[TRITON][PYTHON] Cleaned up API
This commit is contained in:
@@ -11,9 +11,9 @@ configs = []
|
||||
|
||||
# Matrix multiplication
|
||||
MNK = [
|
||||
# (512, 512 ,512),
|
||||
# (2048, 2048, 2048),
|
||||
# (8192, 8192, 8192),
|
||||
(512, 512 ,512),
|
||||
(2048, 2048, 2048),
|
||||
(8192, 8192, 8192),
|
||||
|
||||
# (64, 64, 64000),
|
||||
# (64, 64, 128000),
|
||||
|
@@ -177,12 +177,12 @@ def _make_framework_op(src, outputs, tmp, options):
|
||||
else:
|
||||
assert False
|
||||
|
||||
def _make_grid(args) :
|
||||
scalars = [x for x in args[:-1] if isinstance(x, triton.utils.scalar)]
|
||||
def _make_grid(grid, args) :
|
||||
scalars = [x for x in args if isinstance(x, triton.utils.scalar)]
|
||||
def grid(opt):
|
||||
for x in scalars:
|
||||
x.set_assume_initialized()
|
||||
result = args[-1](opt)
|
||||
result = grid(opt)
|
||||
for x in scalars:
|
||||
x.unset_assume_initialized()
|
||||
return result
|
||||
@@ -206,24 +206,37 @@ class kernel:
|
||||
self.cst[name] = value
|
||||
|
||||
def __call__(self, *args, **kwargs):
|
||||
|
||||
########################
|
||||
# keyword arguments
|
||||
########################
|
||||
num_warps = kwargs['num_warps'] if 'num_warps' in kwargs else [2, 4, 8]
|
||||
defines = kwargs['defines'] if 'defines' in kwargs else dict()
|
||||
bench = kwargs['bench'] if 'bench' in kwargs else 0
|
||||
if 'grid' not in kwargs:
|
||||
raise RuntimeError('Must provide grid for kernel launch')
|
||||
grid = kwargs['grid']
|
||||
|
||||
|
||||
#########################
|
||||
# cache
|
||||
########################
|
||||
|
||||
# create a new framework op when defines are different
|
||||
key = '-'.join(['{key}-{val}'.format(key=key, val=val) for key, val in kwargs.items()])
|
||||
key = '-'.join(['{key}-{val}'.format(key=key, val=val) for key, val in defines.items()])
|
||||
if key not in self.fw_id.keys():
|
||||
# code generation options
|
||||
defines = []
|
||||
for k, v in kwargs.items():
|
||||
macros = []
|
||||
for k, v in defines.items():
|
||||
cvt = lambda x: _cvt_to_def_str(x)
|
||||
if(isinstance(v, list)):
|
||||
values = list(map(cvt, v))
|
||||
else:
|
||||
values = [cvt(v)]
|
||||
defines.append((k, values))
|
||||
macros.append((k, values))
|
||||
opt = libtriton.options_space()
|
||||
opt.defines = defines
|
||||
opt.num_warps = [4]
|
||||
opt.defines = macros
|
||||
opt.num_warps = [2, 4, 8]
|
||||
# create unique id for this op
|
||||
op_id = libtriton.make_op_id()
|
||||
self.fw_id[key] = op_id
|
||||
@@ -238,22 +251,21 @@ class kernel:
|
||||
# initialize
|
||||
########################
|
||||
op_id = self.fw_id[key]
|
||||
libtriton.register_grid(op_id, args[-1])
|
||||
bench = kwargs['bench'] if 'bench' in kwargs else 0
|
||||
libtriton.register_grid(op_id, grid)
|
||||
bench_id = libtriton.make_scalar_id() if bench > 0 else -1
|
||||
|
||||
#########################
|
||||
# call framework function
|
||||
#########################
|
||||
if fw.has_tensorflow():
|
||||
empty = [x for x in args[:-1] if isinstance(x, triton.utils.tf_empty_proxy)]
|
||||
empty = [x for x in args if isinstance(x, triton.utils.tf_empty_proxy)]
|
||||
if len(empty) != len(self.outputs):
|
||||
raise ValueError('Number of empty arguments does not much number of outputs provided')
|
||||
# operands
|
||||
operands = [x.shape if isinstance(x, triton.utils.tf_empty_proxy) else x for x in args[:-1]]
|
||||
operands = [x.shape if isinstance(x, triton.utils.tf_empty_proxy) else x for x in args]
|
||||
# output data types
|
||||
kwargs = {'id': op_id, 'bench': bench, 'bench_id': bench_id}
|
||||
for i, x in enumerate(args[:-1]):
|
||||
for i, x in enumerate(args):
|
||||
if isinstance(x, triton.utils.tf_empty_proxy):
|
||||
kwargs['T' + str(i)] = x.dtype
|
||||
# launch
|
||||
@@ -277,7 +289,7 @@ class kernel:
|
||||
# call torch function
|
||||
############################
|
||||
elif fw.has_torch():
|
||||
args = [x if isinstance(x, fw.torch.Tensor) else x for x in args[:-1]]
|
||||
args = [x if isinstance(x, fw.torch.Tensor) else x for x in args]
|
||||
ret = self.fw_op(op_id, bench, bench_id, *args)
|
||||
if bench > 0:
|
||||
bench_registry[ret] = libtriton.retrieve_scalar(bench_id)
|
||||
|
@@ -1,4 +1,2 @@
|
||||
from .dot import _dot, dot
|
||||
from .einsum import _einsum, einsum
|
||||
from .batchnorm import _batchnorm, batchnorm
|
||||
from .conv import _conv, conv
|
||||
from .batchnorm import _batchnorm, batchnorm
|
@@ -101,8 +101,8 @@ void bwdbatchnorm(float *DX, float *DG, float *DB,
|
||||
var = triton.empty([C], dtype=dtype)
|
||||
# execute kernels
|
||||
_batchnorm.fwd_kernel(y, mean, var, x, gamma, beta, H*W*B, eps,
|
||||
lambda opt: [1, C],
|
||||
TM = 128)
|
||||
grid = lambda opt: [1, C],
|
||||
defines = {'TM': 128})
|
||||
# save
|
||||
ctx.save_for_backward(x, gamma, beta, mean, var)
|
||||
ctx.eps = eps
|
||||
@@ -122,8 +122,8 @@ void bwdbatchnorm(float *DX, float *DG, float *DB,
|
||||
_batchnorm.bwd_kernel(dx, dgamma, dbeta, dy,
|
||||
x, gamma, mean, var,
|
||||
H*W*B, eps,
|
||||
lambda opt: [1, C],
|
||||
TM = 128)
|
||||
grid = lambda opt: [1, C],
|
||||
defines = {'TM': 128})
|
||||
return dx, dgamma, dbeta, None
|
||||
|
||||
batchnorm = _batchnorm.apply
|
@@ -1,309 +0,0 @@
|
||||
import triton
|
||||
import numpy as np
|
||||
|
||||
class _conv(triton.function):
|
||||
|
||||
src = """
|
||||
void convnd(A_TYPE *A,
|
||||
B_TYPE *B,
|
||||
float *C,
|
||||
int M, int N, int K,
|
||||
int AH, int AW,
|
||||
int BH, int BW,
|
||||
int CH, int CW,
|
||||
int NC,
|
||||
int lda_n, int lda_c, int lda_d, int lda_h, int lda_w,
|
||||
int ldb_c, int ldb_t, int ldb_r, int ldb_s, int ldb_k,
|
||||
int ldc_n, int ldc_k, int ldc_m, int ldc_p, int ldc_q,
|
||||
int pad_h, int pad_w,
|
||||
int stride_h, int stride_w,
|
||||
int upsample_h, int upsample_w,
|
||||
int off_uh, int off_uw,
|
||||
int off_uah, int off_uaw,
|
||||
int off_uch, int off_ucw,
|
||||
int* ADELTA, int* ADIFF){
|
||||
|
||||
// range of indices along the reduction axis
|
||||
int rxa[TM] = get_program_id(0) * TM + 0 ... TM;
|
||||
int ryb[TN] = get_program_id(1) * TN + 0 ... TN;
|
||||
int rk[TK] = 0 ... TK;
|
||||
|
||||
// initialize accumulator
|
||||
float c[TM, TN] = 0;
|
||||
|
||||
// pointers for A
|
||||
int rabh[TM] = rxa / CW;
|
||||
int raw[TM] = rxa % CW;
|
||||
int rab[TM] = rabh / CH;
|
||||
int rah[TM] = rabh % CH;
|
||||
rah = rah * UPAW - off_uah;
|
||||
raw = raw * UPAH - off_uaw;
|
||||
int ram[TM] = rab*lda_n + rah*lda_h + raw*lda_w;
|
||||
int rak[TK] = *(ADELTA + rk);
|
||||
A_TYPE* pa[TM, TK] = A + ram[:, newaxis] + rak[newaxis, :];
|
||||
|
||||
// pointers for B
|
||||
int rbk[TK] = rk;
|
||||
int rbn[TN] = ryb;
|
||||
B_TYPE* pb[TK, TN] = B + rbn[newaxis, :] * ldb_k + rbk[:, newaxis] * ldb_c;
|
||||
|
||||
// pointers for A look-up table
|
||||
int rklut[TK] = rk % LUT_SIZE;
|
||||
int* padiff[TK] = ADIFF + rklut;
|
||||
int* padelta[TK] = ADELTA + TK + rklut + off_uw * LUT_SIZE + off_uh * LUT_SIZE * upsample_w;
|
||||
int adiff[TK] = *padiff;
|
||||
int adelta[TK] = *padelta;
|
||||
|
||||
// reduction loop
|
||||
A_TYPE a[TM, TK] = *pa;
|
||||
B_TYPE b[TK, TN] = *pb;
|
||||
for(int k = K; k > 0; k = k - TK){
|
||||
c += a @ b;
|
||||
pa += adelta[newaxis, :];
|
||||
pb += TK * ldb_c;
|
||||
// increment A look-up table
|
||||
padelta = padelta + adiff;
|
||||
adelta = *padelta;
|
||||
padiff = padiff + adiff;
|
||||
adiff = *padiff;
|
||||
// pre-fetches
|
||||
bool checka[TM, TK] = k > TK;
|
||||
bool checkb[TK, TN] = k > TK;
|
||||
a = checka ? *pa : 0;
|
||||
b = checkb ? *pb : 0;
|
||||
}
|
||||
|
||||
// write back
|
||||
int rxc[TM] = get_program_id(0) * TM + 0 ... TM;
|
||||
int rc1[TN] = get_program_id(1) * TN + 0 ... TN;
|
||||
int rcn[TM] = rxc / (CH*CW);
|
||||
int rcpq[TM] = rxc % (CH*CW);
|
||||
int rcp[TM] = rcpq / CW;
|
||||
int rcq[TM] = rcpq % CW;
|
||||
rcp = rcp * upsample_h + off_uch;
|
||||
rcq = rcq * upsample_w + off_ucw;
|
||||
int rc0[TM] = rcn * ldc_n + rcp * ldc_p + rcq * ldc_q;
|
||||
float* pc[TM, TN] = C + rc1[newaxis, :]*ldc_k + rc0[:, newaxis];
|
||||
bool checkc0[TM] = rxc < M;
|
||||
bool checkc1[TN] = rc1 < N;
|
||||
bool checkc[TM, TN] = checkc0[:, newaxis] && checkc1[newaxis, :];
|
||||
*?(checkc)pc = c;
|
||||
}
|
||||
"""
|
||||
kernel = triton.kernel(src, ['C'])
|
||||
|
||||
@staticmethod
|
||||
def _unpack(idx, order, shape_b):
|
||||
_123 = idx // shape_b[order[0]]
|
||||
_0 = idx % shape_b[order[0]]
|
||||
_23 = _123 // shape_b[order[1]]
|
||||
_1 = _123 % shape_b[order[1]]
|
||||
_3 = _23 // shape_b[order[2]]
|
||||
_2 = _23 % shape_b[order[2]]
|
||||
return _0, _1, _2, _3
|
||||
|
||||
@staticmethod
|
||||
def _roundup(x, div):
|
||||
return (x + div - 1) // div * div
|
||||
|
||||
@staticmethod
|
||||
def _delta_a(upsample_d, upsample_h, upsample_w,
|
||||
bc, bd, bh, bw,
|
||||
ac, ad, ah, aw,
|
||||
stride_a, shape_b,
|
||||
TK):
|
||||
# Parse the axes so that the reduction is done
|
||||
# from the innermost dimension outward
|
||||
order = sorted([bc, bd, bh, bw], reverse = True)
|
||||
c, d, h, w = [order.index(x) for x in [bc, bd, bh, bw]]
|
||||
# Size of the lookup table is the product of the 3 innermost dimensions
|
||||
K = _conv._roundup(TK, shape_b[order[0]] * shape_b[order[1]] * shape_b[order[2]])
|
||||
# Allocate temporary arrays
|
||||
ud = np.arange(upsample_d, dtype=np.int32)[:, np.newaxis, np.newaxis, np.newaxis]
|
||||
uh = np.arange(upsample_h, dtype=np.int32)[np.newaxis, :, np.newaxis, np.newaxis]
|
||||
uw = np.arange(upsample_w, dtype=np.int32)[np.newaxis, np.newaxis, :, np.newaxis]
|
||||
k = np.arange(K , dtype=np.int32)[np.newaxis, np.newaxis, np.newaxis, :]
|
||||
# Find reduction indices at the current and next reduction indices
|
||||
currentk = _conv._unpack(k , order, shape_b)
|
||||
nextk = _conv._unpack(k + TK, order, shape_b)
|
||||
# Compute memory stride
|
||||
result = 0
|
||||
result += (nextk[c] - currentk[c]) * stride_a[ac]
|
||||
result += (nextk[d] - currentk[d]) * stride_a[ad]
|
||||
result += (nextk[h] - currentk[h]) * stride_a[ah]
|
||||
result += (nextk[w] - currentk[w]) * stride_a[aw]
|
||||
# Initial k
|
||||
ki = np.arange(TK , dtype=np.int32)[np.newaxis, np.newaxis, np.newaxis, :]
|
||||
currentk = _conv._unpack(ki, order, shape_b)
|
||||
resulti = 0
|
||||
resulti += currentk[c] * stride_a[ac]
|
||||
resulti += currentk[d] * stride_a[ad]
|
||||
resulti += currentk[h] * stride_a[ah]
|
||||
resulti += currentk[w] * stride_a[aw]
|
||||
return np.concatenate((resulti, result), axis=-1)
|
||||
|
||||
@staticmethod
|
||||
def _extract_strides(shape):
|
||||
rank = len(shape)
|
||||
ret = [1] * rank
|
||||
for i in range(rank - 1, 0, -1):
|
||||
ret[i-1] = ret[i] * shape[i]
|
||||
return ret
|
||||
|
||||
|
||||
@staticmethod
|
||||
def _call(a, b,
|
||||
pad_d, pad_h, pad_w,
|
||||
stride_d, stride_h, stride_w,
|
||||
upsample_d, upsample_h, upsample_w,
|
||||
a_layout, b_layout, c_layout):
|
||||
# input shapes
|
||||
shape_a = list(triton.shape(a))
|
||||
shape_b = list(triton.shape(b))
|
||||
dim = len(shape_a) - 2
|
||||
# indices
|
||||
an, ac, ad, ah, aw = [a_layout.find(x) for x in 'ncdhw']
|
||||
bk, bc, bd, bh, bw = [b_layout.find(x) for x in 'kctrs']
|
||||
cn, ck, cd, ch, cw = [c_layout.find(x) for x in 'nkdhw']
|
||||
# extract shapes
|
||||
if dim == 2:
|
||||
shape_a.insert(ad, 1)
|
||||
if dim == 2:
|
||||
shape_b.insert(bd, 1)
|
||||
# output shape
|
||||
shape_c = [0] * 5
|
||||
shape_c[cn] = shape_a[an]
|
||||
shape_c[ck] = shape_b[bk]
|
||||
shape_c[cd] = (shape_a[ad]*upsample_d - shape_b[bd] + 1 + 2*pad_d + stride_d - 1) // stride_d
|
||||
shape_c[ch] = (shape_a[ah]*upsample_h - shape_b[bh] + 1 + 2*pad_h + stride_h - 1) // stride_h
|
||||
shape_c[cw] = (shape_a[aw]*upsample_w - shape_b[bw] + 1 + 2*pad_w + stride_w - 1) // stride_w
|
||||
# strides
|
||||
stride_a = _conv._extract_strides(shape_a)
|
||||
stride_b = _conv._extract_strides(shape_b)
|
||||
stride_c = _conv._extract_strides(shape_c)
|
||||
# tiling parameters
|
||||
TM = [32]
|
||||
TN = [32]
|
||||
TK = 8
|
||||
# pointer deltas for a
|
||||
delta_a = _conv._delta_a(upsample_d, upsample_h, upsample_w,
|
||||
bc, bd, bh, bw,
|
||||
ac, ad, ah, aw,
|
||||
stride_a, shape_b,
|
||||
TK)
|
||||
delta_a = triton.fw.torch.from_numpy(delta_a).cuda()
|
||||
# delta increments for a
|
||||
inc_a = np.arange(delta_a.shape[-1] - TK, dtype=np.int32)
|
||||
inc_a = ((inc_a + TK) % inc_a.size) - inc_a
|
||||
inc_a = triton.fw.torch.from_numpy(inc_a).cuda()
|
||||
# allocate output
|
||||
if dim == 2:
|
||||
shape_c.pop(cd)
|
||||
c = triton.empty(shape_c, dtype=a.dtype)
|
||||
if dim == 2:
|
||||
shape_c.insert(cd, 1)
|
||||
# execute kernel
|
||||
trans_b = False
|
||||
is_wgrad = False
|
||||
is_blut = False
|
||||
macros = {
|
||||
'UPAR': 'stride_h' if is_wgrad else '1',
|
||||
'UPAS': 'stride_w' if is_wgrad else '1',
|
||||
'UPAH': '' if is_wgrad else 'stride_h',
|
||||
'UPAW': '' if is_wgrad else 'stride_w',
|
||||
'LUT_SIZE': delta_a.shape[-1],
|
||||
'TM': TM, 'TN': TN, 'TK': TK,
|
||||
'A_TYPE': 'float', 'B_TYPE': 'float'
|
||||
}
|
||||
MATMUL_M = shape_c[cn] * shape_c[cd] * shape_c[ch] * shape_c[cw]
|
||||
MATMUL_N = shape_c[ck]
|
||||
MATMUL_K = shape_b[bc] * shape_b[bd] * shape_b[bh] * shape_b[bw]
|
||||
_conv.kernel(a, b, c,
|
||||
# matrix multiplication shapes
|
||||
MATMUL_M, MATMUL_N, MATMUL_K,
|
||||
# shapes for a
|
||||
shape_a[ah], shape_a[aw],
|
||||
# shapes for b
|
||||
shape_b[bh], shape_b[bw],
|
||||
# chapes for c
|
||||
shape_c[ch], shape_c[cw], shape_c[cn],
|
||||
# strides for a
|
||||
stride_a[an], stride_a[ac], stride_a[ad + 0], stride_a[ad + 1], stride_a[ad + 2],
|
||||
# strides for b
|
||||
stride_b[bc], stride_b[bd + 0], stride_b[bd + 1], stride_b[bd + 2], stride_b[bk],
|
||||
# strides for c
|
||||
stride_c[cn], stride_c[ck], stride_c[cd], stride_c[cd + 1], stride_c[cd + 2],
|
||||
# padding
|
||||
pad_h, pad_w,
|
||||
# striding
|
||||
stride_h, stride_w,
|
||||
# upsampling
|
||||
upsample_h, upsample_w,
|
||||
0, 0, 0, 0, 0, 0,
|
||||
# look-up table
|
||||
delta_a, inc_a,
|
||||
lambda opt: [triton.cdiv(MATMUL_M, opt.d('TM')), triton.cdiv(MATMUL_N, opt.d('TN'))],
|
||||
**macros)
|
||||
return c
|
||||
|
||||
@staticmethod
|
||||
def forward(ctx, x, w,
|
||||
pad_d = 0, pad_h = 0, pad_w = 0,
|
||||
stride_d = 1, stride_h = 1, stride_w = 1,
|
||||
upsample_d = 1, upsample_h = 1, upsample_w = 1,
|
||||
layout_a = 'ncdhw', layout_b = 'ktrsc', layout_c = 'nkdhw'):
|
||||
# save for backward
|
||||
ctx.save_for_backward(x, w)
|
||||
ctx.pad_d = pad_d
|
||||
ctx.pad_h = pad_h
|
||||
ctx.pad_w = pad_w
|
||||
ctx.stride_d = stride_d
|
||||
ctx.stride_h = stride_h
|
||||
ctx.stride_w = stride_w
|
||||
ctx.upsample_d = upsample_d
|
||||
ctx.upsample_h = upsample_h
|
||||
ctx.upsample_w = upsample_w
|
||||
ctx.layout_a = layout_a
|
||||
ctx.layout_b = layout_b
|
||||
ctx.layout_c = layout_c
|
||||
# return
|
||||
return _conv._call(x, w,
|
||||
pad_d, pad_h, pad_w,
|
||||
stride_d, stride_h, stride_w,
|
||||
upsample_d, upsample_h, upsample_w,
|
||||
layout_a, layout_b, layout_c)
|
||||
|
||||
@staticmethod
|
||||
def backward(ctx, dy):
|
||||
x, w = ctx.saved_tensors
|
||||
pad_d = ctx.pad_d
|
||||
pad_h = ctx.pad_h
|
||||
pad_w = ctx.pad_w
|
||||
stride_d = ctx.stride_d
|
||||
stride_h = ctx.stride_h
|
||||
stride_w = ctx.stride_w
|
||||
upsample_d = ctx.upsample_d
|
||||
upsample_h = ctx.upsample_h
|
||||
upsample_w = ctx.upsample_w
|
||||
layout_a = ctx.layout_a
|
||||
layout_b = ctx.layout_b
|
||||
layout_c = ctx.layout_c
|
||||
|
||||
# TODO: Deal with this
|
||||
dx_pad_d = 1
|
||||
dx_pad_h = 1
|
||||
dx_pad_w = 1
|
||||
dx = _conv.call(dy, w,
|
||||
dw_pad_d, dw_pad_h, dw_pad_w,
|
||||
upsample_w, upsample_h, upsample_w,
|
||||
stride_d, stride_h, stride_w,
|
||||
'ncdhw', 'cktrs', 'nkdhw')
|
||||
|
||||
|
||||
|
||||
ret = [None] * 14
|
||||
ret[0] = None
|
||||
ret[1] = dw
|
||||
return None,
|
||||
|
||||
conv = _conv.apply
|
@@ -1,126 +0,0 @@
|
||||
import triton
|
||||
|
||||
class _dot(triton.function):
|
||||
|
||||
src = """
|
||||
void dot(TYPE * A __noalias __readonly __aligned(16),
|
||||
TYPE * B __noalias __readonly __aligned(16),
|
||||
TYPE * C,
|
||||
float alpha,
|
||||
int M, int N, int K,
|
||||
int lda __multipleof(8),
|
||||
int ldb __multipleof(8),
|
||||
int ldc) {
|
||||
// prologue
|
||||
int ridx = get_program_id(0);
|
||||
int ridy = get_program_id(1);
|
||||
int rm[TM] = ridx * TM + 0 ... TM;
|
||||
int rn[TN] = ridy * TN + 0 ... TN;
|
||||
int rk[TK] = 0 ... TK;
|
||||
|
||||
// pointers to operands
|
||||
TYPE* pa[SHAPE_A] = A + rk[BROADCAST_AK] * STRIDE_AK + rm[BROADCAST_AM] * STRIDE_AM;
|
||||
TYPE* pb[SHAPE_B] = B + rk[BROADCAST_BK] * STRIDE_BK + rn[BROADCAST_BN] * STRIDE_BN;
|
||||
|
||||
// prefetches operands
|
||||
bool checka[SHAPE_A] = rk[BROADCAST_AK] < K;
|
||||
bool checkb[SHAPE_B] = rk[BROADCAST_BK] < K;
|
||||
TYPE a[SHAPE_A] = checka ? *pa : 0;
|
||||
TYPE b[SHAPE_B] = checkb ? *pb : 0;
|
||||
|
||||
// reduction loop
|
||||
float c[TM, TN] = 0;
|
||||
for(int k = K; k > 0; k -= TK){
|
||||
c += USE_A @ USE_B;
|
||||
bool checka[SHAPE_A] = k > TK;
|
||||
bool checkb[SHAPE_B] = k > TK;
|
||||
pa += TK * STRIDE_AK;
|
||||
pb += TK * STRIDE_BK;
|
||||
a = *?(checka)pa;
|
||||
b = *?(checkb)pb;
|
||||
}
|
||||
//c = c * alpha;
|
||||
|
||||
// epilogue
|
||||
int rxm[TM] = get_program_id(0) * TM + 0 ... TM;
|
||||
int rxn[TN] = get_program_id(1) * TN + 0 ... TN;
|
||||
TYPE* pc[TM, TN] = C + rxm[:, newaxis] * ldc + rxn[newaxis, :];
|
||||
bool checkc[TM, TN] = (rxm[:, newaxis] < M) && (rxn[newaxis, :] < N);
|
||||
*?(checkc)pc = (TYPE[TM, TN])c;
|
||||
}
|
||||
"""
|
||||
kernel = triton.kernel(src, ['C'])
|
||||
|
||||
@staticmethod
|
||||
def _call(a, b, transpose_a, transpose_b, bench):
|
||||
# extract shapes
|
||||
shape_a = triton.shape(a)
|
||||
shape_b = triton.shape(b)
|
||||
M, Ka = shape_a[0], shape_a[1]
|
||||
Kb, N = shape_b[0], shape_b[1]
|
||||
# transpose shapes
|
||||
if transpose_a:
|
||||
M, Ka = Ka, M
|
||||
if transpose_b:
|
||||
Kb, N = N, Kb
|
||||
# contiguous dimensions
|
||||
lda = M if transpose_a else Ka
|
||||
ldb = Kb if transpose_b else N
|
||||
ldc = N
|
||||
# data-type
|
||||
dtype = a.dtype
|
||||
# allocate output
|
||||
c = triton.empty([M, N], dtype = dtype)
|
||||
# compute
|
||||
grid = lambda opt: [triton.cdiv(M, opt.d('TM')), triton.cdiv(N, opt.d('TN'))]
|
||||
# macros -- not necessary but makes kernel source-code simpler
|
||||
macros = {# handle A transposition
|
||||
'USE_A' : '^a' if transpose_a else 'a',
|
||||
'STRIDE_AK' : 'lda' if transpose_a else '1',
|
||||
'STRIDE_AM' : '1' if transpose_a else 'lda',
|
||||
'BROADCAST_AK': ':, newaxis' if transpose_a else 'newaxis, :',
|
||||
'BROADCAST_AM': 'newaxis, :' if transpose_a else ':, newaxis',
|
||||
'SHAPE_A' : 'TK, TM' if transpose_a else 'TM, TK',
|
||||
# handle B transposition
|
||||
'USE_B' : '^b' if transpose_b else 'b',
|
||||
'STRIDE_BK' : '1' if transpose_b else 'ldb',
|
||||
'STRIDE_BN' : 'ldb' if transpose_b else '1',
|
||||
'BROADCAST_BK': 'newaxis, :' if transpose_b else ':, newaxis',
|
||||
'BROADCAST_BN': ':, newaxis' if transpose_b else 'newaxis, :',
|
||||
'SHAPE_B' : 'TN, TK' if transpose_b else 'TK, TN'}
|
||||
_dot.kernel(a, b, c, 1., M, N, Ka, lda, ldb, ldc,
|
||||
grid, bench=bench,
|
||||
AT = transpose_a, BT = transpose_b, TYPE = dtype,
|
||||
TM = [64], TN = [128], TK = [8], **macros)
|
||||
return c
|
||||
|
||||
@staticmethod
|
||||
def forward(ctx, a, b, transpose_a = False, transpose_b = False, bench = 0):
|
||||
ctx.save_for_backward(a, b)
|
||||
ctx.t_a = transpose_a
|
||||
ctx.t_b = transpose_b
|
||||
ctx.bench = bench
|
||||
return _dot._call(a, b, transpose_a, transpose_b, bench)
|
||||
|
||||
@staticmethod
|
||||
def backward(ctx, dy):
|
||||
a, b = ctx.saved_tensors
|
||||
t_a, t_b = ctx.t_a, ctx.t_b
|
||||
bench = ctx.bench
|
||||
if not t_a and not t_b:
|
||||
da = _dot._call(dy, b, False, True, bench)
|
||||
db = _dot._call(a, dy, True, False, bench)
|
||||
elif not t_a and t_b:
|
||||
da = _dot._call(dy, b, False, False, bench)
|
||||
db = _dot._call(dy, a, True, False, bench)
|
||||
elif t_a and not t_b:
|
||||
da = _dot._call(b, dy, False, True, bench)
|
||||
db = _dot._call(a, dy, False, False, bench)
|
||||
elif t_a and t_b:
|
||||
da = _dot._call(b, dy, True, True, bench)
|
||||
db = _dot._call(dy, a, True, True, bench)
|
||||
else:
|
||||
assert False
|
||||
return da, db, None, None, None
|
||||
|
||||
dot = _dot.apply
|
@@ -527,10 +527,10 @@ __global__ void {name}(
|
||||
delta_b = delta_b[0] if lut_mode_b == _einsum.LUT_MODE.SCALAR else torch.from_numpy(delta_b).cuda()
|
||||
self.args += [delta_b]
|
||||
self.args += arrays
|
||||
self.args += [lambda opt: [triton.cdiv(M, opt.d('TM')) *
|
||||
triton.cdiv(N, opt.d('TN')),
|
||||
triton.cdiv(B, opt.d('TB')),
|
||||
opt.d('TZ')]]
|
||||
self.grid = lambda opt: [triton.cdiv(M, opt.d('TM')) *
|
||||
triton.cdiv(N, opt.d('TN')),
|
||||
triton.cdiv(B, opt.d('TB')),
|
||||
opt.d('TZ')]
|
||||
# position of dynamic arguments
|
||||
self.pos_a = 0
|
||||
self.pos_b = 1
|
||||
@@ -546,9 +546,8 @@ __global__ void {name}(
|
||||
TZ = [x for x in [1, 2, 4, 8, 16, 32] \
|
||||
if x < MAX_GZ and x*MIN_GM*MIN_GN*MIN_GB < 256]
|
||||
TZ = [1] if not TZ else [TZ[-1], TZ[-1]*2]
|
||||
#TM, TN, TB = [128], [64], [1]
|
||||
#print(TM, TN, TB)
|
||||
self.macros = { 'TM': TM, 'TN': TN, 'TB': TB, 'TK': TK, 'TZ': TZ, 'TYPE': dtype }
|
||||
# information on compute
|
||||
self.dtype = dtype
|
||||
self.flops = 2 * B * M * N * K
|
||||
self.sym_a = sym_a
|
||||
@@ -564,7 +563,7 @@ __global__ void {name}(
|
||||
self.args[self.pos_a] = a
|
||||
self.args[self.pos_b] = b
|
||||
self.args[self.pos_c] = c
|
||||
self.kernel(*self.args, bench=bench, **self.macros)
|
||||
self.kernel(*self.args, grid=self.grid, bench=bench, defines=self.macros)
|
||||
|
||||
|
||||
|
||||
|
Reference in New Issue
Block a user