[CODEGEN] Major performance improvements on A100 (#70)

Improved handling of asynchronous copy, scheduling and synchronization for A100. Now achieving CUTLASS-like performance on large square dense matrix multiplication tasks
This commit is contained in:
Philippe Tillet
2021-02-21 15:19:39 -08:00
committed by Philippe Tillet
parent 045ab5d62a
commit 5b83259592
31 changed files with 1331 additions and 1115 deletions

View File

@@ -2,29 +2,17 @@ import torch
import triton
import pytest
@pytest.mark.parametrize(
"MODE, TRANS_A, TRANS_B, BLOCK",
[
(mode, at, bt, block)
for mode in ["sdd", "dsd", "dds"]
for at in [False, True]
for bt in [False, True]
for block in [16, 32, 64]
],
[(mode, at, bt, block) for mode in ["sdd", "dsd", "dds"] for at in [False, True] for bt in [False, True]
for block in [16, 32, 64]],
)
def test_matmul(
MODE, TRANS_A, TRANS_B, BLOCK, DTYPE=torch.float16, Z=3, H=2, M=128, N=256, K=384
):
def test_matmul(MODE, TRANS_A, TRANS_B, BLOCK, DTYPE=torch.float16, Z=3, H=2, M=128, N=256, K=384):
# set seed
torch.random.manual_seed(0)
# create inputs
a = torch.randn(
(Z, H, K, M) if TRANS_A else (Z, H, M, K), dtype=DTYPE, device="cuda"
)
b = torch.randn(
(Z, H, N, K) if TRANS_B else (Z, H, K, N), dtype=DTYPE, device="cuda"
)
a = torch.randn((Z, H, K, M) if TRANS_A else (Z, H, M, K), dtype=DTYPE, device="cuda")
b = torch.randn((Z, H, N, K) if TRANS_B else (Z, H, K, N), dtype=DTYPE, device="cuda")
shape = {
"sdd": (M, N),
"dsd": (a.shape[2], a.shape[3]),
@@ -32,9 +20,7 @@ def test_matmul(
}[MODE]
layout = torch.randint(2, (H, shape[0] // BLOCK, shape[1] // BLOCK))
# triton result
op = triton.ops.blocksparse.matmul(
layout, BLOCK, MODE, trans_a=TRANS_A, trans_b=TRANS_B
)
op = triton.ops.blocksparse.matmul(layout, BLOCK, MODE, trans_a=TRANS_A, trans_b=TRANS_B)
ra = triton.testing.sparsify_tensor(a, layout, BLOCK) if MODE == "dsd" else a
rb = triton.testing.sparsify_tensor(b, layout, BLOCK) if MODE == "dds" else b
rc = op(ra, rb)
@@ -49,7 +35,6 @@ def test_matmul(
# compare
assert triton.testing.allclose(rc, tc)
@pytest.mark.parametrize(
"BLOCK, WIDTH",
[(block, width) for block in [32] for width in [256, 576, 1024, 1792]],
@@ -62,12 +47,8 @@ def test_softmax(BLOCK, WIDTH, DTYPE=torch.float16):
# create inputs
layout = torch.randint(2, (H, M // BLOCK, N // BLOCK))
x = torch.randn((Z, H, M, N), dtype=DTYPE, requires_grad=True, device="cuda")
at_mask = torch.randint(
low=0, high=2, size=(N, N), dtype=torch.bool, requires_grad=False, device="cuda"
)
kp_mask = torch.randint(
low=0, high=2, size=(Z, N), dtype=DTYPE, requires_grad=False, device="cuda"
)
at_mask = torch.randint(low=0, high=2, size=(N, N), dtype=torch.bool, requires_grad=False, device="cuda")
kp_mask = torch.randint(low=0, high=2, size=(Z, N), dtype=DTYPE, requires_grad=False, device="cuda")
kp_mask[kp_mask == 1.0] = float("-inf")
# triton result
op = triton.ops.blocksparse.softmax(layout, BLOCK)
@@ -94,7 +75,6 @@ def test_softmax(BLOCK, WIDTH, DTYPE=torch.float16):
# compare
assert triton.testing.allclose(ry, ty)
def test_attention_fwd_bwd(
input_scale=1.0,
tol=2e-2,
@@ -108,10 +88,7 @@ def test_attention_fwd_bwd(
# inputs
qkv_shape = (batch_size, n_heads, n_ctx, 64)
qkvs = [
torch.nn.Parameter(input_scale * torch.randn(qkv_shape), requires_grad=True)
.to(dtype)
.cuda()
for _ in range(3)
torch.nn.Parameter(input_scale * torch.randn(qkv_shape), requires_grad=True).to(dtype).cuda() for _ in range(3)
]
attn_mask = torch.tril(
torch.ones(
@@ -129,11 +106,9 @@ def test_attention_fwd_bwd(
query.retain_grad()
key.retain_grad()
value.retain_grad()
attn_out = triton_attention(
layout, block, attn_mask, query=query, key=key, value=value, scale=scale
)
attn_out = triton_attention(layout, block, attn_mask, query=query, key=key, value=value, scale=scale)
# ad hoc loss
loss = (attn_out ** 2).mean()
loss = (attn_out**2).mean()
loss.backward()
grads = [query.grad, key.grad, value.grad]
@@ -148,17 +123,16 @@ def test_attention_fwd_bwd(
probs = torch.softmax(scores, dim=-1)
torch_attn_out = torch.einsum("bhst,bhtd->bhsd", probs, torch_v)
# ad hoc loss
torch_loss = (torch_attn_out ** 2).mean()
torch_loss = (torch_attn_out**2).mean()
torch_loss.backward()
torch_grads = [torch_q.grad, torch_k.grad, torch_v.grad]
# comparison
print(f"Triton loss {loss} and torch loss {torch_loss}. Also checking grads...")
# print(f"Triton loss {loss} and torch loss {torch_loss}. Also checking grads...")
torch.testing.assert_allclose(loss, torch_loss, rtol=tol, atol=tol)
for g1, g2 in zip(grads, torch_grads):
torch.testing.assert_allclose(g1, g2, rtol=tol, atol=tol)
def triton_attention(
layout,
block: int,
@@ -168,12 +142,8 @@ def triton_attention(
value: torch.Tensor,
scale: float,
):
sparse_dot_sdd_nt = triton.ops.blocksparse.matmul(
layout, block, "sdd", trans_a=False, trans_b=True
)
sparse_dot_dsd_nn = triton.ops.blocksparse.matmul(
layout, block, "dsd", trans_a=False, trans_b=False
)
sparse_dot_sdd_nt = triton.ops.blocksparse.matmul(layout, block, "sdd", trans_a=False, trans_b=True)
sparse_dot_dsd_nn = triton.ops.blocksparse.matmul(layout, block, "dsd", trans_a=False, trans_b=False)
sparse_softmax = triton.ops.blocksparse.softmax(
layout,
block,