[GH-PAGES] Updated website

This commit is contained in:
Philippe Tillet
2022-08-01 00:51:04 +00:00
parent 57b5951fdb
commit 54ca5217e0
163 changed files with 298 additions and 298 deletions

View File

@@ -1,4 +1,4 @@
# Sphinx build info version 1
# This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done.
config: 3d670a0c1fdb74727f00ba92e45ed74d
config: 62b3cc7c92dd3bc2cc535c8d5b7a6208
tags: 645f666f9bcd5a90fca523b33c5a78b7

Binary file not shown.

Binary file not shown.

Binary file not shown.

Before

Width:  |  Height:  |  Size: 25 KiB

After

Width:  |  Height:  |  Size: 24 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 16 KiB

After

Width:  |  Height:  |  Size: 16 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 36 KiB

After

Width:  |  Height:  |  Size: 36 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 23 KiB

After

Width:  |  Height:  |  Size: 23 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 60 KiB

After

Width:  |  Height:  |  Size: 58 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 34 KiB

After

Width:  |  Height:  |  Size: 33 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 36 KiB

After

Width:  |  Height:  |  Size: 35 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 22 KiB

After

Width:  |  Height:  |  Size: 22 KiB

View File

@@ -234,7 +234,7 @@ We can now run the decorated function above. Pass `print_data=True` to see the p
size Triton Torch
0 4096.0 9.600000 9.600000
1 8192.0 19.200000 19.200000
2 16384.0 31.999999 31.999999
2 16384.0 38.400001 38.400001
3 32768.0 76.800002 76.800002
4 65536.0 127.999995 127.999995
5 131072.0 219.428568 219.428568
@@ -245,7 +245,7 @@ We can now run the decorated function above. Pass `print_data=True` to see the p
10 4194304.0 780.190482 780.190482
11 8388608.0 812.429770 812.429770
12 16777216.0 833.084721 833.084721
13 33554432.0 842.004273 843.811163
13 33554432.0 842.004273 842.004273
14 67108864.0 847.448255 848.362445
15 134217728.0 849.737435 850.656574
@@ -255,7 +255,7 @@ We can now run the decorated function above. Pass `print_data=True` to see the p
.. rst-class:: sphx-glr-timing
**Total running time of the script:** ( 1 minutes 43.396 seconds)
**Total running time of the script:** ( 1 minutes 39.539 seconds)
.. _sphx_glr_download_getting-started_tutorials_01-vector-add.py:

View File

@@ -278,17 +278,17 @@ We will then compare its performance against (1) :code:`torch.softmax` and (2) t
softmax-performance:
N Triton Torch (native) Torch (jit)
0 256.0 546.133347 546.133347 190.511628
1 384.0 614.400016 585.142862 153.600004
0 256.0 512.000001 546.133347 186.181817
1 384.0 614.400016 585.142862 151.703707
2 512.0 655.360017 606.814814 154.566038
3 640.0 706.206879 640.000002 160.000000
4 768.0 722.823517 664.216187 162.754967
4 768.0 722.823517 664.216187 163.839992
.. ... ... ... ...
93 12160.0 812.359066 406.179533 198.936606
94 12288.0 812.429770 415.661740 199.197579
95 12416.0 812.498981 412.149375 198.854847
96 12544.0 810.925276 412.971190 199.111113
97 12672.0 811.007961 412.097543 199.167004
93 12160.0 812.359066 406.179533 198.530610
94 12288.0 812.429770 415.661740 198.794749
95 12416.0 812.498981 411.722274 198.457532
96 12544.0 812.566838 412.971190 198.667643
97 12672.0 811.007961 412.097543 198.776477
[98 rows x 4 columns]
@@ -306,7 +306,7 @@ In the above plot, we can see that:
.. rst-class:: sphx-glr-timing
**Total running time of the script:** ( 3 minutes 29.369 seconds)
**Total running time of the script:** ( 3 minutes 31.277 seconds)
.. _sphx_glr_download_getting-started_tutorials_02-fused-softmax.py:

View File

@@ -459,37 +459,37 @@ We can now compare the performance of our kernel against that of cuBLAS. Here we
matmul-performance:
M cuBLAS ... Triton Triton (+ LeakyReLU)
0 256.0 2.730667 ... 3.276800 2.978909
0 256.0 2.730667 ... 3.276800 3.276800
1 384.0 7.372800 ... 8.507077 8.507077
2 512.0 14.563555 ... 16.384000 16.384000
3 640.0 22.260869 ... 24.380953 24.380953
4 768.0 32.768000 ... 35.389441 34.028308
5 896.0 39.025776 ... 40.140799 39.025776
6 1024.0 51.150050 ... 53.773130 52.428801
6 1024.0 49.932191 ... 53.773130 52.428801
7 1152.0 45.242181 ... 48.161033 47.396572
8 1280.0 51.200001 ... 57.690139 57.690139
9 1408.0 64.138541 ... 69.009825 67.305878
9 1408.0 64.138541 ... 69.009825 68.147202
10 1536.0 80.430545 ... 81.355034 79.526831
11 1664.0 62.929456 ... 63.372618 62.492442
12 1792.0 72.512412 ... 73.460287 59.467852
13 1920.0 68.776119 ... 71.626943 70.892307
11 1664.0 63.372618 ... 63.822072 62.492442
12 1792.0 72.983276 ... 73.460287 59.467852
13 1920.0 69.120002 ... 71.257735 71.257735
14 2048.0 73.908442 ... 78.398206 77.314362
15 2176.0 83.155572 ... 87.876193 86.367588
15 2176.0 83.500614 ... 87.494120 85.998493
16 2304.0 68.446623 ... 78.064941 77.307030
17 2432.0 71.305746 ... 86.179335 75.320281
18 2560.0 77.926278 ... 82.539044 81.310171
19 2688.0 83.369354 ... 90.532356 89.676257
20 2816.0 79.587973 ... 83.392363 83.153880
21 2944.0 81.967162 ... 83.337844 82.102191
22 3072.0 81.355034 ... 87.112467 88.750943
23 3200.0 84.880639 ... 96.676741 95.238096
24 3328.0 82.748617 ... 85.297742 84.101981
25 3456.0 82.688790 ... 91.615417 89.679166
26 3584.0 87.466332 ... 88.066008 95.960933
27 3712.0 81.548851 ... 87.629253 87.552452
28 3840.0 81.079177 ... 85.996889 90.058629
29 3968.0 86.849777 ... 91.609561 85.093402
30 4096.0 92.948562 ... 86.816123 86.592080
17 2432.0 71.305746 ... 86.179335 84.877538
18 2560.0 78.019048 ... 82.539044 81.715711
19 2688.0 83.186525 ... 90.102270 89.888756
20 2816.0 79.733474 ... 83.712490 82.446516
21 2944.0 81.564701 ... 83.477440 82.102191
22 3072.0 82.540970 ... 88.890270 88.060814
23 3200.0 83.879425 ... 96.240602 94.814812
24 3328.0 83.226931 ... 83.613586 84.795401
25 3456.0 82.604067 ... 90.180725 91.097818
26 3584.0 86.958797 ... 99.463928 93.661869
27 3712.0 83.247783 ... 89.433611 85.970176
28 3840.0 84.228485 ... 92.545605 84.423387
29 3968.0 91.266964 ... 86.327507 86.175099
30 4096.0 91.867031 ... 93.858555 86.285908
[31 rows x 5 columns]
@@ -499,7 +499,7 @@ We can now compare the performance of our kernel against that of cuBLAS. Here we
.. rst-class:: sphx-glr-timing
**Total running time of the script:** ( 7 minutes 9.656 seconds)
**Total running time of the script:** ( 6 minutes 38.626 seconds)
.. _sphx_glr_download_getting-started_tutorials_03-matrix-multiplication.py:

View File

@@ -240,7 +240,7 @@ References
.. rst-class:: sphx-glr-timing
**Total running time of the script:** ( 0 minutes 0.280 seconds)
**Total running time of the script:** ( 0 minutes 0.012 seconds)
.. _sphx_glr_download_getting-started_tutorials_04-low-memory-dropout.py:

View File

@@ -40,34 +40,34 @@ Layer Normalization
N Triton Torch Apex
0 1024.0 585.142849 277.694907 481.882344
1 1536.0 630.153868 323.368435 511.999982
2 2048.0 668.734716 334.367358 528.516136
3 2560.0 694.237267 365.714281 512.000013
4 3072.0 712.347810 378.092307 501.551037
2 2048.0 668.734716 337.814445 520.126988
3 2560.0 694.237267 362.477870 518.481028
4 3072.0 712.347810 378.092307 496.484863
5 3584.0 725.873439 384.859062 455.111115
6 4096.0 728.177767 381.023256 455.111095
7 4608.0 670.254540 396.387087 428.651163
8 5120.0 688.403381 397.669909 422.268057
9 5632.0 704.000002 396.969169 417.185184
10 6144.0 697.191505 402.885254 411.313806
11 6656.0 705.271522 400.360920 400.360920
12 7168.0 690.891575 396.844306 387.459443
13 7680.0 682.666656 393.846167 387.634072
14 8192.0 639.375598 393.609605 371.308771
15 8704.0 627.315309 389.005597 380.502740
16 9216.0 606.814809 407.337026 383.999986
7 4608.0 670.254540 396.387087 423.724136
8 5120.0 688.403381 397.669909 420.102563
9 5632.0 704.000002 398.725657 411.470331
10 6144.0 697.191505 402.885254 409.600010
11 6656.0 700.631610 398.861429 400.360920
12 7168.0 690.891575 394.116833 387.459443
13 7680.0 678.895043 393.846167 385.203746
14 8192.0 636.271854 391.259714 372.363633
15 8704.0 627.315309 391.191007 380.502740
16 9216.0 606.814809 403.989025 381.023249
17 9728.0 587.350922 409.599987 383.369452
18 10240.0 564.965524 408.578556 382.803739
18 10240.0 566.920437 408.578556 382.803739
19 10752.0 547.872604 411.559798 381.445676
20 11264.0 533.207081 406.826188 373.134567
20 11264.0 533.207081 400.497785 370.069806
21 11776.0 520.486200 409.599991 378.345375
22 12288.0 514.680630 414.784810 383.251457
23 12800.0 504.433489 410.420828 376.470582
24 13312.0 494.180982 405.699062 376.976995
25 13824.0 482.934503 411.888257 379.389355
26 14336.0 471.967074 406.695045 374.185964
27 14848.0 461.297068 408.192434 375.304904
28 15360.0 454.269882 406.214870 378.092307
29 15872.0 447.887117 406.974373 376.225175
22 12288.0 514.680630 413.911572 383.251457
23 12800.0 504.433489 410.420828 377.163903
24 13312.0 494.180982 406.473303 378.316177
25 13824.0 481.882350 410.359948 378.739711
26 14336.0 471.967074 402.414053 375.410805
27 14848.0 461.297068 406.099164 375.304904
28 15360.0 454.269882 406.214870 377.511515
29 15872.0 447.098578 408.282944 376.225175
@@ -393,7 +393,7 @@ Layer Normalization
.. rst-class:: sphx-glr-timing
**Total running time of the script:** ( 5 minutes 32.086 seconds)
**Total running time of the script:** ( 5 minutes 36.228 seconds)
.. _sphx_glr_download_getting-started_tutorials_05-layer-norm.py:

View File

@@ -152,7 +152,7 @@ We can also customize the libdevice library path by passing the path to the `lib
.. rst-class:: sphx-glr-timing
**Total running time of the script:** ( 0 minutes 0.261 seconds)
**Total running time of the script:** ( 0 minutes 0.010 seconds)
.. _sphx_glr_download_getting-started_tutorials_07-libdevice-function.py:

View File

@@ -5,20 +5,20 @@
Computation times
=================
**17:55.119** total execution time for **getting-started_tutorials** files:
**17:25.764** total execution time for **getting-started_tutorials** files:
+---------------------------------------------------------------------------------------------------------+-----------+--------+
| :ref:`sphx_glr_getting-started_tutorials_03-matrix-multiplication.py` (``03-matrix-multiplication.py``) | 07:09.656 | 0.0 MB |
| :ref:`sphx_glr_getting-started_tutorials_03-matrix-multiplication.py` (``03-matrix-multiplication.py``) | 06:38.626 | 0.0 MB |
+---------------------------------------------------------------------------------------------------------+-----------+--------+
| :ref:`sphx_glr_getting-started_tutorials_05-layer-norm.py` (``05-layer-norm.py``) | 05:32.086 | 0.0 MB |
| :ref:`sphx_glr_getting-started_tutorials_05-layer-norm.py` (``05-layer-norm.py``) | 05:36.228 | 0.0 MB |
+---------------------------------------------------------------------------------------------------------+-----------+--------+
| :ref:`sphx_glr_getting-started_tutorials_02-fused-softmax.py` (``02-fused-softmax.py``) | 03:29.369 | 0.0 MB |
| :ref:`sphx_glr_getting-started_tutorials_02-fused-softmax.py` (``02-fused-softmax.py``) | 03:31.277 | 0.0 MB |
+---------------------------------------------------------------------------------------------------------+-----------+--------+
| :ref:`sphx_glr_getting-started_tutorials_01-vector-add.py` (``01-vector-add.py``) | 01:43.396 | 0.0 MB |
+---------------------------------------------------------------------------------------------------------+-----------+--------+
| :ref:`sphx_glr_getting-started_tutorials_04-low-memory-dropout.py` (``04-low-memory-dropout.py``) | 00:00.280 | 0.0 MB |
+---------------------------------------------------------------------------------------------------------+-----------+--------+
| :ref:`sphx_glr_getting-started_tutorials_07-libdevice-function.py` (``07-libdevice-function.py``) | 00:00.261 | 0.0 MB |
| :ref:`sphx_glr_getting-started_tutorials_01-vector-add.py` (``01-vector-add.py``) | 01:39.539 | 0.0 MB |
+---------------------------------------------------------------------------------------------------------+-----------+--------+
| :ref:`sphx_glr_getting-started_tutorials_06-fused-attention.py` (``06-fused-attention.py``) | 00:00.072 | 0.0 MB |
+---------------------------------------------------------------------------------------------------------+-----------+--------+
| :ref:`sphx_glr_getting-started_tutorials_04-low-memory-dropout.py` (``04-low-memory-dropout.py``) | 00:00.012 | 0.0 MB |
+---------------------------------------------------------------------------------------------------------+-----------+--------+
| :ref:`sphx_glr_getting-started_tutorials_07-libdevice-function.py` (``07-libdevice-function.py``) | 00:00.010 | 0.0 MB |
+---------------------------------------------------------------------------------------------------------+-----------+--------+

View File

@@ -326,7 +326,7 @@ for different problem sizes.</p>
size Triton Torch
0 4096.0 9.600000 9.600000
1 8192.0 19.200000 19.200000
2 16384.0 31.999999 31.999999
2 16384.0 38.400001 38.400001
3 32768.0 76.800002 76.800002
4 65536.0 127.999995 127.999995
5 131072.0 219.428568 219.428568
@@ -337,12 +337,12 @@ for different problem sizes.</p>
10 4194304.0 780.190482 780.190482
11 8388608.0 812.429770 812.429770
12 16777216.0 833.084721 833.084721
13 33554432.0 842.004273 843.811163
13 33554432.0 842.004273 842.004273
14 67108864.0 847.448255 848.362445
15 134217728.0 849.737435 850.656574
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 1 minutes 43.396 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 1 minutes 39.539 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-01-vector-add-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/62d97d49a32414049819dd8bb8378080/01-vector-add.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">01-vector-add.py</span></code></a></p>

View File

@@ -371,17 +371,17 @@ We will then compare its performance against (1) <code class="code docutils lite
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>softmax-performance:
N Triton Torch (native) Torch (jit)
0 256.0 546.133347 546.133347 190.511628
1 384.0 614.400016 585.142862 153.600004
0 256.0 512.000001 546.133347 186.181817
1 384.0 614.400016 585.142862 151.703707
2 512.0 655.360017 606.814814 154.566038
3 640.0 706.206879 640.000002 160.000000
4 768.0 722.823517 664.216187 162.754967
4 768.0 722.823517 664.216187 163.839992
.. ... ... ... ...
93 12160.0 812.359066 406.179533 198.936606
94 12288.0 812.429770 415.661740 199.197579
95 12416.0 812.498981 412.149375 198.854847
96 12544.0 810.925276 412.971190 199.111113
97 12672.0 811.007961 412.097543 199.167004
93 12160.0 812.359066 406.179533 198.530610
94 12288.0 812.429770 415.661740 198.794749
95 12416.0 812.498981 411.722274 198.457532
96 12544.0 812.566838 412.971190 198.667643
97 12672.0 811.007961 412.097543 198.776477
[98 rows x 4 columns]
</pre></div>
@@ -394,7 +394,7 @@ We will then compare its performance against (1) <code class="code docutils lite
Note however that the PyTorch <cite>softmax</cite> operation is more general and will works on tensors of any shape.</p></li>
</ul>
</div></blockquote>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 3 minutes 29.369 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 3 minutes 31.277 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-02-fused-softmax-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/d91442ac2982c4e0cc3ab0f43534afbc/02-fused-softmax.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">02-fused-softmax.py</span></code></a></p>

View File

@@ -567,42 +567,42 @@ torch_output=tensor([[ 1.1045, -36.9688, 31.4688, ..., -11.3906, 24.4531, -3
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>matmul-performance:
M cuBLAS ... Triton Triton (+ LeakyReLU)
0 256.0 2.730667 ... 3.276800 2.978909
0 256.0 2.730667 ... 3.276800 3.276800
1 384.0 7.372800 ... 8.507077 8.507077
2 512.0 14.563555 ... 16.384000 16.384000
3 640.0 22.260869 ... 24.380953 24.380953
4 768.0 32.768000 ... 35.389441 34.028308
5 896.0 39.025776 ... 40.140799 39.025776
6 1024.0 51.150050 ... 53.773130 52.428801
6 1024.0 49.932191 ... 53.773130 52.428801
7 1152.0 45.242181 ... 48.161033 47.396572
8 1280.0 51.200001 ... 57.690139 57.690139
9 1408.0 64.138541 ... 69.009825 67.305878
9 1408.0 64.138541 ... 69.009825 68.147202
10 1536.0 80.430545 ... 81.355034 79.526831
11 1664.0 62.929456 ... 63.372618 62.492442
12 1792.0 72.512412 ... 73.460287 59.467852
13 1920.0 68.776119 ... 71.626943 70.892307
11 1664.0 63.372618 ... 63.822072 62.492442
12 1792.0 72.983276 ... 73.460287 59.467852
13 1920.0 69.120002 ... 71.257735 71.257735
14 2048.0 73.908442 ... 78.398206 77.314362
15 2176.0 83.155572 ... 87.876193 86.367588
15 2176.0 83.500614 ... 87.494120 85.998493
16 2304.0 68.446623 ... 78.064941 77.307030
17 2432.0 71.305746 ... 86.179335 75.320281
18 2560.0 77.926278 ... 82.539044 81.310171
19 2688.0 83.369354 ... 90.532356 89.676257
20 2816.0 79.587973 ... 83.392363 83.153880
21 2944.0 81.967162 ... 83.337844 82.102191
22 3072.0 81.355034 ... 87.112467 88.750943
23 3200.0 84.880639 ... 96.676741 95.238096
24 3328.0 82.748617 ... 85.297742 84.101981
25 3456.0 82.688790 ... 91.615417 89.679166
26 3584.0 87.466332 ... 88.066008 95.960933
27 3712.0 81.548851 ... 87.629253 87.552452
28 3840.0 81.079177 ... 85.996889 90.058629
29 3968.0 86.849777 ... 91.609561 85.093402
30 4096.0 92.948562 ... 86.816123 86.592080
17 2432.0 71.305746 ... 86.179335 84.877538
18 2560.0 78.019048 ... 82.539044 81.715711
19 2688.0 83.186525 ... 90.102270 89.888756
20 2816.0 79.733474 ... 83.712490 82.446516
21 2944.0 81.564701 ... 83.477440 82.102191
22 3072.0 82.540970 ... 88.890270 88.060814
23 3200.0 83.879425 ... 96.240602 94.814812
24 3328.0 83.226931 ... 83.613586 84.795401
25 3456.0 82.604067 ... 90.180725 91.097818
26 3584.0 86.958797 ... 99.463928 93.661869
27 3712.0 83.247783 ... 89.433611 85.970176
28 3840.0 84.228485 ... 92.545605 84.423387
29 3968.0 91.266964 ... 86.327507 86.175099
30 4096.0 91.867031 ... 93.858555 86.285908
[31 rows x 5 columns]
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 7 minutes 9.656 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 6 minutes 38.626 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-03-matrix-multiplication-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/d5fee5b55a64e47f1b5724ec39adf171/03-matrix-multiplication.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">03-matrix-multiplication.py</span></code></a></p>

View File

@@ -374,7 +374,7 @@ to explore the <cite>triton/language/random</cite> folder!</p>
<dd><p>Nitish Srivastava and Geoffrey Hinton and Alex Krizhevsky and Ilya Sutskever and Ruslan Salakhutdinov, “Dropout: A Simple Way to Prevent Neural Networks from Overfitting”, JMLR 2014</p>
</dd>
</dl>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 0.280 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 0.012 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-04-low-memory-dropout-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/c9aed78977a4c05741d675a38dde3d7d/04-low-memory-dropout.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">04-low-memory-dropout.py</span></code></a></p>

View File

@@ -198,34 +198,34 @@ to download the full example code</p>
N Triton Torch Apex
0 1024.0 585.142849 277.694907 481.882344
1 1536.0 630.153868 323.368435 511.999982
2 2048.0 668.734716 334.367358 528.516136
3 2560.0 694.237267 365.714281 512.000013
4 3072.0 712.347810 378.092307 501.551037
2 2048.0 668.734716 337.814445 520.126988
3 2560.0 694.237267 362.477870 518.481028
4 3072.0 712.347810 378.092307 496.484863
5 3584.0 725.873439 384.859062 455.111115
6 4096.0 728.177767 381.023256 455.111095
7 4608.0 670.254540 396.387087 428.651163
8 5120.0 688.403381 397.669909 422.268057
9 5632.0 704.000002 396.969169 417.185184
10 6144.0 697.191505 402.885254 411.313806
11 6656.0 705.271522 400.360920 400.360920
12 7168.0 690.891575 396.844306 387.459443
13 7680.0 682.666656 393.846167 387.634072
14 8192.0 639.375598 393.609605 371.308771
15 8704.0 627.315309 389.005597 380.502740
16 9216.0 606.814809 407.337026 383.999986
7 4608.0 670.254540 396.387087 423.724136
8 5120.0 688.403381 397.669909 420.102563
9 5632.0 704.000002 398.725657 411.470331
10 6144.0 697.191505 402.885254 409.600010
11 6656.0 700.631610 398.861429 400.360920
12 7168.0 690.891575 394.116833 387.459443
13 7680.0 678.895043 393.846167 385.203746
14 8192.0 636.271854 391.259714 372.363633
15 8704.0 627.315309 391.191007 380.502740
16 9216.0 606.814809 403.989025 381.023249
17 9728.0 587.350922 409.599987 383.369452
18 10240.0 564.965524 408.578556 382.803739
18 10240.0 566.920437 408.578556 382.803739
19 10752.0 547.872604 411.559798 381.445676
20 11264.0 533.207081 406.826188 373.134567
20 11264.0 533.207081 400.497785 370.069806
21 11776.0 520.486200 409.599991 378.345375
22 12288.0 514.680630 414.784810 383.251457
23 12800.0 504.433489 410.420828 376.470582
24 13312.0 494.180982 405.699062 376.976995
25 13824.0 482.934503 411.888257 379.389355
26 14336.0 471.967074 406.695045 374.185964
27 14848.0 461.297068 408.192434 375.304904
28 15360.0 454.269882 406.214870 378.092307
29 15872.0 447.887117 406.974373 376.225175
22 12288.0 514.680630 413.911572 383.251457
23 12800.0 504.433489 410.420828 377.163903
24 13312.0 494.180982 406.473303 378.316177
25 13824.0 481.882350 410.359948 378.739711
26 14336.0 471.967074 402.414053 375.410805
27 14848.0 461.297068 406.099164 375.304904
28 15360.0 454.269882 406.214870 377.511515
29 15872.0 447.098578 408.282944 376.225175
</pre></div>
</div>
<div class="line-block">
@@ -543,7 +543,7 @@ to download the full example code</p>
<span class="n">bench_layer_norm</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">save_path</span><span class="o">=</span><span class="s1">&#39;.&#39;</span><span class="p">,</span> <span class="n">print_data</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 5 minutes 32.086 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 5 minutes 36.228 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-05-layer-norm-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/935c0dd0fbeb4b2e69588471cbb2d4b2/05-layer-norm.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">05-layer-norm.py</span></code></a></p>

View File

@@ -276,7 +276,7 @@ tensor([0.4105, 0.5430, 0.0249, ..., 0.0424, 0.5351, 0.8149], device=&#39;cuda:
The maximum difference between torch and triton is 2.384185791015625e-07
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 0.261 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 0.010 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-07-libdevice-function-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/3ff29f967ace7985da24aab10352fc76/07-libdevice-function.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">07-libdevice-function.py</span></code></a></p>

View File

@@ -174,7 +174,7 @@
<div class="section" id="computation-times">
<span id="sphx-glr-getting-started-tutorials-sg-execution-times"></span><h1>Computation times<a class="headerlink" href="#computation-times" title="Permalink to this headline"></a></h1>
<p><strong>17:55.119</strong> total execution time for <strong>getting-started_tutorials</strong> files:</p>
<p><strong>17:25.764</strong> total execution time for <strong>getting-started_tutorials</strong> files:</p>
<table class="docutils align-default">
<colgroup>
<col style="width: 85%" />
@@ -183,33 +183,33 @@
</colgroup>
<tbody>
<tr class="row-odd"><td><p><a class="reference internal" href="03-matrix-multiplication.html#sphx-glr-getting-started-tutorials-03-matrix-multiplication-py"><span class="std std-ref">Matrix Multiplication</span></a> (<code class="docutils literal notranslate"><span class="pre">03-matrix-multiplication.py</span></code>)</p></td>
<td><p>07:09.656</p></td>
<td><p>06:38.626</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="05-layer-norm.html#sphx-glr-getting-started-tutorials-05-layer-norm-py"><span class="std std-ref">Layer Normalization</span></a> (<code class="docutils literal notranslate"><span class="pre">05-layer-norm.py</span></code>)</p></td>
<td><p>05:32.086</p></td>
<td><p>05:36.228</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="02-fused-softmax.html#sphx-glr-getting-started-tutorials-02-fused-softmax-py"><span class="std std-ref">Fused Softmax</span></a> (<code class="docutils literal notranslate"><span class="pre">02-fused-softmax.py</span></code>)</p></td>
<td><p>03:29.369</p></td>
<td><p>03:31.277</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="01-vector-add.html#sphx-glr-getting-started-tutorials-01-vector-add-py"><span class="std std-ref">Vector Addition</span></a> (<code class="docutils literal notranslate"><span class="pre">01-vector-add.py</span></code>)</p></td>
<td><p>01:43.396</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="04-low-memory-dropout.html#sphx-glr-getting-started-tutorials-04-low-memory-dropout-py"><span class="std std-ref">Low-Memory Dropout</span></a> (<code class="docutils literal notranslate"><span class="pre">04-low-memory-dropout.py</span></code>)</p></td>
<td><p>00:00.280</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="07-libdevice-function.html#sphx-glr-getting-started-tutorials-07-libdevice-function-py"><span class="std std-ref">Libdevice function</span></a> (<code class="docutils literal notranslate"><span class="pre">07-libdevice-function.py</span></code>)</p></td>
<td><p>00:00.261</p></td>
<td><p>01:39.539</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="06-fused-attention.html#sphx-glr-getting-started-tutorials-06-fused-attention-py"><span class="std std-ref">Fused Attention</span></a> (<code class="docutils literal notranslate"><span class="pre">06-fused-attention.py</span></code>)</p></td>
<td><p>00:00.072</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="04-low-memory-dropout.html#sphx-glr-getting-started-tutorials-04-low-memory-dropout-py"><span class="std std-ref">Low-Memory Dropout</span></a> (<code class="docutils literal notranslate"><span class="pre">04-low-memory-dropout.py</span></code>)</p></td>
<td><p>00:00.012</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="07-libdevice-function.html#sphx-glr-getting-started-tutorials-07-libdevice-function-py"><span class="std std-ref">Libdevice function</span></a> (<code class="docutils literal notranslate"><span class="pre">07-libdevice-function.py</span></code>)</p></td>
<td><p>00:00.010</p></td>
<td><p>0.0 MB</p></td>
</tr>
</tbody>
</table>
</div>

File diff suppressed because one or more lines are too long

View File

@@ -1,4 +1,4 @@
# Sphinx build info version 1
# This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done.
config: 50b9889aee95abbd2db9d8ac5062a2eb
config: f5d720a50fdafdd198717920c0ad74f3
tags: 645f666f9bcd5a90fca523b33c5a78b7

Binary file not shown.

Binary file not shown.

Some files were not shown because too many files have changed in this diff Show More