[dnn/shift] fixed in leading dimensions for shift-conv operation
This commit is contained in:
@@ -56,38 +56,30 @@ def blocksparse_matmul_grad(op, dy):
|
||||
return (dx, dw)
|
||||
|
||||
def run_shift():
|
||||
B, C, H, W = 1, 16, 4, 4
|
||||
B, C, H, W = 1, 16, 8, 8
|
||||
R, S, F = 3, 3, 16
|
||||
np.random.seed(2)
|
||||
a = tf.placeholder(tf.float32, shape=[C, H, W, B])
|
||||
b = tf.placeholder(tf.float32, shape=[C, F])
|
||||
#hshift_h = np.random.randint(- (R//2), R//2 + 1, size=C, dtype=np.int32)
|
||||
#hshift_w = np.random.randint(- (S//2), R//2 + 1, size=C, dtype=np.int32)
|
||||
hshift_h = -1*np.ones(C, dtype=np.int32)
|
||||
hshift_w = -1*np.ones(C, dtype=np.int32)
|
||||
hshift_h = np.random.randint(- (R//2), R//2 + 1, size=C, dtype=np.int32)
|
||||
hshift_w = np.random.randint(- (S//2), R//2 + 1, size=C, dtype=np.int32)
|
||||
#hshift_h = np.ones(C, dtype=np.int32)
|
||||
#hshift_w = np.ones(C, dtype=np.int32)
|
||||
print(hshift_h)
|
||||
print(hshift_w)
|
||||
c = module.shift_conv(a, b, shift_h=tf.make_tensor_proto(hshift_h), shift_w=tf.make_tensor_proto(hshift_w))
|
||||
c = tf.math.reduce_sum(c)
|
||||
# Reference
|
||||
ha = np.ones((C, H, W, B), dtype=np.float32)
|
||||
hb = np.ones((C, F), dtype=np.float32)
|
||||
ha = np.random.rand(C, H, W, B)
|
||||
hb = np.random.rand(C, F)
|
||||
#ha = np.ones((C, H, W, B), dtype=np.int32)
|
||||
#hb = np.ones((C, F), dtype=np.int32)
|
||||
sess = tf.InteractiveSession()
|
||||
grads = tf.test.compute_gradient([a, b], [(C, H, W, B), (C, F)], c, (1,),
|
||||
grads = tf.test.compute_gradient([a, b], [(C, H, W, B), (C, F)], c, (F, H, W, B),
|
||||
extra_feed_dict={a: ha, b: hb})
|
||||
dx_t, dx_n = grads[0]
|
||||
dw_t, dw_n = grads[1]
|
||||
#print(dw_t - dw_n)
|
||||
#np.savetxt('diff.dat', dw_t - dw_n, fmt='%2.4f')
|
||||
#np.savetxt('theoretical.dat', dw_t, fmt='%2.4f')
|
||||
#np.savetxt('numerical.dat', dw_n, fmt='%2.4f')
|
||||
print(np.max(np.abs(dw_t - dw_n)))
|
||||
print(np.max(np.abs(dx_t - dx_n)))
|
||||
np.savetxt('diff.dat', dx_t - dx_n, fmt='%2.4f')
|
||||
np.savetxt('theoretical.dat', dx_t, fmt='%2.4f')
|
||||
np.savetxt('numerical.dat', dx_n, fmt='%2.4f')
|
||||
# Run
|
||||
sess.run(tf.global_variables_initializer())
|
||||
result = sess.run([c], feed_dict = {a: ha,
|
||||
|
@@ -71,6 +71,8 @@ public:
|
||||
// checks
|
||||
OP_REQUIRES(context, Ca == Cb, tensorflow::errors::InvalidArgument("operands must have the same number of channels"));
|
||||
C = Ca;
|
||||
if(OP == triton::dnn::shift::BPROP)
|
||||
std::swap(C, F);
|
||||
}
|
||||
|
||||
}
|
||||
|
@@ -125,14 +125,16 @@ void shift::init(driver::stream *stream, driver::cu_module *module) {
|
||||
void shift::enqueue(driver::stream *stream, driver::kernel *kernel,
|
||||
driver::buffer *a, driver::buffer *b, driver::buffer *c,
|
||||
size_t TM, size_t TN, size_t nthreads) {
|
||||
int32_t lda = AT_ ? K_ : M_;
|
||||
int32_t ldb = BT_ ? N_ : K_;
|
||||
kernel->setArg(0, a);
|
||||
kernel->setArg(1, b);
|
||||
kernel->setArg(2, c);
|
||||
kernel->setArg(3, M_);
|
||||
kernel->setArg(4, N_);
|
||||
kernel->setArg(5, K_);
|
||||
kernel->setArg(6, M_);
|
||||
kernel->setArg(7, N_);
|
||||
kernel->setArg(6, lda);
|
||||
kernel->setArg(7, ldb);
|
||||
kernel->setArg(8, B_);
|
||||
kernel->setArg(9, AH_);
|
||||
kernel->setArg(10, AW_);
|
||||
|
Reference in New Issue
Block a user