y)
|
||||
|
||||
profiles = np.loadtxt(os.path.join(path,"profiles.csv"))
|
||||
X = np.loadtxt(os.path.join(path,"X.csv"))
|
||||
Y = np.loadtxt(os.path.join(path,"Y.csv"))
|
||||
|
||||
return X, Y, profiles
|
||||
|
@@ -2,41 +2,57 @@ from sklearn import *;
|
||||
from sklearn import ensemble;
|
||||
import numpy as np
|
||||
import scipy as sp
|
||||
from pybrain.datasets import SupervisedDataSet
|
||||
from pybrain.tools.shortcuts import buildNetwork
|
||||
from pybrain.supervised.trainers import BackpropTrainer
|
||||
from pybrain.structure import LinearLayer, TanhLayer, SigmoidLayer, SoftmaxLayer, FeedForwardNetwork, BiasUnit
|
||||
from pybrain.tools.neuralnets import NNregression, Trainer
|
||||
|
||||
def train_model(X, Y, profiles):
|
||||
#Preprocessing
|
||||
scaler = preprocessing.StandardScaler().fit(X);
|
||||
X = scaler.transform(X);
|
||||
ref = np.argmax(np.bincount(np.argmax(Y, axis=1))) #most common profile
|
||||
Xmean = np.mean(X, axis=0)
|
||||
Xstd = np.std(X, axis=0)
|
||||
X = (X - Xmean)/Xstd
|
||||
Ymax = np.max(Y)
|
||||
Y = Y/Ymax
|
||||
|
||||
ref = np.argmax(np.bincount(np.argmax(Y, axis=1))) #most common profile
|
||||
#Cross-validation data-sets
|
||||
cut = int(0.5*X.shape[0]+1);
|
||||
XTr = X[0:cut, :];
|
||||
YTr = Y[0:cut, :];
|
||||
XTe = X[cut:,:];
|
||||
YTe = Y[cut:,:];
|
||||
cut = int(0.1*X.shape[0]+1)
|
||||
XTr = X[0:cut, :]
|
||||
YTr = Y[0:cut, :]
|
||||
XTe = X[cut:,:]
|
||||
YTe = Y[cut:,:]
|
||||
|
||||
#Train the model
|
||||
print("Training the model...");
|
||||
clf = linear_model.LinearRegression().fit(XTr,YTr);
|
||||
print("Training the model...")
|
||||
ds = SupervisedDataSet(X.shape[1], Y.shape[1])
|
||||
for idx, x in enumerate(X):
|
||||
ds.addSample(x, Y[idx,:])
|
||||
clf = buildNetwork(*[X.shape[1], 100, Y.shape[1]], hiddenclass = TanhLayer, outclass = LinearLayer)
|
||||
#print fnn;
|
||||
#trainer = RPropMinusTrainer( fnn, dataset=ds, verbose=True);
|
||||
trainer = BackpropTrainer( clf, dataset=ds, verbose=True, momentum=0.01, weightdecay=0.01, learningrate=0.002, batchlearning=False)
|
||||
trainer.trainUntilConvergence(maxEpochs=100)
|
||||
|
||||
#Evaluate the model
|
||||
GFlops = np.empty(XTe.shape[0]);
|
||||
speedups = np.empty(XTe.shape[0]);
|
||||
optspeedups = np.empty(XTe.shape[0]);
|
||||
GFlops = np.empty(XTe.shape[0])
|
||||
speedups = np.empty(XTe.shape[0])
|
||||
optspeedups = np.empty(XTe.shape[0])
|
||||
for i,x in enumerate(XTe):
|
||||
predictions = clf.predict(x);
|
||||
label = np.argmax(predictions);
|
||||
speedups[i] = YTe[i,label]/YTe[i,ref];
|
||||
optspeedups[i] = np.max(YTe[i,:])/YTe[i,ref];
|
||||
GFlops[i] = YTe[i,ref];
|
||||
predictions = clf.activate(x)
|
||||
label = np.argmax(predictions)
|
||||
# print YTe[i,label], YTe[i,ref], np.max(YTe[i,:])
|
||||
speedups[i] = YTe[i,label]/YTe[i,ref]
|
||||
optspeedups[i] = np.max(YTe[i,:])/YTe[i,ref]
|
||||
GFlops[i] = YTe[i,ref]*Ymax
|
||||
|
||||
np.set_printoptions(precision=2);
|
||||
print("-----------------");
|
||||
print("Average testing speedup : %f (Optimal : %f)"%(sp.stats.gmean(speedups), sp.stats.gmean(optspeedups)));
|
||||
print("Average GFLOP/s : %f (Default %f, Optimal %f)"%(np.mean(np.multiply(GFlops,speedups)), np.mean(GFlops), np.mean(np.multiply(GFlops,optspeedups))));
|
||||
print("Minimum speedup is %f wrt %i GFlops"%(np.min(speedups), GFlops[np.argmin(speedups)]));
|
||||
print("Maximum speedup is %f wrt %i GFlops"%(np.max(speedups), GFlops[np.argmax(speedups)]));
|
||||
print("--------");
|
||||
np.set_printoptions(precision=2)
|
||||
print("-----------------")
|
||||
print("Average testing speedup : %f (Optimal : %f)"%(sp.stats.gmean(speedups), sp.stats.gmean(optspeedups)))
|
||||
print("Average GFLOP/s : %f (Default %f, Optimal %f)"%(np.mean(np.multiply(GFlops,speedups)), np.mean(GFlops), np.mean(np.multiply(GFlops,optspeedups))))
|
||||
print("Minimum speedup is %f wrt %i GFlops"%(np.min(speedups), GFlops[np.argmin(speedups)]))
|
||||
print("Maximum speedup is %f wrt %i GFlops"%(np.max(speedups), GFlops[np.argmax(speedups)]))
|
||||
print("--------")
|
||||
|
||||
print clf
|
||||
|
Reference in New Issue
Block a user