[LANG] Various (relatively minor) improvements (#320)
This commit is contained in:
		
							
								
								
									
										6
									
								
								.github/workflows/integration-tests.yml
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										6
									
								
								.github/workflows/integration-tests.yml
									
									
									
									
										vendored
									
									
								
							@@ -18,12 +18,16 @@ jobs:
 | 
			
		||||
      - name: Checkout
 | 
			
		||||
        uses: actions/checkout@v2
 | 
			
		||||
 | 
			
		||||
      - name: Clear cache
 | 
			
		||||
        run: |
 | 
			
		||||
          rm -r /tmp/triton/
 | 
			
		||||
        continue-on-error: true
 | 
			
		||||
 | 
			
		||||
      - name: Install Triton
 | 
			
		||||
        run: |
 | 
			
		||||
          alias python='python3'
 | 
			
		||||
          cd python
 | 
			
		||||
          pip3 install -e .
 | 
			
		||||
          rm -r /tmp/triton/
 | 
			
		||||
 | 
			
		||||
      - name: Unit tests
 | 
			
		||||
        run: |
 | 
			
		||||
 
 | 
			
		||||
@@ -537,6 +537,7 @@ void layouts::run(ir::module &mod) {
 | 
			
		||||
      tmp_[atom] = id;
 | 
			
		||||
    }
 | 
			
		||||
  });
 | 
			
		||||
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
}
 | 
			
		||||
 
 | 
			
		||||
@@ -2197,7 +2197,8 @@ void generator::visit_async_wait_inst(ir::async_wait_inst* i) {
 | 
			
		||||
 | 
			
		||||
void generator::visit_make_range(ir::make_range* x) {
 | 
			
		||||
  for(indices_t idx: idxs_.at(x)){
 | 
			
		||||
    vals_[x][idx] = idx[0];
 | 
			
		||||
    Value* start = ConstantInt::get(idx[0]->getType(), x->get_first()->get_value());
 | 
			
		||||
    vals_[x][idx] = add(start, idx[0]);
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -875,7 +875,7 @@ make_range *make_range::create(constant_int *first, constant_int *last) {
 | 
			
		||||
  assert(first->get_type()->is_integer_ty());
 | 
			
		||||
  assert(first->get_type() == last->get_type());
 | 
			
		||||
  assert(((constant_int*)first)->get_value() == 0);
 | 
			
		||||
  type *ty = block_type::get(first->get_type(), {(unsigned)last->get_value()});
 | 
			
		||||
  type *ty = block_type::get(first->get_type(), {(unsigned)last->get_value() - (unsigned)first->get_value()});
 | 
			
		||||
  return new make_range(ty, first, last);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -476,6 +476,7 @@ void init_triton_ir(py::module &&m) {
 | 
			
		||||
      // constants
 | 
			
		||||
      .def("get_int1", &ir::builder::get_int1, ret::reference)
 | 
			
		||||
      .def("get_int32", &ir::builder::get_int32, ret::reference)
 | 
			
		||||
      .def("get_int64", &ir::builder::get_int64, ret::reference)
 | 
			
		||||
      .def("get_float16", &ir::builder::get_float16, ret::reference)
 | 
			
		||||
      .def("get_float32", &ir::builder::get_float32, ret::reference)
 | 
			
		||||
      .def("get_range", &ir::builder::get_range, ret::reference);
 | 
			
		||||
 
 | 
			
		||||
@@ -515,6 +515,22 @@ def test_dot(epilogue, device='cuda'):
 | 
			
		||||
    assert 'ld.global.v4' in ptx
 | 
			
		||||
    assert 'st.global.v4' in ptx
 | 
			
		||||
 | 
			
		||||
# ---------------
 | 
			
		||||
# test arange
 | 
			
		||||
# ---------------
 | 
			
		||||
 | 
			
		||||
@pytest.mark.parametrize("start", [0, 1, 7, 16])
 | 
			
		||||
def test_arange(start, device='cuda'):
 | 
			
		||||
    BLOCK = 128
 | 
			
		||||
    z_tri = torch.empty(BLOCK, dtype=torch.int32, device=device)
 | 
			
		||||
    @triton.jit
 | 
			
		||||
    def _kernel(z, **meta):
 | 
			
		||||
        off = tl.arange(0, meta['BLOCK'])
 | 
			
		||||
        val = tl.arange(meta['START'], meta['END'])
 | 
			
		||||
        tl.store(z + off, val)
 | 
			
		||||
    _kernel[(1,)](z_tri, START=start, END=start+BLOCK, BLOCK=BLOCK)
 | 
			
		||||
    z_ref = torch.arange(start, BLOCK+start, dtype=torch.int32, device=device)
 | 
			
		||||
    triton.testing.assert_almost_equal(z_tri, z_ref)
 | 
			
		||||
 | 
			
		||||
# ---------------
 | 
			
		||||
# test load
 | 
			
		||||
 
 | 
			
		||||
@@ -112,7 +112,7 @@ BLOCK = 1024
 | 
			
		||||
# test generation of random uint32
 | 
			
		||||
@pytest.mark.parametrize('size, seed',
 | 
			
		||||
    [(size, seed) for size in ['10', '4,53', '10000']\
 | 
			
		||||
                  for seed in [0, 42, 124, 54]]
 | 
			
		||||
                  for seed in [0, 42, 124, 54, 0xffffffff, 0xdeadbeefcafeb0ba]]
 | 
			
		||||
)
 | 
			
		||||
def test_randint(size, seed, device='cuda'):
 | 
			
		||||
    size = list(map(int, size.split(',')))
 | 
			
		||||
 
 | 
			
		||||
@@ -103,7 +103,8 @@ class CodeGenerator(ast.NodeVisitor):
 | 
			
		||||
            arg_values = []
 | 
			
		||||
            for i, arg_name in enumerate(arg_names):
 | 
			
		||||
                if i in self.constants:
 | 
			
		||||
                    arg_values.append(self.constants[i])
 | 
			
		||||
                    cst = triton.language.core._to_ir(self.constants[i], self.builder)
 | 
			
		||||
                    arg_values.append(cst)
 | 
			
		||||
                else:
 | 
			
		||||
                    if i in self.attributes:
 | 
			
		||||
                        is_ptr = fn.args[i].type.is_ptr()
 | 
			
		||||
@@ -463,9 +464,6 @@ class Kernel:
 | 
			
		||||
    @staticmethod
 | 
			
		||||
    def _type_name(obj):
 | 
			
		||||
        type_names = {
 | 
			
		||||
            int: 'I',
 | 
			
		||||
            float: 'f',
 | 
			
		||||
            bool: 'B',
 | 
			
		||||
            triton.language.float8: 'f8',
 | 
			
		||||
            torch.bfloat16: 'bf16',
 | 
			
		||||
            torch.float16: 'f16',
 | 
			
		||||
@@ -477,12 +475,25 @@ class Kernel:
 | 
			
		||||
            torch.int32: 'i32',
 | 
			
		||||
            torch.int64: 'i64',
 | 
			
		||||
        }
 | 
			
		||||
        return type_names[obj]
 | 
			
		||||
        if hasattr(obj, 'data_ptr'):
 | 
			
		||||
            return type_names[obj.dtype]
 | 
			
		||||
        if isinstance(obj, int):
 | 
			
		||||
            if abs(obj) <= 0xffffffff:
 | 
			
		||||
                return 'I'
 | 
			
		||||
            return 'L'
 | 
			
		||||
        if isinstance(obj, float):
 | 
			
		||||
            return 'f'
 | 
			
		||||
        if isinstance(obj, bool):
 | 
			
		||||
            return 'B'
 | 
			
		||||
        assert False
 | 
			
		||||
 | 
			
		||||
        
 | 
			
		||||
 | 
			
		||||
    @staticmethod
 | 
			
		||||
    def _to_triton_ir(context, obj):
 | 
			
		||||
        type_map = {
 | 
			
		||||
            'I': _triton.ir.type.get_int32,
 | 
			
		||||
            'L': _triton.ir.type.get_int64,
 | 
			
		||||
            'f': _triton.ir.type.get_fp32,
 | 
			
		||||
            'B': _triton.ir.type.get_int1,
 | 
			
		||||
            'f8': _triton.ir.type.get_fp8,
 | 
			
		||||
@@ -498,11 +509,11 @@ class Kernel:
 | 
			
		||||
        }
 | 
			
		||||
        # convert torch.Tensor to Triton IR pointers
 | 
			
		||||
        if hasattr(obj, 'data_ptr'):
 | 
			
		||||
            name = Kernel._type_name(obj.dtype)
 | 
			
		||||
            name = Kernel._type_name(obj)
 | 
			
		||||
            elt_ty = type_map[name](context)
 | 
			
		||||
            return _triton.ir.type.make_ptr(elt_ty, 1)
 | 
			
		||||
        # default path returns triton.ir.type directly
 | 
			
		||||
        name = Kernel._type_name(obj.__class__)
 | 
			
		||||
        name = Kernel._type_name(obj)
 | 
			
		||||
        return type_map[name](context)
 | 
			
		||||
 | 
			
		||||
    @staticmethod
 | 
			
		||||
@@ -511,7 +522,7 @@ class Kernel:
 | 
			
		||||
        types_key = [None] * len(wargs)
 | 
			
		||||
        for i, arg in enumerate(wargs):
 | 
			
		||||
            prefix = 'P' if i in tensor_idxs else ''
 | 
			
		||||
            suffix = Kernel._type_name(arg.dtype) if i in tensor_idxs else Kernel._type_name(arg.__class__)
 | 
			
		||||
            suffix = Kernel._type_name(arg) if i in tensor_idxs else Kernel._type_name(arg)
 | 
			
		||||
            types_key[i] = prefix + suffix
 | 
			
		||||
        return tuple(types_key)
 | 
			
		||||
 | 
			
		||||
@@ -646,7 +657,7 @@ class Kernel:
 | 
			
		||||
 
 | 
			
		||||
            drv_cache[key] = LoadedBinary(device_idx, binary)
 | 
			
		||||
        # pack arguments
 | 
			
		||||
        fmt = ''.join(['P' if i in tensor_idxs else Kernel._type_name(arg.__class__) for i, arg in enumerate(wargs)])
 | 
			
		||||
        fmt = ''.join(['P' if i in tensor_idxs else Kernel._type_name(arg) for i, arg in enumerate(wargs)])
 | 
			
		||||
        params = struct.pack(fmt, *args)
 | 
			
		||||
        # enqueue cached function into stream
 | 
			
		||||
        callable = drv_cache[key]
 | 
			
		||||
 
 | 
			
		||||
@@ -9,7 +9,9 @@ def _to_ir(x, builder):
 | 
			
		||||
    if isinstance(x, bool):
 | 
			
		||||
        return builder.get_int1(x)
 | 
			
		||||
    elif isinstance(x, int):
 | 
			
		||||
        if x.__abs__() <= 2**31:
 | 
			
		||||
            return builder.get_int32(x)
 | 
			
		||||
        return builder.get_int64(x)
 | 
			
		||||
    elif isinstance(x, float):
 | 
			
		||||
        return builder.get_float32(x)
 | 
			
		||||
    if isinstance(x, block):
 | 
			
		||||
@@ -636,6 +638,10 @@ def max_contiguous(input, value, _builder=None):
 | 
			
		||||
# Standard library
 | 
			
		||||
# -----------------------
 | 
			
		||||
 | 
			
		||||
@triton.jit
 | 
			
		||||
def abs(x):
 | 
			
		||||
    return where(x >= 0, x, -x)
 | 
			
		||||
 | 
			
		||||
@triton.jit
 | 
			
		||||
def cdiv(x, div):
 | 
			
		||||
    """
 | 
			
		||||
 
 | 
			
		||||
@@ -128,7 +128,10 @@ def randint4x(seed, offset):
 | 
			
		||||
    :param offsets: The offsets to generate random numbers for.
 | 
			
		||||
    """
 | 
			
		||||
    z = 0
 | 
			
		||||
    return philox_f(offset, z, z, z, seed, z)
 | 
			
		||||
    seed = hacky_to_uint64(seed) # uint will solve this
 | 
			
		||||
    seed_hi = ((seed >> 32) & 0xffffffff).to(tl.int32)
 | 
			
		||||
    seed_lo = (seed & 0xffffffff).to(tl.int32)
 | 
			
		||||
    return philox_f(offset, z, z, z, seed_lo, seed_hi)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@triton.jit
 | 
			
		||||
 
 | 
			
		||||
		Reference in New Issue
	
	Block a user