[GH-PAGES] Updated website

This commit is contained in:
Philippe Tillet
2022-06-05 19:52:40 +00:00
parent 5803154ef2
commit 537d98825f
79 changed files with 154 additions and 154 deletions

View File

@@ -1,4 +1,4 @@
# Sphinx build info version 1
# This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done.
config: f3d1ccbddb6a63c7385d319834b5692f
config: 15e6b27e870b3e8bd2987567dc3b7b92
tags: 645f666f9bcd5a90fca523b33c5a78b7

Binary file not shown.

Binary file not shown.

Binary file not shown.

Before

Width:  |  Height:  |  Size: 24 KiB

After

Width:  |  Height:  |  Size: 24 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 15 KiB

After

Width:  |  Height:  |  Size: 15 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 37 KiB

After

Width:  |  Height:  |  Size: 37 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 24 KiB

After

Width:  |  Height:  |  Size: 23 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 57 KiB

After

Width:  |  Height:  |  Size: 56 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 33 KiB

After

Width:  |  Height:  |  Size: 33 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 32 KiB

After

Width:  |  Height:  |  Size: 32 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 20 KiB

After

Width:  |  Height:  |  Size: 21 KiB

View File

@@ -232,19 +232,19 @@ We can now run the decorated function above. Pass `print_data=True` to see the p
vector-add-performance:
size Triton Torch
0 4096.0 9.600000 9.600000
1 8192.0 19.200000 15.999999
1 8192.0 19.200000 19.200000
2 16384.0 38.400001 38.400001
3 32768.0 76.800002 76.800002
3 32768.0 63.999998 63.999998
4 65536.0 127.999995 127.999995
5 131072.0 219.428568 219.428568
6 262144.0 341.333321 384.000001
6 262144.0 341.333321 341.333321
7 524288.0 472.615390 472.615390
8 1048576.0 614.400016 614.400016
9 2097152.0 722.823517 702.171410
10 4194304.0 780.190482 780.190482
11 8388608.0 812.429770 812.429770
12 16777216.0 833.084721 833.084721
13 33554432.0 842.004273 843.811163
13 33554432.0 842.004273 842.004273
14 67108864.0 847.448255 848.362445
15 134217728.0 849.737435 850.656574
@@ -254,7 +254,7 @@ We can now run the decorated function above. Pass `print_data=True` to see the p
.. rst-class:: sphx-glr-timing
**Total running time of the script:** ( 1 minutes 28.027 seconds)
**Total running time of the script:** ( 1 minutes 43.206 seconds)
.. _sphx_glr_download_getting-started_tutorials_01-vector-add.py:

View File

@@ -286,17 +286,17 @@ We will then compare its performance against (1) :code:`torch.softmax` and (2) t
softmax-performance:
N Triton Torch (native) Torch (jit)
0 256.0 512.000001 512.000001 192.752942
1 384.0 585.142862 585.142862 153.600004
2 512.0 655.360017 585.142849 154.566038
3 640.0 682.666684 640.000002 160.000000
0 256.0 512.000001 546.133347 186.181817
1 384.0 585.142862 585.142862 151.703707
2 512.0 655.360017 606.814814 154.566038
3 640.0 682.666684 640.000002 158.759699
4 768.0 722.823517 664.216187 162.754967
.. ... ... ... ...
93 12160.0 814.058574 406.179533 198.429370
94 12288.0 814.111783 415.661740 198.694297
95 12416.0 812.498981 411.722274 198.259492
96 12544.0 812.566838 412.971190 198.618504
97 12672.0 812.633240 411.679167 198.679085
93 12160.0 812.359066 405.755985 198.631953
94 12288.0 814.111783 415.222812 198.794749
95 12416.0 812.498981 412.149375 198.457532
96 12544.0 812.566838 412.546756 198.667643
97 12672.0 812.633240 411.679167 198.776477
[98 rows x 4 columns]
@@ -314,7 +314,7 @@ In the above plot, we can see that:
.. rst-class:: sphx-glr-timing
**Total running time of the script:** ( 3 minutes 19.106 seconds)
**Total running time of the script:** ( 3 minutes 23.188 seconds)
.. _sphx_glr_download_getting-started_tutorials_02-fused-softmax.py:

View File

@@ -463,36 +463,36 @@ We can now compare the performance of our kernel against that of cuBLAS. Here we
matmul-performance:
M cuBLAS ... Triton Triton (+ LeakyReLU)
0 256.0 2.730667 ... 2.978909 2.978909
1 384.0 7.372800 ... 8.507077 8.507077
2 512.0 14.563555 ... 15.420235 15.420235
1 384.0 7.372800 ... 8.507077 7.899428
2 512.0 14.563555 ... 16.384000 15.420235
3 640.0 22.260869 ... 24.380953 24.380953
4 768.0 32.768000 ... 34.028308 34.028308
5 896.0 39.025776 ... 40.140799 39.025776
5 896.0 37.971025 ... 39.025776 39.025776
6 1024.0 49.932191 ... 53.773130 52.428801
7 1152.0 45.242181 ... 46.656000 46.656000
8 1280.0 51.200001 ... 56.888887 56.109587
9 1408.0 64.138541 ... 67.305878 65.684049
9 1408.0 64.138541 ... 67.305878 66.485074
10 1536.0 80.430545 ... 79.526831 78.643199
11 1664.0 63.372618 ... 62.492442 62.061463
11 1664.0 62.929456 ... 62.492442 62.061463
12 1792.0 72.983276 ... 72.512412 71.588687
13 1920.0 69.120002 ... 70.530615 70.530615
14 2048.0 73.908442 ... 77.314362 76.959706
15 2176.0 83.500614 ... 86.367588 85.632545
16 2304.0 68.251065 ... 77.057651 76.563695
17 2432.0 71.125224 ... 85.134737 84.367759
18 2560.0 77.833728 ... 81.310171 80.908642
19 2688.0 83.552988 ... 90.102270 89.464755
20 2816.0 83.392363 ... 83.392363 82.916747
21 2944.0 82.102191 ... 82.646820 82.102191
22 3072.0 82.301023 ... 88.612060 88.473602
23 3200.0 84.880639 ... 95.665176 95.096582
24 3328.0 84.101981 ... 84.496824 84.496824
25 3456.0 81.890873 ... 88.790274 90.892410
26 3584.0 87.211821 ... 90.549237 97.628001
27 3712.0 85.748791 ... 93.014284 87.475786
28 3840.0 83.591840 ... 92.083268 88.261772
29 3968.0 93.648452 ... 90.154371 86.788006
30 4096.0 92.627833 ... 87.438257 82.340585
13 1920.0 68.776119 ... 70.172588 70.172588
14 2048.0 73.584279 ... 76.959706 76.608294
15 2176.0 83.155572 ... 85.998493 85.269692
16 2304.0 68.446623 ... 77.057651 76.563695
17 2432.0 71.125224 ... 85.134737 83.614477
18 2560.0 77.833728 ... 81.108913 80.908642
19 2688.0 83.737433 ... 89.570381 89.044730
20 2816.0 81.067298 ... 82.602666 83.233226
21 2944.0 81.298583 ... 82.646820 82.784108
22 3072.0 82.420822 ... 88.473602 88.335577
23 3200.0 84.768213 ... 95.380032 94.814812
24 3328.0 83.516586 ... 83.130825 83.808259
25 3456.0 81.932484 ... 89.281913 91.304157
26 3584.0 87.381330 ... 94.647779 97.628001
27 3712.0 85.675250 ... 89.714725 87.552452
28 3840.0 85.863352 ... 87.355452 91.398346
29 3968.0 86.051653 ... 91.816356 86.788006
30 4096.0 94.386588 ... 92.372834 88.185107
[31 rows x 5 columns]
@@ -502,7 +502,7 @@ We can now compare the performance of our kernel against that of cuBLAS. Here we
.. rst-class:: sphx-glr-timing
**Total running time of the script:** ( 5 minutes 26.690 seconds)
**Total running time of the script:** ( 5 minutes 26.832 seconds)
.. _sphx_glr_download_getting-started_tutorials_03-matrix-multiplication.py:

View File

@@ -238,7 +238,7 @@ References
.. rst-class:: sphx-glr-timing
**Total running time of the script:** ( 0 minutes 0.372 seconds)
**Total running time of the script:** ( 0 minutes 0.011 seconds)
.. _sphx_glr_download_getting-started_tutorials_04-low-memory-dropout.py:

View File

@@ -38,36 +38,36 @@ Layer Normalization
layer-norm-backward:
N Triton Torch Apex
0 1024.0 307.200008 99.096776 307.200008
1 1536.0 351.085717 133.083026 338.201833
2 2048.0 423.724127 161.684218 334.367350
3 2560.0 458.507457 182.857144 328.556154
4 3072.0 511.999982 191.501303 320.556515
5 3584.0 551.384634 208.271186 308.301075
6 4096.0 568.231237 220.412561 298.796351
7 4608.0 495.928261 231.849059 286.507772
8 5120.0 522.893618 242.845844 283.787523
9 5632.0 536.380957 243.107920 291.310338
10 6144.0 542.117638 248.661056 286.322318
11 6656.0 525.473708 256.000009 286.279570
12 7168.0 505.976473 261.844750 288.160801
13 7680.0 481.253256 260.338991 277.172933
14 8192.0 460.440290 268.957600 286.600589
15 8704.0 416.958106 267.815384 284.987724
0 1024.0 311.088617 99.096776 307.200008
1 1536.0 351.085717 133.565214 338.201833
2 2048.0 420.102553 158.554837 321.254900
3 2560.0 461.954908 181.775141 328.556154
4 3072.0 515.580429 190.020625 319.168834
5 3584.0 547.872604 207.267476 306.106777
6 4096.0 564.965515 219.919464 293.444785
7 4608.0 498.162157 232.336141 291.031570
8 5120.0 527.381977 243.809526 286.433562
9 5632.0 545.032265 244.426754 291.310338
10 6144.0 550.208948 251.202731 286.879370
11 6656.0 534.260858 255.590406 285.257135
12 7168.0 513.528374 256.000002 279.726817
13 7680.0 487.619051 266.358392 280.547947
14 8192.0 463.698115 260.063494 279.272725
15 8704.0 416.127506 267.130429 284.212242
16 9216.0 428.651187 272.729961 289.507855
17 9728.0 438.857162 280.278512 288.950501
18 10240.0 446.836366 286.433562 290.153487
19 10752.0 428.651173 246.464170 289.941565
20 11264.0 429.104745 245.091565 285.767446
21 11776.0 421.826879 249.447482 288.686414
22 12288.0 420.102570 254.453844 294.911986
23 12800.0 415.135142 253.256381 289.811310
24 13312.0 412.242569 252.559690 290.179836
25 13824.0 404.604870 257.390218 292.571423
26 14336.0 397.761846 254.862216 286.242939
27 14848.0 383.999990 257.108233 289.012175
28 15360.0 374.253788 257.610071 287.326580
29 15872.0 366.982663 262.708969 291.006885
17 9728.0 438.857162 280.278512 288.593329
18 10240.0 447.650282 286.767793 288.112552
19 10752.0 431.518385 246.935876 289.941565
20 11264.0 428.424741 246.207655 287.897767
21 11776.0 421.826879 249.888595 289.277383
22 12288.0 417.722367 254.453844 294.911986
23 12800.0 414.574901 253.569949 287.371378
24 13312.0 412.242569 252.959629 289.653667
25 13824.0 405.098897 257.190689 292.313649
26 14336.0 399.146178 255.809666 289.372589
27 14848.0 383.586664 256.922861 287.844912
28 15360.0 376.932517 258.513318 288.225185
29 15872.0 369.832994 261.267482 290.341468
@@ -329,7 +329,7 @@ Layer Normalization
.. rst-class:: sphx-glr-timing
**Total running time of the script:** ( 2 minutes 11.692 seconds)
**Total running time of the script:** ( 2 minutes 11.696 seconds)
.. _sphx_glr_download_getting-started_tutorials_05-layer-norm.py:

View File

@@ -5,16 +5,16 @@
Computation times
=================
**12:25.887** total execution time for **getting-started_tutorials** files:
**12:44.933** total execution time for **getting-started_tutorials** files:
+---------------------------------------------------------------------------------------------------------+-----------+--------+
| :ref:`sphx_glr_getting-started_tutorials_03-matrix-multiplication.py` (``03-matrix-multiplication.py``) | 05:26.690 | 0.0 MB |
| :ref:`sphx_glr_getting-started_tutorials_03-matrix-multiplication.py` (``03-matrix-multiplication.py``) | 05:26.832 | 0.0 MB |
+---------------------------------------------------------------------------------------------------------+-----------+--------+
| :ref:`sphx_glr_getting-started_tutorials_02-fused-softmax.py` (``02-fused-softmax.py``) | 03:19.106 | 0.0 MB |
| :ref:`sphx_glr_getting-started_tutorials_02-fused-softmax.py` (``02-fused-softmax.py``) | 03:23.188 | 0.0 MB |
+---------------------------------------------------------------------------------------------------------+-----------+--------+
| :ref:`sphx_glr_getting-started_tutorials_05-layer-norm.py` (``05-layer-norm.py``) | 02:11.692 | 0.0 MB |
| :ref:`sphx_glr_getting-started_tutorials_05-layer-norm.py` (``05-layer-norm.py``) | 02:11.696 | 0.0 MB |
+---------------------------------------------------------------------------------------------------------+-----------+--------+
| :ref:`sphx_glr_getting-started_tutorials_01-vector-add.py` (``01-vector-add.py``) | 01:28.027 | 0.0 MB |
| :ref:`sphx_glr_getting-started_tutorials_01-vector-add.py` (``01-vector-add.py``) | 01:43.206 | 0.0 MB |
+---------------------------------------------------------------------------------------------------------+-----------+--------+
| :ref:`sphx_glr_getting-started_tutorials_04-low-memory-dropout.py` (``04-low-memory-dropout.py``) | 00:00.372 | 0.0 MB |
| :ref:`sphx_glr_getting-started_tutorials_04-low-memory-dropout.py` (``04-low-memory-dropout.py``) | 00:00.011 | 0.0 MB |
+---------------------------------------------------------------------------------------------------------+-----------+--------+

View File

@@ -322,24 +322,24 @@ for different problem sizes.</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>vector-add-performance:
size Triton Torch
0 4096.0 9.600000 9.600000
1 8192.0 19.200000 15.999999
1 8192.0 19.200000 19.200000
2 16384.0 38.400001 38.400001
3 32768.0 76.800002 76.800002
3 32768.0 63.999998 63.999998
4 65536.0 127.999995 127.999995
5 131072.0 219.428568 219.428568
6 262144.0 341.333321 384.000001
6 262144.0 341.333321 341.333321
7 524288.0 472.615390 472.615390
8 1048576.0 614.400016 614.400016
9 2097152.0 722.823517 702.171410
10 4194304.0 780.190482 780.190482
11 8388608.0 812.429770 812.429770
12 16777216.0 833.084721 833.084721
13 33554432.0 842.004273 843.811163
13 33554432.0 842.004273 842.004273
14 67108864.0 847.448255 848.362445
15 134217728.0 849.737435 850.656574
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 1 minutes 28.027 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 1 minutes 43.206 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-01-vector-add-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/62d97d49a32414049819dd8bb8378080/01-vector-add.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">01-vector-add.py</span></code></a></p>

View File

@@ -374,17 +374,17 @@ We will then compare its performance against (1) <code class="code docutils lite
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>softmax-performance:
N Triton Torch (native) Torch (jit)
0 256.0 512.000001 512.000001 192.752942
1 384.0 585.142862 585.142862 153.600004
2 512.0 655.360017 585.142849 154.566038
3 640.0 682.666684 640.000002 160.000000
0 256.0 512.000001 546.133347 186.181817
1 384.0 585.142862 585.142862 151.703707
2 512.0 655.360017 606.814814 154.566038
3 640.0 682.666684 640.000002 158.759699
4 768.0 722.823517 664.216187 162.754967
.. ... ... ... ...
93 12160.0 814.058574 406.179533 198.429370
94 12288.0 814.111783 415.661740 198.694297
95 12416.0 812.498981 411.722274 198.259492
96 12544.0 812.566838 412.971190 198.618504
97 12672.0 812.633240 411.679167 198.679085
93 12160.0 812.359066 405.755985 198.631953
94 12288.0 814.111783 415.222812 198.794749
95 12416.0 812.498981 412.149375 198.457532
96 12544.0 812.566838 412.546756 198.667643
97 12672.0 812.633240 411.679167 198.776477
[98 rows x 4 columns]
</pre></div>
@@ -397,7 +397,7 @@ We will then compare its performance against (1) <code class="code docutils lite
Note however that the PyTorch <cite>softmax</cite> operation is more general and will works on tensors of any shape.</p></li>
</ul>
</div></blockquote>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 3 minutes 19.106 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 3 minutes 23.188 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-02-fused-softmax-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/d91442ac2982c4e0cc3ab0f43534afbc/02-fused-softmax.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">02-fused-softmax.py</span></code></a></p>

View File

@@ -569,41 +569,41 @@ torch_output=tensor([[ 1.1045, -36.9688, 31.4688, ..., -11.3906, 24.4531, -3
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>matmul-performance:
M cuBLAS ... Triton Triton (+ LeakyReLU)
0 256.0 2.730667 ... 2.978909 2.978909
1 384.0 7.372800 ... 8.507077 8.507077
2 512.0 14.563555 ... 15.420235 15.420235
1 384.0 7.372800 ... 8.507077 7.899428
2 512.0 14.563555 ... 16.384000 15.420235
3 640.0 22.260869 ... 24.380953 24.380953
4 768.0 32.768000 ... 34.028308 34.028308
5 896.0 39.025776 ... 40.140799 39.025776
5 896.0 37.971025 ... 39.025776 39.025776
6 1024.0 49.932191 ... 53.773130 52.428801
7 1152.0 45.242181 ... 46.656000 46.656000
8 1280.0 51.200001 ... 56.888887 56.109587
9 1408.0 64.138541 ... 67.305878 65.684049
9 1408.0 64.138541 ... 67.305878 66.485074
10 1536.0 80.430545 ... 79.526831 78.643199
11 1664.0 63.372618 ... 62.492442 62.061463
11 1664.0 62.929456 ... 62.492442 62.061463
12 1792.0 72.983276 ... 72.512412 71.588687
13 1920.0 69.120002 ... 70.530615 70.530615
14 2048.0 73.908442 ... 77.314362 76.959706
15 2176.0 83.500614 ... 86.367588 85.632545
16 2304.0 68.251065 ... 77.057651 76.563695
17 2432.0 71.125224 ... 85.134737 84.367759
18 2560.0 77.833728 ... 81.310171 80.908642
19 2688.0 83.552988 ... 90.102270 89.464755
20 2816.0 83.392363 ... 83.392363 82.916747
21 2944.0 82.102191 ... 82.646820 82.102191
22 3072.0 82.301023 ... 88.612060 88.473602
23 3200.0 84.880639 ... 95.665176 95.096582
24 3328.0 84.101981 ... 84.496824 84.496824
25 3456.0 81.890873 ... 88.790274 90.892410
26 3584.0 87.211821 ... 90.549237 97.628001
27 3712.0 85.748791 ... 93.014284 87.475786
28 3840.0 83.591840 ... 92.083268 88.261772
29 3968.0 93.648452 ... 90.154371 86.788006
30 4096.0 92.627833 ... 87.438257 82.340585
13 1920.0 68.776119 ... 70.172588 70.172588
14 2048.0 73.584279 ... 76.959706 76.608294
15 2176.0 83.155572 ... 85.998493 85.269692
16 2304.0 68.446623 ... 77.057651 76.563695
17 2432.0 71.125224 ... 85.134737 83.614477
18 2560.0 77.833728 ... 81.108913 80.908642
19 2688.0 83.737433 ... 89.570381 89.044730
20 2816.0 81.067298 ... 82.602666 83.233226
21 2944.0 81.298583 ... 82.646820 82.784108
22 3072.0 82.420822 ... 88.473602 88.335577
23 3200.0 84.768213 ... 95.380032 94.814812
24 3328.0 83.516586 ... 83.130825 83.808259
25 3456.0 81.932484 ... 89.281913 91.304157
26 3584.0 87.381330 ... 94.647779 97.628001
27 3712.0 85.675250 ... 89.714725 87.552452
28 3840.0 85.863352 ... 87.355452 91.398346
29 3968.0 86.051653 ... 91.816356 86.788006
30 4096.0 94.386588 ... 92.372834 88.185107
[31 rows x 5 columns]
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 5 minutes 26.690 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 5 minutes 26.832 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-03-matrix-multiplication-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/d5fee5b55a64e47f1b5724ec39adf171/03-matrix-multiplication.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">03-matrix-multiplication.py</span></code></a></p>

View File

@@ -371,7 +371,7 @@ to explore the <cite>triton/language/random</cite> folder!</p>
<dd><p>Nitish Srivastava and Geoffrey Hinton and Alex Krizhevsky and Ilya Sutskever and Ruslan Salakhutdinov, “Dropout: A Simple Way to Prevent Neural Networks from Overfitting”, JMLR 2014</p>
</dd>
</dl>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 0.372 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 0.011 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-04-low-memory-dropout-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/c9aed78977a4c05741d675a38dde3d7d/04-low-memory-dropout.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">04-low-memory-dropout.py</span></code></a></p>

View File

@@ -194,36 +194,36 @@ to download the full example code</p>
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>layer-norm-backward:
N Triton Torch Apex
0 1024.0 307.200008 99.096776 307.200008
1 1536.0 351.085717 133.083026 338.201833
2 2048.0 423.724127 161.684218 334.367350
3 2560.0 458.507457 182.857144 328.556154
4 3072.0 511.999982 191.501303 320.556515
5 3584.0 551.384634 208.271186 308.301075
6 4096.0 568.231237 220.412561 298.796351
7 4608.0 495.928261 231.849059 286.507772
8 5120.0 522.893618 242.845844 283.787523
9 5632.0 536.380957 243.107920 291.310338
10 6144.0 542.117638 248.661056 286.322318
11 6656.0 525.473708 256.000009 286.279570
12 7168.0 505.976473 261.844750 288.160801
13 7680.0 481.253256 260.338991 277.172933
14 8192.0 460.440290 268.957600 286.600589
15 8704.0 416.958106 267.815384 284.987724
0 1024.0 311.088617 99.096776 307.200008
1 1536.0 351.085717 133.565214 338.201833
2 2048.0 420.102553 158.554837 321.254900
3 2560.0 461.954908 181.775141 328.556154
4 3072.0 515.580429 190.020625 319.168834
5 3584.0 547.872604 207.267476 306.106777
6 4096.0 564.965515 219.919464 293.444785
7 4608.0 498.162157 232.336141 291.031570
8 5120.0 527.381977 243.809526 286.433562
9 5632.0 545.032265 244.426754 291.310338
10 6144.0 550.208948 251.202731 286.879370
11 6656.0 534.260858 255.590406 285.257135
12 7168.0 513.528374 256.000002 279.726817
13 7680.0 487.619051 266.358392 280.547947
14 8192.0 463.698115 260.063494 279.272725
15 8704.0 416.127506 267.130429 284.212242
16 9216.0 428.651187 272.729961 289.507855
17 9728.0 438.857162 280.278512 288.950501
18 10240.0 446.836366 286.433562 290.153487
19 10752.0 428.651173 246.464170 289.941565
20 11264.0 429.104745 245.091565 285.767446
21 11776.0 421.826879 249.447482 288.686414
22 12288.0 420.102570 254.453844 294.911986
23 12800.0 415.135142 253.256381 289.811310
24 13312.0 412.242569 252.559690 290.179836
25 13824.0 404.604870 257.390218 292.571423
26 14336.0 397.761846 254.862216 286.242939
27 14848.0 383.999990 257.108233 289.012175
28 15360.0 374.253788 257.610071 287.326580
29 15872.0 366.982663 262.708969 291.006885
17 9728.0 438.857162 280.278512 288.593329
18 10240.0 447.650282 286.767793 288.112552
19 10752.0 431.518385 246.935876 289.941565
20 11264.0 428.424741 246.207655 287.897767
21 11776.0 421.826879 249.888595 289.277383
22 12288.0 417.722367 254.453844 294.911986
23 12800.0 414.574901 253.569949 287.371378
24 13312.0 412.242569 252.959629 289.653667
25 13824.0 405.098897 257.190689 292.313649
26 14336.0 399.146178 255.809666 289.372589
27 14848.0 383.586664 256.922861 287.844912
28 15360.0 376.932517 258.513318 288.225185
29 15872.0 369.832994 261.267482 290.341468
</pre></div>
</div>
<div class="line-block">
@@ -477,7 +477,7 @@ to download the full example code</p>
<span class="n">bench_layer_norm</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">save_path</span><span class="o">=</span><span class="s1">&#39;.&#39;</span><span class="p">,</span> <span class="n">print_data</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 2 minutes 11.692 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 2 minutes 11.696 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-05-layer-norm-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/935c0dd0fbeb4b2e69588471cbb2d4b2/05-layer-norm.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">05-layer-norm.py</span></code></a></p>

View File

@@ -174,7 +174,7 @@
<div class="section" id="computation-times">
<span id="sphx-glr-getting-started-tutorials-sg-execution-times"></span><h1>Computation times<a class="headerlink" href="#computation-times" title="Permalink to this headline"></a></h1>
<p><strong>12:25.887</strong> total execution time for <strong>getting-started_tutorials</strong> files:</p>
<p><strong>12:44.933</strong> total execution time for <strong>getting-started_tutorials</strong> files:</p>
<table class="docutils align-default">
<colgroup>
<col style="width: 85%" />
@@ -183,23 +183,23 @@
</colgroup>
<tbody>
<tr class="row-odd"><td><p><a class="reference internal" href="03-matrix-multiplication.html#sphx-glr-getting-started-tutorials-03-matrix-multiplication-py"><span class="std std-ref">Matrix Multiplication</span></a> (<code class="docutils literal notranslate"><span class="pre">03-matrix-multiplication.py</span></code>)</p></td>
<td><p>05:26.690</p></td>
<td><p>05:26.832</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="02-fused-softmax.html#sphx-glr-getting-started-tutorials-02-fused-softmax-py"><span class="std std-ref">Fused Softmax</span></a> (<code class="docutils literal notranslate"><span class="pre">02-fused-softmax.py</span></code>)</p></td>
<td><p>03:19.106</p></td>
<td><p>03:23.188</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="05-layer-norm.html#sphx-glr-getting-started-tutorials-05-layer-norm-py"><span class="std std-ref">Layer Normalization</span></a> (<code class="docutils literal notranslate"><span class="pre">05-layer-norm.py</span></code>)</p></td>
<td><p>02:11.692</p></td>
<td><p>02:11.696</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="01-vector-add.html#sphx-glr-getting-started-tutorials-01-vector-add-py"><span class="std std-ref">Vector Addition</span></a> (<code class="docutils literal notranslate"><span class="pre">01-vector-add.py</span></code>)</p></td>
<td><p>01:28.027</p></td>
<td><p>01:43.206</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="04-low-memory-dropout.html#sphx-glr-getting-started-tutorials-04-low-memory-dropout-py"><span class="std std-ref">Low-Memory Dropout</span></a> (<code class="docutils literal notranslate"><span class="pre">04-low-memory-dropout.py</span></code>)</p></td>
<td><p>00:00.372</p></td>
<td><p>00:00.011</p></td>
<td><p>0.0 MB</p></td>
</tr>
</tbody>

File diff suppressed because one or more lines are too long