[codegen/tune] bugfix in heuristics for nano-tile sizes

This commit is contained in:
Philippe Tillet
2019-05-04 01:32:34 -04:00
parent 0d694445e6
commit 30833c18f1
7 changed files with 143 additions and 121 deletions

View File

@@ -17,5 +17,4 @@ if(TensorFlow_FOUND)
set(TensorFlow_ABI ${TF_ABI})
endif()
# hide locals from GUI
mark_as_advanced(TF_INC TF_LIB TF_ABI)

View File

@@ -1,101 +1,11 @@
# FindTorch
# -------
#
# Finds the Torch library
#
# This will define the following variables:
#
# TORCH_FOUND -- True if the system has the Torch library
# TORCH_INCLUDE_DIRS -- The include directories for torch
# TORCH_LIBRARIES -- Libraries to link against
# TORCH_CXX_FLAGS -- Additional (required) compiler flags
#
# and the following imported targets:
#
# torch
include(FindPackageHandleStandardArgs)
execute_process(COMMAND python -c "import torch; import os; print(os.path.dirname(torch.__file__))"
OUTPUT_VARIABLE TORCH_INSTALL_PREFIX OUTPUT_STRIP_TRAILING_WHITESPACE ERROR_QUIET)
if (DEFINED ENV{TORCH_INSTALL_PREFIX})
set(TORCH_INSTALL_PREFIX $ENV{TORCH_INSTALL_PREFIX})
else()
# Assume we are in <install-prefix>/share/cmake/Torch/TorchConfig.cmake
get_filename_component(CMAKE_CURRENT_LIST_DIR "${CMAKE_CURRENT_LIST_FILE}" PATH)
get_filename_component(TORCH_INSTALL_PREFIX "${CMAKE_CURRENT_LIST_DIR}/../../../" ABSOLUTE)
find_package_handle_standard_args(TORCH DEFAULT_MSG TORCH_INSTALL_PREFIX)
if(TORCH_INSTALL_PREFIX)
set(TORCH_INCLUDE_DIRS ${TORCH_INSTALL_PREFIX}/lib/include/ ${TORCH_INSTALL_PREFIX}/lib/include/torch/csrc/api/include)
set(TORCH_LIBRARY_DIRS ${TORCH_INSTALL_PREFIX}/lib/)
endif()
# Include directories.
if (EXISTS "${TORCH_INSTALL_PREFIX}/include")
set(TORCH_INCLUDE_DIRS
${TORCH_INSTALL_PREFIX}/include
${TORCH_INSTALL_PREFIX}/include/torch/csrc/api/include)
else()
set(TORCH_INCLUDE_DIRS
${TORCH_INSTALL_PREFIX}/include
${TORCH_INSTALL_PREFIX}/include/torch/csrc/api/include)
endif()
# Library dependencies.
if (@BUILD_SHARED_LIBS@)
find_package(Caffe2 REQUIRED PATHS ${CMAKE_CURRENT_LIST_DIR}/../Caffe2)
endif()
if (NOT ANDROID)
find_library(TORCH_LIBRARY torch PATHS "${TORCH_INSTALL_PREFIX}/lib")
else()
find_library(TORCH_LIBRARY NO_CMAKE_FIND_ROOT_PATH torch PATHS "${TORCH_INSTALL_PREFIX}/lib")
endif()
add_library(torch UNKNOWN IMPORTED)
set(TORCH_LIBRARIES torch ${Caffe2_MAIN_LIBS})
if (NOT ANDROID)
find_library(C10_LIBRARY c10 PATHS "${TORCH_INSTALL_PREFIX}/lib")
else()
find_library(C10_LIBRARY c10 NO_CMAKE_FIND_ROOT_PATH PATHS "${TORCH_INSTALL_PREFIX}/lib")
endif()
list(APPEND TORCH_LIBRARIES ${C10_LIBRARY})
if (@USE_CUDA@)
if(MSVC)
set(NVTOOLEXT_HOME "C:/Program Files/NVIDIA Corporation/NvToolsExt")
if ($ENV{NVTOOLEXT_HOME})
set(NVTOOLEXT_HOME $ENV{NVTOOLEXT_HOME})
endif()
set(TORCH_CUDA_LIBRARIES
${NVTOOLEXT_HOME}/lib/x64/nvToolsExt64_1.lib
${CUDA_LIBRARIES})
list(APPEND TORCH_INCLUDE_DIRS ${NVTOOLEXT_HOME}/include)
elseif(APPLE)
set(TORCH_CUDA_LIBRARIES
${CUDA_TOOLKIT_ROOT_DIR}/lib/libcudart.dylib
${CUDA_TOOLKIT_ROOT_DIR}/lib/libnvrtc.dylib
${CUDA_TOOLKIT_ROOT_DIR}/lib/libnvToolsExt.dylib
${CUDA_LIBRARIES})
else()
find_library(LIBNVTOOLSEXT libnvToolsExt.so PATHS ${CUDA_TOOLKIT_ROOT_DIR}/lib64/)
set(TORCH_CUDA_LIBRARIES
${CUDA_CUDA_LIB}
${CUDA_NVRTC_LIB}
${LIBNVTOOLSEXT}
${CUDA_LIBRARIES})
endif()
find_library(C10_CUDA_LIBRARY c10_cuda PATHS "${TORCH_INSTALL_PREFIX}/lib")
list(APPEND TORCH_CUDA_LIBRARIES ${C10_CUDA_LIBRARY})
list(APPEND TORCH_LIBRARIES ${TORCH_CUDA_LIBRARIES})
endif()
# When we build libtorch with the old GCC ABI, dependent libraries must too.
if ("${CMAKE_CXX_COMPILER_ID}" STREQUAL "GNU")
set(TORCH_CXX_FLAGS "-D_GLIBCXX_USE_CXX11_ABI=@GLIBCXX_USE_CXX11_ABI@")
endif()
set_target_properties(torch PROPERTIES
IMPORTED_LOCATION "${TORCH_LIBRARY}"
INTERFACE_INCLUDE_DIRECTORIES "${TORCH_INCLUDE_DIRS}"
CXX_STANDARD 11
)
if (TORCH_CXX_FLAGS)
set_property(TARGET torch PROPERTY INTERFACE_COMPILE_OPTIONS "${TORCH_CXX_FLAGS}")
endif()
find_package_handle_standard_args(torch DEFAULT_MSG TORCH_LIBRARY TORCH_INCLUDE_DIRS)
mark_as_advanced(TORCH_INCLUDE_DIRS TORCH_LIBRARY_DIRS)

View File

@@ -217,7 +217,7 @@ int main() {
16, 2, 64,
32, 2, 64,
16, 8, 2, 2,
8, 8,
8, 1, 8,
4
};
// jit.autotune("conv", src, benchmark);

View File

@@ -1,6 +1,10 @@
find_package(Torch)
if(${Torch_FOUND})
if(${TORCH_FOUND})
set(CUDA_HOME "/usr/local/cuda")
include_directories(${TORCH_INCLUDE_DIRS})
include_directories("${CUDA_HOME}/include")
link_directories(${TORCH_LIBRARY_DIRS})
add_definitions(-D_GLIBCXX_USE_CXX11_ABI=0)
add_library(torch_triton SHARED conv.cpp)
target_compile_features(torch_triton PRIVATE cxx_range_for)
target_link_libraries(torch_triton "${TORCH_LIBRARIES}")
target_link_libraries(torch_triton torch triton)
endif()

View File

@@ -1,13 +1,96 @@
#include <torch/torch.h>
#include <torch/script.h>
#include "ATen/cuda/CUDAContext.h"
#include <vector>
#include "triton/jit.h"
#include "triton/driver/stream.h"
#define CHECK_CUDA(x) AT_CHECK(x.type().is_cuda(), #x " must be a CUDA tensor")
#define CHECK_CONTIGUOUS(x) AT_CHECK(x.is_contiguous(), #x " must be contiguous")
#define CHECK_INPUT(x) CHECK_CUDA(x); CHECK_CONTIGUOUS(x)
at::Tensor conv_forward(
const at::Tensor data,
const at::Tensor weight) {
const char* src =
R"(
const tunable int32 TM = {16, 32, 64};
const tunable int32 TN = {16, 32, 64};
const tunable int32 TK = {8};
__constant__ int32* delta = alloc_const int32[18];
__constant__ int32* masks = alloc_const int32[1024];
void conv(read_only restrict fp32 *a,
read_only restrict fp32 *b,
fp32 *c,
int32 M, int32 N, int32 K,
int32 AN, int32 AH, int32 AW,
int32 CN, int32 CK, int32 CP, int32 CQ,
int32 AC, int32 AR, int32 AS,
int32 lda_n, int32 lda_c, int32 lda_h, int32 lda_w,
int32 ldc_n, int32 ldc_k, int32 ldc_p, int32 ldc_q,
int32 pad_h, int32 pad_w,
int32 bound){
int32 rxa[TM] = get_global_range[TM](0);
int32 rb0[TN] = get_global_range[TN](1);
int32 rka[TK] = 0 ... TK;
int32 rb1[TK] = 0 ... TK;
fp32 C[TM, TN] = 0;
int32 ranh[TM] = rxa / CQ;
int32 raw[TM] = rxa % CQ - pad_w;
int32 ran[TM] = ranh / CP;
int32 rah[TM] = ranh % CP - pad_h;
int32 ra0[TM] = ran*lda_n + rah*lda_h + raw*lda_w;
int32 racr[TK] = rka / AS;
int32 ras[TK] = rka % AS;
int32 rac[TK] = racr / AR;
int32 rar[TK] = racr % AR;
int32 ra1[TK] = rac*lda_c + rar*lda_h + ras*lda_w;
fp32* pa[TM, TK] = a + ra1[newaxis, :] + ra0[:, newaxis];
fp32* pb[TN, TK] = b + rb1[newaxis, :]*CK + rb0[:, newaxis];
__constant__ int32* pincd[TK] = delta + rka;
__constant__ int32* pd[TK] = delta + AR*AS + rka;
int32 d[TK] = *pd;
int32 incd[TK] = *pincd;
int32 maskh[TM] = pad_h + min(rah, 0) + max(rah + AR - AH, 0);
int32 maskw[TM] = pad_w + min(raw, 0) + max(raw + AS - AW, 0);
__constant__ int32* pm[TM] = masks + AR*AS + maskw*AR*AS + maskh*AR*AS*(2*pad_w + 1);
__constant__ int32* pincm[TM] = delta;
int32 incm[TM] = *pincm;
int32 checka0[TM] = *pm;
int32 checka1[TK] = 1 << rka;
int1 checka[TM, TK] = (checka0[:, newaxis] & checka1[newaxis, :]) > 0;
fp32 a[TM, TK] = checka ? *pa : 0;
fp32 b[TN, TK] = *pb;
for(int32 k = K; k > 0; k = k - TK){
C = dot(a, trans(b), C);
pb = pb + TK*CK;
pa = pa + d[newaxis, :];
b = *pb;
pd = pd + incd;
pincd = pincd + incd;
d = *pd;
incd = *pincd;
pm = pm + incm;
pincm = pincm + incm;
incm = *pincm;
checka0 = *pm;
checka = (checka0[:, newaxis] & checka1[newaxis, :]) > 0;
a = checka ? *pa : 0;
}
int32 rxc[TM] = get_global_range[TM](0);
int32 rc1[TN] = get_global_range[TN](1);
int32 rcn[TM] = rxc / (CP*CQ);
int32 rcpq[TM] = rxc % (CP*CQ);
int32 rc0[TM] = rcn * ldc_n + rcpq;
fp32* pc[TM, TN] = c + rc1[newaxis, :]*ldc_k + rc0[:, newaxis];
int1 checkc0[TM] = rxc < M;
int1 checkc1[TN] = rc1 < N;
int1 checkc[TM, TN] = checkc0[:, newaxis] && checkc1[newaxis, :];
@checkc *pc = C;
})";
torch::Tensor conv_forward(
const torch::Tensor data,
const torch::Tensor weight) {
// Check
CHECK_INPUT(data);
CHECK_INPUT(weight);
@@ -21,10 +104,30 @@ at::Tensor conv_forward(
const auto R = weight.size(1);
const auto S = weight.size(2);
const auto K = weight.size(3);
// Create output
// Allocate output
AT_CHECK(Ci == Cf, "Number of channels in data and weights must match");
return at::empty({B, K, H, W}, at::kFloat);
torch::Tensor output = torch::empty({B, K, H, W}, torch::kFloat);
// Wrap CUDA handles
triton::driver::cu_stream sstream(at::cuda::getCurrentCUDAStream(), false);
triton::driver::stream* stream = &sstream;
triton::driver::context* ctx = stream->context();
triton::driver::cu_buffer d(ctx, (CUdeviceptr)data.storage().data(), false);
triton::driver::cu_buffer w(ctx, (CUdeviceptr)weight.storage().data(), false);
// Create JIT
triton::jit jit(ctx);
std::vector<unsigned> params = {
16, 2, 64,
32, 2, 64,
16, 8, 2, 2,
8, 8,
4
};
jit.add_module("conv", src, params);
triton::driver::kernel* kernel = jit.get_function("conv");
triton::jit::launch_information info = jit.get_launch_info("conv");
return output;
}
static auto registry =
torch::jit::RegisterOperators("triton::conv::forward", &conv_forward);
torch::jit::RegisterOperators("triton::conv_forward", &conv_forward);

View File

@@ -1,11 +1,9 @@
import math
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
from torch.utils.cpp_extension import load
from torch.distributions import categorical
from itertools import product
conv_triton = load( 'conv_triton', ['conv.cpp', 'conv.cu'], extra_cflags=['-O3'])
torch.ops.load_library("/home/philippe/Development/triton/build/examples/python/pytorch/libtorch_triton.so")
d = torch.empty(64, 64, 64, 64).uniform_(0, 1).cuda()
w = torch.empty(64, 3, 3, 64).uniform_(0, 1).cuda()
a = torch.ops.triton.conv_forward(d, w)
print(a)

View File

@@ -171,11 +171,19 @@ void tune::run(ir::module &mod) {
// Simplify metaparameters
for(ir::function *fn: mod.get_function_list())
for(ir::basic_block *block: fn->blocks())
for(ir::instruction *i : block->get_inst_list())
if(dynamic_cast<ir::load_inst*>(i) && i->get_type()->is_tile_ty()){
ir::type *ty = mod.get_builder().get_int32_ty();
std::unique_ptr<ir::metaparameter> tmp(ir::metaparameter::create(ctx, ty, 2, 2));
*params_.at(i).at("nts.d0") = *tmp;
for(ir::instruction *i : block->get_inst_list()){
if(dynamic_cast<ir::load_inst*>(i) && i->get_type()->is_tile_ty()){
ir::type *ty = mod.get_builder().get_int32_ty();
std::unique_ptr<ir::metaparameter> tmp(ir::metaparameter::create(ctx, ty, 2, 2));
*params_.at(i).at("nts.d0") = *tmp;
}
if(dynamic_cast<ir::dot_inst*>(i) && i->get_type()->is_tile_ty()){
ir::type *ty = mod.get_builder().get_int32_ty();
std::unique_ptr<ir::metaparameter> tmp1(ir::metaparameter::create(ctx, ty, 2, 2));
std::unique_ptr<ir::metaparameter> tmp2(ir::metaparameter::create(ctx, ty, 2, 2));
*params_.at(i).at("nts.d0") = *tmp1;
*params_.at(i).at("nts.d1") = *tmp2;
}
}
}