[CODEGEN] Various bugfixes and stability improvements in compiler backend (#240)

This commit is contained in:
Philippe Tillet
2021-08-30 11:50:35 -07:00
committed by GitHub
parent 85426dbaf7
commit 4ff3714d61
25 changed files with 568 additions and 399 deletions

View File

@@ -363,6 +363,133 @@ def test_reduce1d(dtype, shape, device='cuda'):
triton.testing.assert_almost_equal(z_tri, z_ref)
@pytest.mark.parametrize("dtype, shape, axis",
[(dtype, shape, 1) \
for dtype in ['float32']\
for shape in [(1, 1024)]])
def test_reduce2d(dtype, shape, axis, device='cuda'):
dtype = cvt[dtype]
# triton kernel
@triton.jit
def kernel(X, Z, **meta):
range_m = tl.arange(0, meta['BLOCK_M'])
range_n = tl.arange(0, meta['BLOCK_N'])
x = tl.load(X + range_m[:, None]*meta['BLOCK_N'] + range_n[None, :])
z = tl.sum(x, axis=meta['AXIS'])
tl.store(Z + range_m, z)
# input
x = triton.testing.random(shape, dtype=dtype, device=device)
# triton result
z_tri = torch.empty((shape[0],), dtype=dtype, device=device)
kernel[(1,)](x, z_tri, BLOCK_M=shape[0], BLOCK_N=shape[1], AXIS=axis)
# torch result
z_ref = torch.sum(x, axis=axis).to(dtype)
# compare
triton.testing.assert_almost_equal(z_tri, z_ref)
# ---------------
# test permute
# ---------------
# ---------------
# test permute
# ---------------
@pytest.mark.parametrize("dtype, shape, perm",
[(dtype, shape, perm) \
for dtype in ['float32']\
for shape in [(128, 128)]\
for perm in [(1, 0)]])
def test_permute(dtype, shape, perm, device='cuda'):
dtype = cvt[dtype]
# triton kernel
@triton.jit
def kernel(X, stride_xm, stride_xn,
Z, stride_zm, stride_zn, **meta):
BLOCK_M = meta['BLOCK_M']
BLOCK_N = meta['BLOCK_N']
off_m = tl.arange(0, BLOCK_M)
off_n = tl.arange(0, BLOCK_N)
Xs = X + off_m[:, None] * stride_xm + off_n[None, :] * stride_xn
Zs = Z + off_m[:, None] * stride_zm + off_n[None, :] * stride_zn
tl.store(Zs, tl.load(Xs))
# input
x = triton.testing.random(shape, dtype=dtype, device=device)
# triton result
z_tri = torch.empty_like(x)
pgm = kernel[(1, 1)](x, x.stride(0), x.stride(1),
z_tri, z_tri.stride(1), z_tri.stride(0),
BLOCK_M=shape[0], BLOCK_N=shape[1])
# torch result
z_ref = x.permute(*perm).contiguous()
# compare
triton.testing.assert_almost_equal(z_tri, z_ref)
# parse ptx to make sure ld/st are vectorized
ptx = pgm.asm('ptx')
assert 'ld.global.v4' in ptx
assert 'st.global.v4' in ptx
# ---------------
# test dot
# ---------------
@pytest.mark.parametrize("epilogue", ['none', 'add-matrix', 'add-rows', 'add-cols'])
def test_dot(epilogue, device='cuda'):
torch.manual_seed(0)
# triton kernel
@triton.jit
def kernel(X, stride_xm, stride_xk,
Y, stride_yk, stride_yn,
Z, stride_zm, stride_zn, **meta):
BLOCK_M = meta['BLOCK_M']
BLOCK_K = meta['BLOCK_K']
BLOCK_N = meta['BLOCK_N']
off_m = tl.arange(0, BLOCK_M)
off_n = tl.arange(0, BLOCK_N)
off_k = tl.arange(0, BLOCK_K)
Xs = X + off_m[:, None] * stride_xm + off_k[None, :] * stride_xk
Ys = Y + off_k[:, None] * stride_yk + off_n[None, :] * stride_yn
Zs = Z + off_m[:, None] * stride_zm + off_n[None, :] * stride_zn
z = tl.dot(tl.load(Xs), tl.load(Ys))
if meta['ADD_MATRIX']:
z += tl.load(Zs)
if meta['ADD_ROWS']:
ZRs = Z + off_m * stride_zm
z += tl.load(ZRs)[:, None]
if meta['ADD_COLS']:
ZCs = Z + off_n * stride_zn
z += tl.load(ZCs)[None, :]
tl.store(Zs, z)
# input
M, N, K = 64, 64, 32
x = triton.testing.random((M, K), dtype=torch.float16, device=device)
y = triton.testing.random((K, N), dtype=torch.float16, device=device)
# triton result
z = triton.testing.random((M, N), dtype=torch.float16, device=device)
z_tri = z.clone()
pgm = kernel[(1, 1)](x, x.stride(0), x.stride(1),
y, y.stride(0), y.stride(1),
z_tri, z_tri.stride(0), z_tri.stride(1),
BLOCK_M=M, BLOCK_K=K, BLOCK_N=N,
ADD_MATRIX = epilogue=='add-matrix',
ADD_ROWS = epilogue=='add-rows',
ADD_COLS = epilogue=='add-cols')
# torch result
z_ref = torch.matmul(x.float(), y.float())
if epilogue == 'add-matrix':
z_ref += z
if epilogue == 'add-rows':
z_ref += z[:,0][:, None]
if epilogue == 'add-cols':
z_ref += z[0,:][None, :]
z_ref = z_ref.to(torch.float16)
# compare
ptx = pgm.asm('ptx')
# print(ptx)
triton.testing.assert_almost_equal(z_tri, z_ref)
# make sure ld/st are vectorized
assert 'ld.global.v4' in ptx
assert 'st.global.v4' in ptx
# ---------------

View File

@@ -624,6 +624,14 @@ def max_contiguous(input, value, _builder=None):
return frontend.max_contiguous(input, value, _builder)
@builtin
def max_contiguous(input, value, _builder=None):
"""
Let the compiler knows that the `value` first values in :code:`input` are contiguous.
"""
return frontend.max_contiguous(input, value, _builder)
# -----------------------
# Standard library
# -----------------------

View File

@@ -46,8 +46,8 @@ def _kernel(A, B, C, M, N, K,
pid_n = (pid % width) // (group_size)
# do matrix multiplication
rm = pid_m * BLOCK_M + tl.arange(0, BLOCK_M)
ram = tl.max_contiguous(tl.multiple_of(rm % M, BLOCK_M), BLOCK_M)
rn = pid_n * BLOCK_N + tl.arange(0, BLOCK_N)
ram = tl.max_contiguous(tl.multiple_of(rm % M, BLOCK_M), BLOCK_M)
rbn = tl.max_contiguous(tl.multiple_of(rn % N, BLOCK_N), BLOCK_N)
rk = tl.arange(0, BLOCK_K)
# pointers

View File

@@ -87,6 +87,7 @@ def assert_allclose(x, y, tol=1e-2):
def random(shape, dtype, device):
torch.manual_seed(0)
if isinstance(shape, int):
shape = (shape, )
if dtype == torch.bool: