[GH-PAGES] Updated website

This commit is contained in:
Philippe Tillet
2022-08-01 00:51:04 +00:00
parent 57b5951fdb
commit 54ca5217e0
163 changed files with 298 additions and 298 deletions

View File

@@ -324,22 +324,22 @@ for different problem sizes.</p>
0 4096.0 9.600000 9.600000
1 8192.0 19.200000 19.200000
2 16384.0 38.400001 38.400001
3 32768.0 76.800002 76.800002
3 32768.0 63.999998 76.800002
4 65536.0 127.999995 127.999995
5 131072.0 219.428568 219.428568
6 262144.0 384.000001 384.000001
6 262144.0 341.333321 341.333321
7 524288.0 472.615390 472.615390
8 1048576.0 614.400016 614.400016
9 2097152.0 722.823517 722.823517
10 4194304.0 780.190482 780.190482
11 8388608.0 812.429770 812.429770
12 16777216.0 833.084721 833.084721
13 33554432.0 842.004273 843.811163
13 33554432.0 842.004273 842.004273
14 67108864.0 847.448255 848.362445
15 134217728.0 849.737435 850.656574
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 1 minutes 32.414 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 1 minutes 42.417 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-01-vector-add-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/62d97d49a32414049819dd8bb8378080/01-vector-add.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">01-vector-add.py</span></code></a></p>

View File

@@ -374,17 +374,17 @@ We will then compare its performance against (1) <code class="code docutils lite
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>softmax-performance:
N Triton Torch (native) Torch (jit)
0 256.0 512.000001 546.133347 190.511628
1 384.0 614.400016 585.142862 153.600004
0 256.0 512.000001 546.133347 188.321838
1 384.0 585.142862 585.142862 151.703707
2 512.0 655.360017 606.814814 154.566038
3 640.0 682.666684 640.000002 160.000000
4 768.0 722.823517 664.216187 162.754967
.. ... ... ... ...
93 12160.0 814.058574 406.603966 199.038365
94 12288.0 814.111783 416.101597 199.298541
95 12416.0 812.498981 412.149375 198.954424
96 12544.0 812.566838 412.971190 199.209928
97 12672.0 812.633240 412.097543 199.167004
93 12160.0 812.359066 406.179533 198.936606
94 12288.0 812.429770 415.661740 199.096718
95 12416.0 814.163950 412.149375 198.854847
96 12544.0 812.566838 412.546756 199.012395
97 12672.0 812.633240 412.097543 199.069228
[98 rows x 4 columns]
</pre></div>
@@ -397,7 +397,7 @@ We will then compare its performance against (1) <code class="code docutils lite
Note however that the PyTorch <cite>softmax</cite> operation is more general and will works on tensors of any shape.</p></li>
</ul>
</div></blockquote>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 3 minutes 18.646 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 3 minutes 23.539 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-02-fused-softmax-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/d91442ac2982c4e0cc3ab0f43534afbc/02-fused-softmax.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">02-fused-softmax.py</span></code></a></p>

View File

@@ -568,42 +568,42 @@ torch_output=tensor([[ 1.1045, -36.9688, 31.4688, ..., -11.3906, 24.4531, -3
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>matmul-performance:
M cuBLAS ... Triton Triton (+ LeakyReLU)
0 256.0 2.978909 ... 3.276800 3.276800
0 256.0 2.978909 ... 3.276800 2.978909
1 384.0 7.372800 ... 8.507077 8.507077
2 512.0 14.563555 ... 16.384000 16.384000
3 640.0 22.260869 ... 24.380953 24.380953
4 768.0 32.768000 ... 35.389441 34.028308
5 896.0 39.025776 ... 39.025776 39.025776
4 768.0 32.768000 ... 34.028308 34.028308
5 896.0 37.971025 ... 40.140799 39.025776
6 1024.0 51.150050 ... 53.773130 52.428801
7 1152.0 45.242181 ... 46.656000 46.656000
8 1280.0 51.200001 ... 56.888887 56.109587
9 1408.0 64.138541 ... 67.305878 66.485074
10 1536.0 80.430545 ... 79.526831 78.643199
11 1664.0 62.929456 ... 62.061463 62.061463
12 1792.0 72.512412 ... 72.047592 71.588687
13 1920.0 69.120002 ... 70.530615 70.172588
14 2048.0 73.908442 ... 77.314362 76.959706
15 2176.0 83.500614 ... 85.632545 85.269692
16 2304.0 68.251065 ... 76.319081 76.809875
17 2432.0 71.305746 ... 74.918570 83.366361
18 2560.0 78.019048 ... 81.310171 81.108913
19 2688.0 83.369354 ... 90.316801 89.464755
20 2816.0 79.733474 ... 82.135981 83.392363
21 2944.0 82.784108 ... 81.967162 81.832567
22 3072.0 81.648313 ... 85.662786 88.750943
23 3200.0 79.701121 ... 91.822093 91.298148
24 3328.0 80.798314 ... 84.101981 85.602017
25 3456.0 81.766291 ... 90.994998 90.994998
26 3584.0 84.825838 ... 87.124679 94.947616
27 3712.0 85.309435 ... 87.475786 88.640059
28 3840.0 84.744825 ... 91.968402 86.197974
29 3968.0 92.864488 ... 83.866153 90.859224
30 4096.0 86.202781 ... 86.844210 91.741443
7 1152.0 45.242181 ... 47.396572 46.656000
8 1280.0 51.200001 ... 56.888887 56.888887
9 1408.0 64.138541 ... 67.305878 67.305878
10 1536.0 80.430545 ... 80.430545 79.526831
11 1664.0 62.929456 ... 62.492442 62.061463
12 1792.0 72.983276 ... 72.512412 72.047592
13 1920.0 69.120002 ... 70.530615 70.530615
14 2048.0 73.908442 ... 76.959706 76.959706
15 2176.0 83.500614 ... 85.998493 85.269692
16 2304.0 68.251065 ... 76.809875 76.563695
17 2432.0 71.305746 ... 74.719317 84.877538
18 2560.0 77.833728 ... 81.310171 81.108913
19 2688.0 83.369354 ... 89.044730 88.422041
20 2816.0 78.868366 ... 83.074685 83.074685
21 2944.0 80.380696 ... 82.646820 82.921853
22 3072.0 81.943708 ... 83.146995 88.335577
23 3200.0 84.099871 ... 95.808380 94.814812
24 3328.0 83.710812 ... 84.995628 84.546440
25 3456.0 81.683457 ... 90.079964 89.183149
26 3584.0 84.229877 ... 90.367227 97.100854
27 3712.0 85.528545 ... 88.404730 87.094458
28 3840.0 82.716526 ... 86.332554 91.322872
29 3968.0 85.750244 ... 91.130650 85.751184
30 4096.0 93.466385 ... 92.309303 87.267706
[31 rows x 5 columns]
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 5 minutes 14.452 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 5 minutes 24.435 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-03-matrix-multiplication-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/d5fee5b55a64e47f1b5724ec39adf171/03-matrix-multiplication.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">03-matrix-multiplication.py</span></code></a></p>

View File

@@ -194,36 +194,36 @@ to download the full example code</p>
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>layer-norm-backward:
N Triton Torch Apex
0 1024.0 311.088617 99.497980 311.088617
1 1536.0 351.085717 133.083026 341.333333
2 2048.0 423.724127 162.217818 336.657521
3 2560.0 461.954908 182.857144 330.322572
4 3072.0 515.580429 191.501303 320.556515
5 3584.0 554.941930 208.271186 308.301075
6 4096.0 568.231237 220.412561 297.890900
7 4608.0 498.162157 231.849059 287.251954
8 5120.0 525.128191 242.845844 284.444444
9 5632.0 538.517949 243.545956 291.310338
10 6144.0 544.118087 248.661056 286.322318
11 6656.0 527.207907 256.410903 286.279570
12 7168.0 507.469040 262.243907 288.644296
13 7680.0 482.513091 260.707203 277.172933
14 8192.0 460.440290 269.326017 286.600589
15 8704.0 416.958106 267.815384 284.987724
16 9216.0 428.651187 273.066667 289.507855
17 9728.0 438.857162 280.615388 288.950501
18 10240.0 447.650282 286.433562 290.153487
19 10752.0 430.079980 246.464170 290.267711
20 11264.0 429.786952 245.091565 285.767446
21 11776.0 421.198220 249.447482 288.686414
22 12288.0 420.102570 254.673582 294.911986
23 12800.0 415.135142 253.465340 290.084977
24 13312.0 412.775186 252.759501 290.179836
25 13824.0 405.098897 257.190689 292.829653
26 14336.0 398.222222 254.673567 286.481278
27 14848.0 384.414233 257.293872 289.246765
28 15360.0 374.253788 257.790220 287.550706
29 15872.0 367.336555 262.708969 291.006885
0 1024.0 311.088617 98.303995 307.200008
1 1536.0 354.461542 135.032961 341.333333
2 2048.0 423.724127 160.104230 323.368435
3 2560.0 461.954908 180.705883 326.808501
4 3072.0 519.211251 191.999993 319.168834
5 3584.0 551.384634 208.776702 309.410081
6 4096.0 568.231237 220.907859 300.623865
7 4608.0 500.416301 232.825259 292.571431
8 5120.0 527.381977 244.294240 289.129408
9 5632.0 545.032265 244.869560 291.310338
10 6144.0 550.208948 251.202731 288.563606
11 6656.0 539.675652 256.410903 286.793541
12 7168.0 512.000004 253.734520 277.470965
13 7680.0 491.519996 267.130429 284.884090
14 8192.0 463.698115 259.377306 280.467910
15 8704.0 416.958106 267.130429 285.377055
16 9216.0 430.319054 273.742580 289.887291
17 9728.0 438.033784 280.615388 288.950501
18 10240.0 446.836366 286.767793 289.811322
19 10752.0 431.518385 246.699797 289.941565
20 11264.0 430.471331 245.313973 285.465683
21 11776.0 421.826879 249.227509 289.277383
22 12288.0 418.909088 254.893699 294.617366
23 12800.0 414.574901 253.674644 289.811310
24 13312.0 412.242569 252.559690 290.179836
25 13824.0 404.604870 257.190689 292.313649
26 14336.0 398.683664 256.000002 289.129416
27 14848.0 382.351933 257.479779 289.012175
28 15360.0 377.704925 258.151252 288.000007
29 15872.0 368.046389 261.806182 289.899545
</pre></div>
</div>
<div class="line-block">
@@ -477,7 +477,7 @@ to download the full example code</p>
<span class="n">bench_layer_norm</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">save_path</span><span class="o">=</span><span class="s1">&#39;.&#39;</span><span class="p">,</span> <span class="n">print_data</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 2 minutes 11.836 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 2 minutes 11.851 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-05-layer-norm-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/935c0dd0fbeb4b2e69588471cbb2d4b2/05-layer-norm.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">05-layer-norm.py</span></code></a></p>

View File

@@ -174,7 +174,7 @@
<div class="section" id="computation-times">
<span id="sphx-glr-getting-started-tutorials-sg-execution-times"></span><h1>Computation times<a class="headerlink" href="#computation-times" title="Permalink to this headline"></a></h1>
<p><strong>12:17.359</strong> total execution time for <strong>getting-started_tutorials</strong> files:</p>
<p><strong>12:42.252</strong> total execution time for <strong>getting-started_tutorials</strong> files:</p>
<table class="docutils align-default">
<colgroup>
<col style="width: 85%" />
@@ -183,19 +183,19 @@
</colgroup>
<tbody>
<tr class="row-odd"><td><p><a class="reference internal" href="03-matrix-multiplication.html#sphx-glr-getting-started-tutorials-03-matrix-multiplication-py"><span class="std std-ref">Matrix Multiplication</span></a> (<code class="docutils literal notranslate"><span class="pre">03-matrix-multiplication.py</span></code>)</p></td>
<td><p>05:14.452</p></td>
<td><p>05:24.435</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="02-fused-softmax.html#sphx-glr-getting-started-tutorials-02-fused-softmax-py"><span class="std std-ref">Fused Softmax</span></a> (<code class="docutils literal notranslate"><span class="pre">02-fused-softmax.py</span></code>)</p></td>
<td><p>03:18.646</p></td>
<td><p>03:23.539</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="05-layer-norm.html#sphx-glr-getting-started-tutorials-05-layer-norm-py"><span class="std std-ref">Layer Normalization</span></a> (<code class="docutils literal notranslate"><span class="pre">05-layer-norm.py</span></code>)</p></td>
<td><p>02:11.836</p></td>
<td><p>02:11.851</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="01-vector-add.html#sphx-glr-getting-started-tutorials-01-vector-add-py"><span class="std std-ref">Vector Addition</span></a> (<code class="docutils literal notranslate"><span class="pre">01-vector-add.py</span></code>)</p></td>
<td><p>01:32.414</p></td>
<td><p>01:42.417</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="04-low-memory-dropout.html#sphx-glr-getting-started-tutorials-04-low-memory-dropout-py"><span class="std std-ref">Low-Memory Dropout</span></a> (<code class="docutils literal notranslate"><span class="pre">04-low-memory-dropout.py</span></code>)</p></td>