[CODEGEN] Major performance improvements on A100 (#70)

Improved handling of asynchronous copy, scheduling and synchronization for A100. Now achieving CUTLASS-like performance on large square dense matrix multiplication tasks
This commit is contained in:
Philippe Tillet
2021-02-21 15:19:39 -08:00
committed by Philippe Tillet
parent 045ab5d62a
commit 5b83259592
31 changed files with 1331 additions and 1115 deletions

View File

@@ -4,7 +4,7 @@ import triton
import torch
@pytest.mark.parametrize(
"TM, TN, TK, TZ, NWARP, M, N, K, AT, BT, DTYPE",
"TM, TN, TK, SPLITK, NWARP, M, N, K, AT, BT, DTYPE",
itertools.chain(*[
[
# 1 warp
@@ -17,14 +17,14 @@ import torch
(16, 16, 64, 1, 1, None, None, None, AT, BT, DTYPE),
(64, 16, 64, 1, 1, None, None, None, AT, BT, DTYPE),
(16, 64, 64, 1, 1, None, None, None, AT, BT, DTYPE),
# 2 warp
# # 2 warp
(64, 32, 64, 1, 2, None, None, None, AT, BT, DTYPE),
(32, 64, 64, 1, 2, None, None, None, AT, BT, DTYPE),
(64, 32, 16, 1, 2, None, None, None, AT, BT, DTYPE),
(32, 64, 16, 1, 2, None, None, None, AT, BT, DTYPE),
(128, 32, 32, 1, 2, None, None, None, AT, BT, DTYPE),
(32, 128, 32, 1, 2, None, None, None, AT, BT, DTYPE),
# 4 warp
# # 4 warp
(128, 64, 16, 1, 4, None, None, None, AT, BT, DTYPE),
(64, 128, 16, 1, 4, None, None, None, AT, BT, DTYPE),
(128, 32, 32, 1, 4, None, None, None, AT, BT, DTYPE),
@@ -40,24 +40,28 @@ import torch
(64, 64, 16, 4, 4, None, None, None, AT, BT, DTYPE),
(64, 64, 16, 8, 4, None, None, None, AT, BT, DTYPE),
# variable input
(128, 128, 32, 1, 4, 256, 256, 256, AT, BT, DTYPE),
(128, 128, 32, 1, 4, 1024, 1024, 1024, AT, BT, DTYPE),
(128, 128, 32, 1, 4, 384, 128, 640, AT, BT, DTYPE),
(128, 128, 32, 1, 4, 107, 233, 256, AT, BT, DTYPE),
(128, 128, 32, 1, 4, 107, 233, 311, AT, BT, DTYPE)
] for DTYPE in ['float16'] for AT in [False, True] for BT in [False, True]
]))
def test_op(TM, TN, TK, TZ, NWARP, M, N, K, AT, BT, DTYPE):
DTYPE = {'float16': torch.float16, 'float32': torch.float32}[DTYPE]
(128, 128, 32, 1, 4, 107, 233, 311, AT, BT, DTYPE),
] for DTYPE in ["float16"] for AT in [False, True] for BT in [False, True]
]),
)
def test_op(TM, TN, TK, SPLITK, NWARP, M, N, K, AT, BT, DTYPE):
DTYPE = {"float16": torch.float16, "float32": torch.float32}[DTYPE]
torch.manual_seed(0)
triton.ops._matmul._kernels = dict()
triton.ops._matmul._CONFIGS = [({'TM': str(TM), 'TN': str(TN), 'TK': str(TK), 'TZ': str(TZ)}, NWARP)]
if M is None: M = TM
if N is None: N = TN
if K is None: K = TK * TZ
a = torch.randn((K, M) if AT else (M, K), device='cuda', dtype=DTYPE) / K**.5
b = torch.randn((N, K) if BT else (K, N), device='cuda', dtype=DTYPE) / K**.5
triton.ops._matmul._CONFIGS = [({"TM": str(TM), "TN": str(TN), "TK": str(TK), "SPLITK": str(SPLITK)}, NWARP)]
if M is None:
M = TM
if N is None:
N = TN
if K is None:
K = TK * SPLITK
a = torch.randn((K, M) if AT else (M, K), device="cuda", dtype=DTYPE)
b = torch.randn((N, K) if BT else (K, N), device="cuda", dtype=DTYPE)
a = a.t() if AT else a
b = b.t() if BT else b
th_c = torch.matmul(a, b)
tt_c = triton.ops.matmul(a, b)
assert triton.testing.allclose(th_c, tt_c)
assert triton.testing.allclose(th_c, tt_c)