[conv/dnn] now created a separate .h and .cpp file
This commit is contained in:
@@ -45,18 +45,8 @@ torch::Tensor conv_common(
|
||||
// launch info
|
||||
unsigned TM = info.global_range_size[0];
|
||||
unsigned TN = info.global_range_size[1];
|
||||
// initialize constant memory
|
||||
if(ty != triton::dnn::conv::WGRAD){
|
||||
std::vector<int> h_delta;
|
||||
std::vector<int> h_masks;
|
||||
configuration.build_deltas(h_delta);
|
||||
configuration.build_masks(h_masks);
|
||||
triton::driver::buffer* delta = jit.get_buffer("delta");
|
||||
triton::driver::buffer* masks = jit.get_buffer("masks");
|
||||
stream->write(delta, false, 0, h_delta.size()*4, h_delta.data());
|
||||
stream->write(masks, false, 0, h_masks.size()*4, h_masks.data());
|
||||
}
|
||||
// launch info
|
||||
configuration.init(stream, jit);
|
||||
unsigned nthreads = info.num_threads;
|
||||
std::array<size_t, 3> grid = configuration.get_grid(TM, TN);
|
||||
configuration.set_arg(kernel, &a, &b, &c);
|
||||
|
@@ -23,533 +23,38 @@ public:
|
||||
int T, int R, int S, int NF,
|
||||
int stride_d, int stride_h, int stride_w,
|
||||
int pad_d, int pad_h, int pad_w,
|
||||
type ty = FPROP)
|
||||
: NB_(B), NC_(NC), AD_(D), AH_(H), AW_(W), BD_(T), BH_(R), BW_(S), NF_(NF),
|
||||
stride_d_(stride_d), stride_h_(stride_h), stride_w_(stride_w),
|
||||
upsample_d_(1), upsample_h_(1), upsample_w_(1),
|
||||
pad_d_(pad_d), pad_h_(pad_h), pad_w_(pad_w),
|
||||
ty_(ty)
|
||||
{
|
||||
CD_ = (AD_*upsample_d_ - BD_ + 1 + 2*pad_d_ + stride_d_ - 1)/stride_d_;
|
||||
CH_ = (AH_*upsample_h_ - BH_ + 1 + 2*pad_h_ + stride_h_ - 1)/stride_h_;
|
||||
CW_ = (AW_*upsample_w_ - BW_ + 1 + 2*pad_w_ + stride_w_ - 1)/stride_w_;
|
||||
// shapes
|
||||
shapes_a_ = {NB_, NC_, AD_, AH_, AW_};
|
||||
shapes_b_ = {NC_, BD_, BH_, BW_, NF_};
|
||||
shapes_c_ = {NB_, NF_, CD_, CH_, CW_};
|
||||
// swap a and c for bprop
|
||||
if(ty_ == BPROP){
|
||||
pad_d_ = (CD_ - AD_ + BD_ - 1) / 2;
|
||||
pad_h_ = (CH_ - AH_ + BH_ - 1) / 2;
|
||||
pad_w_ = (CW_ - AW_ + BW_ - 1) / 2;
|
||||
shapes_a_.swap(shapes_c_);
|
||||
}
|
||||
// swap b and c for wgrad
|
||||
if(ty_ == WGRAD){
|
||||
shapes_b_.swap(shapes_c_);
|
||||
std::swap(BD_, CD_);
|
||||
std::swap(BH_, CH_);
|
||||
std::swap(BW_, CW_);
|
||||
}
|
||||
// leading dimensions
|
||||
auto set_ld = [](const std::vector<int32_t>& shapes,
|
||||
std::vector<int32_t>& ld) {
|
||||
size_t size = shapes.size();
|
||||
ld.resize(size);
|
||||
ld[4] = 1;
|
||||
ld[3] = shapes[4]*ld[4];
|
||||
ld[2] = shapes[3]*ld[3];
|
||||
ld[1] = shapes[2]*ld[2];
|
||||
ld[0] = shapes[1]*ld[1];
|
||||
};
|
||||
set_ld(shapes_a_, ld_a_);
|
||||
set_ld(shapes_b_, ld_b_);
|
||||
set_ld(shapes_c_, ld_c_);
|
||||
// equivalent matmul
|
||||
b_trans_ = ty_ != BPROP;
|
||||
b_lut_ = ty_ == WGRAD;
|
||||
if(ty_ == WGRAD){
|
||||
M_ = shapes_c_[0]*shapes_c_[1]*shapes_c_[2]*shapes_c_[3];
|
||||
N_ = shapes_c_[4];
|
||||
K_ = shapes_b_[0]*shapes_b_[2]*shapes_b_[3]*shapes_b_[4];
|
||||
}
|
||||
else{
|
||||
M_ = shapes_c_[0]*shapes_c_[2]*shapes_c_[3]*shapes_c_[4];
|
||||
N_ = shapes_c_[1];
|
||||
K_ = shapes_b_[0]*shapes_b_[1]*shapes_b_[2]*shapes_b_[3];
|
||||
}
|
||||
// look-up table info
|
||||
if(ty_ == FPROP)
|
||||
Fs_ = shapes_b_[1]*shapes_b_[2]*shapes_b_[3];
|
||||
else
|
||||
Fs_ = K_;
|
||||
TK_ = 8;
|
||||
Luts_ = (TK_ + Fs_ - 1) / Fs_ * Fs_;
|
||||
build_deltas();
|
||||
build_masks();
|
||||
size_t cst_size = h_b_deltas_.size()*4;
|
||||
is_b_deltas_cst_ = cst_size < 65536;
|
||||
cst_size += h_a_deltas_.size()*4;
|
||||
is_a_deltas_cst = cst_size < 65536;
|
||||
cst_size += h_masks_.size()*4;
|
||||
is_mask_cst_ = cst_size < 65536;
|
||||
}
|
||||
type ty = FPROP);
|
||||
|
||||
size_t a_size() {
|
||||
return std::accumulate(shapes_a_.begin(), shapes_a_.end(),
|
||||
1, std::multiplies<int>());
|
||||
}
|
||||
|
||||
size_t b_size() {
|
||||
return std::accumulate(shapes_b_.begin(), shapes_b_.end(),
|
||||
1, std::multiplies<int>());
|
||||
}
|
||||
|
||||
size_t c_size() {
|
||||
return std::accumulate(shapes_c_.begin(), shapes_c_.end(),
|
||||
1, std::multiplies<int>());
|
||||
}
|
||||
|
||||
std::vector<int32_t> c_shapes() {
|
||||
return shapes_c_;
|
||||
}
|
||||
|
||||
void build_deltas(){
|
||||
h_a_deltas_.resize(Luts_ + upsample_d_*upsample_h_*upsample_w_*Luts_);
|
||||
if(b_lut_)
|
||||
h_b_deltas_.resize(Luts_);
|
||||
|
||||
auto unpack = [&](int32_t ltrs){
|
||||
int32_t l = (ty_ == BPROP) ? ltrs % NF_ : ltrs / (BD_*BH_*BW_);
|
||||
int32_t trs = (ty_ == BPROP) ? ltrs / NF_ : ltrs % (BD_*BH_*BW_);
|
||||
int32_t tr = trs / BW_;
|
||||
int32_t s = trs % BW_;
|
||||
int32_t t = tr / BH_;
|
||||
int32_t r = tr % BH_;
|
||||
if(ty_ == BPROP){
|
||||
r = BH_ - 1 - r;
|
||||
s = BW_ - 1 - s;
|
||||
}
|
||||
return std::make_tuple(l, t, r, s);
|
||||
};
|
||||
|
||||
for(size_t i = 0; i < Luts_; ++i)
|
||||
h_a_deltas_[i] = (((i + TK_) % Luts_) - i);
|
||||
|
||||
size_t Ds0 = Luts_;
|
||||
size_t Ds1 = upsample_w_;
|
||||
size_t Ds2 = upsample_h_;
|
||||
size_t Ds3 = upsample_d_;
|
||||
for(size_t pd = 0; pd < Ds3; ++pd)
|
||||
for(size_t ph = 0; ph < Ds2; ++ph)
|
||||
for(size_t pw = 0; pw < Ds1; ++pw){
|
||||
int32_t* deltas_ptr = &h_a_deltas_[Luts_ + pw*Ds0 + ph*Ds0*Ds1 + pd*Ds0*Ds1*Ds2];
|
||||
// cumulative increments
|
||||
for(size_t i = 0; i < Ds0; ++i) {
|
||||
// unpack
|
||||
int32_t ctrs = i;
|
||||
int32_t c, t, r, s;
|
||||
std::tie(c, t, r, s) = unpack(ctrs);
|
||||
// next indices
|
||||
int32_t nextctrs = ctrs + TK_;
|
||||
int32_t nextc, nextt, nextr, nexts;
|
||||
std::tie(nextc, nextt, nextr, nexts) = unpack(nextctrs);
|
||||
// diffs
|
||||
int32_t cdiff = nextc - c;
|
||||
int32_t tdiff = (nextt + pd)/upsample_d_ - (t + pd)/upsample_d_;
|
||||
int32_t rdiff = (nextr + ph)/upsample_h_ - (r + ph)/upsample_h_;
|
||||
int32_t sdiff = (nexts + pw)/upsample_w_ - (s + pw)/upsample_w_;
|
||||
// delta pointers
|
||||
if(ty_ == WGRAD)
|
||||
deltas_ptr[i] = cdiff*ld_a_[0] + tdiff*ld_a_[2] + rdiff*ld_a_[3] + sdiff*ld_a_[4];
|
||||
else
|
||||
deltas_ptr[i] = cdiff*ld_a_[1] + tdiff*ld_a_[2] + rdiff*ld_a_[3] + sdiff*ld_a_[4];
|
||||
}
|
||||
}
|
||||
|
||||
if(ty_ == WGRAD){
|
||||
for(size_t i = 0; i < Ds0; ++i) {
|
||||
int32_t c, t, r, s;
|
||||
int32_t nextc, nextt, nextr, nexts;
|
||||
std::tie(c, t, r, s) = unpack(i);
|
||||
std::tie(nextc, nextt, nextr, nexts) = unpack(i + TK_);
|
||||
int32_t cdiff = nextc - c, tdiff = nextt - t, rdiff = nextr - r, sdiff = nexts - s;
|
||||
h_b_deltas_[i] = cdiff*ld_b_[0] + tdiff*ld_b_[2] + rdiff*ld_b_[3] + sdiff*ld_b_[4];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void build_masks(){
|
||||
h_masks_.resize(Luts_ + (2*pad_h_+1)*(2*pad_w_+1)*(2*pad_d_+1)*Luts_);
|
||||
|
||||
auto unpack = [&](int32_t ltrs){
|
||||
int32_t l = (ty_ == BPROP) ? ltrs % NF_ : ltrs / (BD_*BH_*BW_);
|
||||
int32_t trs = (ty_ == BPROP) ? ltrs / NF_ : ltrs % (BD_*BH_*BW_);
|
||||
int32_t tr = trs / BW_;
|
||||
int32_t s = trs % BW_;
|
||||
int32_t t = tr / BH_;
|
||||
int32_t r = tr % BH_;
|
||||
if(ty_ == BPROP){
|
||||
r = BH_ - 1 - r;
|
||||
s = BW_ - 1 - s;
|
||||
}
|
||||
return std::make_tuple(l, t, r, s);
|
||||
};
|
||||
size_t Ms0 = Luts_;
|
||||
size_t Ms1 = 2*pad_w_ + 1;
|
||||
size_t Ms2 = 2*pad_h_ + 1;
|
||||
size_t Ms3 = 2*pad_d_ + 1;
|
||||
for(size_t pd = 0; pd < Ms3; ++pd)
|
||||
for(size_t ph = 0; ph < Ms2; ++ph)
|
||||
for(size_t pw = 0; pw < Ms1; ++pw){
|
||||
int32_t* masks_ptr = &h_masks_[Luts_ + pw*Ms0 + ph*Ms0*Ms1 + pd*Ms0*Ms1*Ms2];
|
||||
for(size_t i = 0; i < Ms0; ++i){
|
||||
int32_t l, t, r, s;
|
||||
int32_t mask = 0x0;
|
||||
for(size_t j = 0; j < TK_; ++j){
|
||||
std::tie(l, t, r, s) = unpack(i + j);
|
||||
bool in_bounds_d = (t + pd) >= pad_d_ && (t + pd) < (BD_ + pad_d_);
|
||||
bool in_bounds_h = (r + ph) >= pad_h_ && (r + ph) < (BH_ + pad_h_);
|
||||
bool in_bounds_w = (s + pw) >= pad_w_ && (s + pw) < (BW_ + pad_w_);
|
||||
mask |= (in_bounds_d && in_bounds_h && in_bounds_w) << j;
|
||||
}
|
||||
masks_ptr[i] = mask;
|
||||
}
|
||||
}
|
||||
for(size_t i = 0; i < Luts_; ++i)
|
||||
h_masks_[i] = 0x0;
|
||||
}
|
||||
|
||||
std::array<size_t, 3> get_grid(size_t TM, size_t TN){
|
||||
return {(M_ + TM - 1)/TM, (N_ + TN - 1)/TN, 1};
|
||||
}
|
||||
|
||||
size_t get_nflops(){
|
||||
return 2.*M_*N_*K_;
|
||||
}
|
||||
|
||||
void init(driver::stream *stream, triton::jit &jit) {
|
||||
auto init_lut = [&](bool is_cst, const char *name, std::vector<int32_t> host) -> triton::driver::buffer*{
|
||||
if(host.empty())
|
||||
return nullptr;
|
||||
size_t nbytes = host.size()*4;
|
||||
// get buffer
|
||||
triton::driver::buffer* buffer;
|
||||
if(is_cst)
|
||||
buffer = jit.get_buffer(name);
|
||||
else
|
||||
buffer = triton::driver::buffer::create(stream->context(), nbytes);
|
||||
// copy
|
||||
stream->write(buffer, false, 0, nbytes, host.data());
|
||||
return buffer;
|
||||
};
|
||||
|
||||
d_a_deltas_ = init_lut(is_a_deltas_cst, "delta", h_a_deltas_);
|
||||
d_b_deltas_ = init_lut(is_b_deltas_cst_, "b_delta", h_b_deltas_);
|
||||
d_masks_ = init_lut(is_mask_cst_, "masks", h_masks_);
|
||||
}
|
||||
// accessors
|
||||
size_t a_size();
|
||||
size_t b_size();
|
||||
size_t c_size();
|
||||
std::vector<int32_t> c_shapes();
|
||||
|
||||
// initialize
|
||||
void build_deltas();
|
||||
void build_masks();
|
||||
void init(driver::stream *stream, triton::jit &jit);
|
||||
std::array<size_t, 3> get_grid(size_t TM, size_t TN);
|
||||
void set_arg(driver::kernel *kernel,
|
||||
driver::buffer *a, driver::buffer *b, driver::buffer *c)
|
||||
{
|
||||
kernel->setArg(0, a);
|
||||
kernel->setArg(1, b);
|
||||
kernel->setArg(2, c);
|
||||
kernel->setArg(3, M_);
|
||||
kernel->setArg(4, N_);
|
||||
kernel->setArg(5, K_);
|
||||
kernel->setArg(6, AH_);
|
||||
kernel->setArg(7, AW_);
|
||||
kernel->setArg(8, BH_);
|
||||
kernel->setArg(9, BW_);
|
||||
kernel->setArg(10, CH_);
|
||||
kernel->setArg(11, CW_);
|
||||
// A arguments
|
||||
if(ty_ == WGRAD){
|
||||
kernel->setArg(12, ld_a_[1]);
|
||||
kernel->setArg(13, ld_a_[0]);
|
||||
}
|
||||
else{
|
||||
kernel->setArg(12, ld_a_[0]);
|
||||
kernel->setArg(13, ld_a_[1]);
|
||||
}
|
||||
kernel->setArg(14, ld_a_[2]);
|
||||
kernel->setArg(15, ld_a_[3]);
|
||||
kernel->setArg(16, ld_a_[4]);
|
||||
// B arguments
|
||||
if(ty_ == WGRAD){
|
||||
kernel->setArg(17, ld_b_[0]);
|
||||
kernel->setArg(18, ld_b_[2]);
|
||||
kernel->setArg(19, ld_b_[3]);
|
||||
kernel->setArg(20, ld_b_[4]);
|
||||
kernel->setArg(21, ld_b_[1]);
|
||||
}
|
||||
else{
|
||||
kernel->setArg(17, ld_b_[0]);
|
||||
kernel->setArg(18, ld_b_[1]);
|
||||
kernel->setArg(19, ld_b_[2]);
|
||||
kernel->setArg(20, ld_b_[3]);
|
||||
kernel->setArg(21, ld_b_[4]);
|
||||
}
|
||||
// C arguments
|
||||
if(ty_ == WGRAD){
|
||||
kernel->setArg(22, ld_c_[0]);
|
||||
kernel->setArg(23, ld_c_[4]);
|
||||
kernel->setArg(24, ld_c_[1]);
|
||||
kernel->setArg(25, ld_c_[2]);
|
||||
kernel->setArg(26, ld_c_[3]);
|
||||
}
|
||||
else{
|
||||
kernel->setArg(22, ld_c_[0]);
|
||||
kernel->setArg(23, ld_c_[1]);
|
||||
kernel->setArg(24, ld_c_[2]);
|
||||
kernel->setArg(25, ld_c_[3]);
|
||||
kernel->setArg(26, ld_c_[4]);
|
||||
}
|
||||
kernel->setArg(27, pad_h_);
|
||||
kernel->setArg(28, pad_w_);
|
||||
size_t idx = 29;
|
||||
if(!is_a_deltas_cst)
|
||||
kernel->setArg(idx++, d_a_deltas_);
|
||||
if(!is_b_deltas_cst_)
|
||||
kernel->setArg(idx++, d_b_deltas_);
|
||||
if(!is_mask_cst_)
|
||||
kernel->setArg(idx++, d_masks_);
|
||||
}
|
||||
driver::buffer *a, driver::buffer *b, driver::buffer *c);
|
||||
|
||||
std::vector<unsigned> default_params() {
|
||||
if(ty_==FPROP)
|
||||
return {16, 2, 64, 32, 2, 64, 16, 8, 2, 2, 8, 1, 8, 4};
|
||||
else if(ty_ == BPROP)
|
||||
return {32, 2, 64, 32, 64, 32, 4, 2, 2, 4, 2, 8, 4, 2};
|
||||
else if(ty_ == WGRAD)
|
||||
return {32, 2, 64, 32, 2, 64, 16, 8, 2, 2, 4, 2, 8};
|
||||
}
|
||||
// utilities
|
||||
size_t get_nflops();
|
||||
std::vector<unsigned> default_params();
|
||||
|
||||
// source
|
||||
std::string src();
|
||||
|
||||
std::string src() {
|
||||
bool is_wgrad = ty_ == WGRAD;
|
||||
std::string BS = b_trans_ ? "[TN,TK]" : "[TK, TN]";
|
||||
std::string bcb0 = b_trans_ ? "[:, newaxis]" : "[newaxis, :]";
|
||||
std::string bcb1 = b_trans_ ? "[newaxis, :]" : "[:, newaxis]";
|
||||
std::string ldb0 = b_trans_ ? "*ldb_s" : "";
|
||||
std::string ldb1 = b_trans_ ? "*ldb_k" : "*ldb_c";
|
||||
std::string useb = b_trans_ ? "trans(b)" : "b";
|
||||
std::string flipr = b_trans_ ? "" : "BH - 1 -";
|
||||
std::string flips = b_trans_ ? "" : "BW - 1 -";
|
||||
std::string ax = b_trans_ ? "crs" : "rsc";
|
||||
std::vector<std::string> redax;
|
||||
if(b_trans_)
|
||||
redax = {"C", "BH", "BW"};
|
||||
else
|
||||
redax = {"BH", "BW", "N"};
|
||||
std::string inc_pb = is_wgrad ? "db[newaxis, :]" : "TK" + ldb0;
|
||||
std::string a_delta_mem = is_a_deltas_cst ? "__constant__" : "";
|
||||
std::string b_delta_mem = is_b_deltas_cst_? "__constant__" : "";
|
||||
std::string masks_mem = is_mask_cst_? "__constant__" : "";
|
||||
|
||||
std::string res =
|
||||
R"(
|
||||
const tunable int32 TM = {16, 32, 64};
|
||||
const tunable int32 TN = {16, 32, 64};
|
||||
const tunable int32 TK = {8};
|
||||
)";
|
||||
if(is_a_deltas_cst)
|
||||
res += "__constant__ int32* delta = alloc_const int32[" + std::to_string(h_a_deltas_.size()) + "];\n";
|
||||
if(is_wgrad && is_b_deltas_cst_)
|
||||
res += "__constant__ int32* b_delta = alloc_const int32[" + std::to_string(h_b_deltas_.size()) + "];\n";
|
||||
if(is_mask_cst_)
|
||||
res += "__constant__ int32* masks = alloc_const int32[" + std::to_string(h_masks_.size()) + "];\n";
|
||||
res += R"(
|
||||
|
||||
void conv(read_only restrict fp32 *a,
|
||||
read_only restrict fp32 *b,
|
||||
fp32 *c,
|
||||
int32 M, int32 N, int32 K,
|
||||
int32 AH, int32 AW,
|
||||
int32 BH, int32 BW,
|
||||
int32 CH, int32 CW,
|
||||
int32 lda_n, int32 lda_c, int32 lda_d, int32 lda_h, int32 lda_w,
|
||||
int32 ldb_c, int32 ldb_t, int32 ldb_r, int32 ldb_s, int32 ldb_k,
|
||||
int32 ldc_n, int32 ldc_k, int32 ldc_m, int32 ldc_p, int32 ldc_q,
|
||||
int32 pad_h, int32 pad_w)";
|
||||
if(!is_a_deltas_cst)
|
||||
res += ", int32* delta";
|
||||
if(is_wgrad && !is_b_deltas_cst_)
|
||||
res += ", int32* b_delta";
|
||||
if(!is_mask_cst_)
|
||||
res += ", int32* masks";
|
||||
res += R"(){
|
||||
int32 rxa[TM] = get_global_range[TM](0);
|
||||
int32 rb0[TN] = get_global_range[TN](1);
|
||||
int32 rka[TK] = 0 ... TK;
|
||||
int32 rkb[TK] = 0 ... TK;
|
||||
fp32 C[TM, TN] = 0;
|
||||
int32 ldlut = )" + std::to_string(Fs_) + R"(;
|
||||
int32 rabh[TM] = rxa / CW;
|
||||
int32 raw[TM] = rxa % CW - pad_w;
|
||||
int32 rab[TM] = rabh / CH;
|
||||
int32 rah[TM] = rabh % CH - pad_h;
|
||||
int32 ra0[TM] = rab*lda_n + rah*lda_h + raw*lda_w;
|
||||
int32 ra)" + ax[0] + ax[1] + "[TK] = rka / " + redax[2] + R"(;
|
||||
int32 ra)" + ax[2] + "[TK] = rka % " + redax[2] + R"(;
|
||||
int32 ra)" + ax[0] + "[TK] = ra" + ax[0] + ax[1] + " / " + redax[1] + R"(;
|
||||
int32 ra)" + ax[1] + "[TK] = ra" + ax[0] + ax[1] + " % " + redax[1] + R"(;
|
||||
rar = )" + flipr + R"( rar;
|
||||
ras = )" + flips + R"( ras;
|
||||
int32 ra1[TK] = rac*lda_c + rar*lda_h + ras*lda_w;
|
||||
fp32* pa[TM, TK] = a + ra1[newaxis, :] + ra0[:, newaxis];)";
|
||||
if(ty_ == WGRAD){
|
||||
res += R"(
|
||||
int32 rbcr[TK] = rkb / BW;
|
||||
int32 rbs[TK] = rkb % BW;
|
||||
int32 rbc[TK] = rbcr / BH;
|
||||
int32 rbr[TK] = rbcr % BH;
|
||||
int32 rb1[TK] = rbc*ldb_c + rbr*ldb_r + ras*ldb_s;
|
||||
)" + b_delta_mem + R"( int32* pdb[TK] = b_delta + rkb;
|
||||
int32 db[TK] = *pdb;)";
|
||||
}
|
||||
else{
|
||||
res += R"(
|
||||
int32 rb1[TK] = rkb;)";
|
||||
}
|
||||
res += R"(
|
||||
fp32* pb)" + BS + " = b + rb1" + bcb1 + ldb0 + " + rb0" + bcb0 + ldb1 + R"(;
|
||||
)" + a_delta_mem + R"( int32* pincd[TK] = delta + rka;
|
||||
)" + a_delta_mem + R"( int32* pd[TK] = delta + ldlut + rka;
|
||||
int32 d[TK] = *pd;
|
||||
int32 incd[TK] = *pincd;
|
||||
int32 maskh[TM] = pad_h + min(rah, 0) + max(rah + BH - AH, 0);
|
||||
int32 maskw[TM] = pad_w + min(raw, 0) + max(raw + BW - AW, 0);
|
||||
)" + masks_mem + R"( int32* pm[TM] = masks + ldlut + maskw*ldlut + maskh*ldlut*(2*pad_w + 1);
|
||||
)" + a_delta_mem + R"( int32* pincm[TM] = delta;
|
||||
int32 incm[TM] = *pincm;
|
||||
int32 checka0[TM] = *pm;
|
||||
int32 checka1[TK] = 1 << rka;
|
||||
int1 checka[TM, TK] = (checka0[:, newaxis] & checka1[newaxis, :]) > 0;
|
||||
fp32 a[TM, TK] = checka ? *pa : 0;
|
||||
fp32 b)" + BS + R"( = *pb;
|
||||
for(int32 k = K; k > 0; k = k - TK){
|
||||
C = dot(a, )" + useb + R"(, C);
|
||||
pa = pa + d[newaxis, :];
|
||||
pb = pb + )" + inc_pb + R"(;
|
||||
b = *pb;
|
||||
pd = pd + incd;)";
|
||||
if(ty_ == WGRAD){
|
||||
res += R"(
|
||||
pdb = pdb + TK;
|
||||
db = *pdb;)";
|
||||
}
|
||||
res += R"(
|
||||
pincd = pincd + incd;
|
||||
d = *pd;
|
||||
incd = *pincd;
|
||||
pm = pm + incm;
|
||||
pincm = pincm + incm;
|
||||
incm = *pincm;
|
||||
checka0 = *pm;
|
||||
checka = (checka0[:, newaxis] & checka1[newaxis, :]) > 0;
|
||||
checka = checka && (k > TK);
|
||||
a = checka ? *pa : 0;
|
||||
}
|
||||
int32 rxc[TM] = get_global_range[TM](0);
|
||||
int32 rc1[TN] = get_global_range[TN](1);
|
||||
int32 rcn[TM] = rxc / (CH*CW);
|
||||
int32 rcpq[TM] = rxc % (CH*CW);
|
||||
int32 rc0[TM] = rcn * ldc_n + rcpq * ldc_q;
|
||||
fp32* pc[TM, TN] = c + rc1[newaxis, :]*ldc_k + rc0[:, newaxis];
|
||||
int1 checkc0[TM] = rxc < M;
|
||||
int1 checkc1[TN] = rc1 < N;
|
||||
int1 checkc[TM, TN] = checkc0[:, newaxis] && checkc1[newaxis, :];
|
||||
@checkc *pc = C;
|
||||
})";
|
||||
return res;
|
||||
}
|
||||
// cpu check
|
||||
template<class IN_DTYPE, class OUT_DTYPE>
|
||||
void cpu_xprop(OUT_DTYPE* C, IN_DTYPE* A, IN_DTYPE* B);
|
||||
|
||||
template<class IN_DTYPE, class OUT_DTYPE>
|
||||
void cpu_xprop(OUT_DTYPE* C, IN_DTYPE* A, IN_DTYPE* B)
|
||||
{
|
||||
IN_DTYPE acc;
|
||||
for(int32_t n = 0; n < shapes_c_[0]; ++n)
|
||||
for(int32_t cf = 0; cf < shapes_c_[1] ; ++cf)
|
||||
for(int32_t cd = 0 ; cd < shapes_c_[2]; ++cd)
|
||||
for(int32_t ch = 0 ; ch < shapes_c_[3]; ++ch)
|
||||
for(int32_t cw = 0; cw < shapes_c_[4]; ++cw)
|
||||
{
|
||||
acc = 0;
|
||||
int32_t d = cd*stride_d_ - pad_d_;
|
||||
int32_t h = ch*stride_h_ - pad_h_;
|
||||
int32_t w = cw*stride_w_ - pad_w_;
|
||||
for(int32_t ac = 0; ac < shapes_a_[1]; ++ac)
|
||||
for(int32_t bd = 0; bd < shapes_b_[1]; ++bd)
|
||||
for(int32_t bh = 0; bh < shapes_b_[2]; ++bh)
|
||||
for(int32_t bw = 0; bw < shapes_b_[3]; ++bw){
|
||||
int32_t ad = d + bd;
|
||||
int32_t ah = h + bh;
|
||||
int32_t aw = w + bw;
|
||||
bool in_bounds = (ad >= 0 && ad < shapes_a_[2] &&
|
||||
ah >= 0 && ah < shapes_a_[3] &&
|
||||
aw >= 0 && aw < shapes_a_[4]);
|
||||
IN_DTYPE a = 0;
|
||||
if(in_bounds)
|
||||
a = A[n*ld_a_[0] + ac*ld_a_[1] + ad*ld_a_[2] + ah*ld_a_[3] + aw*ld_a_[4]];
|
||||
IN_DTYPE b;
|
||||
if(ty_==FPROP)
|
||||
b = B[ac*ld_b_[0] + bd*ld_b_[1] + bh*ld_b_[2] + bw*ld_b_[3] + cf*ld_b_[4]];
|
||||
else{
|
||||
int32_t bdd = shapes_b_[1] - 1 - bd;
|
||||
int32_t bhh = shapes_b_[2] - 1 - bh;
|
||||
int32_t bww = shapes_b_[3] - 1 - bw;
|
||||
b = B[cf*ld_b_[0] + bdd*ld_b_[1] + bhh*ld_b_[2] + bww*ld_b_[3] + ac*ld_b_[4]];
|
||||
}
|
||||
acc = std::fma(a, b, acc);
|
||||
}
|
||||
C[n*ld_c_[0] + cf*ld_c_[1] + cd*ld_c_[2] + ch*ld_c_[3] + cw*ld_c_[4]] = acc;
|
||||
}
|
||||
}
|
||||
void cpu_wgrad(OUT_DTYPE* C, IN_DTYPE* A, IN_DTYPE* B);
|
||||
|
||||
template<class IN_DTYPE, class OUT_DTYPE>
|
||||
void cpu_wgrad(OUT_DTYPE* C, IN_DTYPE* A, IN_DTYPE* B)
|
||||
{
|
||||
IN_DTYPE acc;
|
||||
for(int32_t c = 0 ; c < shapes_c_[0]; ++c)
|
||||
for(int32_t cd = 0; cd < shapes_c_[1]; ++cd)
|
||||
for(int32_t ch = 0; ch < shapes_c_[2]; ++ch)
|
||||
for(int32_t cw = 0; cw < shapes_c_[3]; ++cw)
|
||||
for(int32_t k = 0 ; k < shapes_c_[4]; ++k)
|
||||
{
|
||||
acc = 0;
|
||||
int32_t d = cd*stride_d_ - pad_d_;
|
||||
int32_t h = ch*stride_h_ - pad_h_;
|
||||
int32_t w = cw*stride_w_ - pad_w_;
|
||||
for(int32_t n = 0; n < shapes_b_[0]; ++n)
|
||||
for(int32_t bd = 0; bd < shapes_b_[2]; ++bd)
|
||||
for(int32_t bh = 0; bh < shapes_b_[3]; ++bh)
|
||||
for(int32_t bw = 0; bw < shapes_b_[4]; ++bw){
|
||||
int32_t ad = d + bd;
|
||||
int32_t ah = h + bh;
|
||||
int32_t aw = w + bw;
|
||||
bool in_bounds = (ad >= 0 && ad < shapes_a_[2] &&
|
||||
ah >= 0 && ah < shapes_a_[3] &&
|
||||
aw >= 0 && aw < shapes_a_[4]);
|
||||
IN_DTYPE a = 0;
|
||||
if(in_bounds)
|
||||
a = A[n*ld_a_[0] + c*ld_a_[1] + ad*ld_a_[2] + ah*ld_a_[3] + aw*ld_a_[4]];
|
||||
IN_DTYPE b = B[n*ld_b_[0] + k*ld_b_[1] + bd*ld_b_[2] + bh*ld_b_[3] + bw*ld_b_[4]];
|
||||
acc = std::fma(a, b, acc);
|
||||
}
|
||||
C[c*ld_c_[0] + cd*ld_c_[1] + ch*ld_c_[2] + cw*ld_c_[3] + k*ld_c_[4]] = acc;
|
||||
}
|
||||
}
|
||||
|
||||
template<class IN_DTYPE, class OUT_DTYPE>
|
||||
void cpu_ref(OUT_DTYPE* C, IN_DTYPE* A, IN_DTYPE* B)
|
||||
{
|
||||
if(ty_ == FPROP || ty_ == BPROP)
|
||||
cpu_xprop(C, A, B);
|
||||
else
|
||||
cpu_wgrad(C, A, B);
|
||||
}
|
||||
void cpu_ref(OUT_DTYPE* C, IN_DTYPE* A, IN_DTYPE* B);
|
||||
|
||||
private:
|
||||
// image size
|
||||
|
538
lib/dnn/conv.cpp
Normal file
538
lib/dnn/conv.cpp
Normal file
@@ -0,0 +1,538 @@
|
||||
#include "triton/dnn/conv.h"
|
||||
|
||||
namespace triton{
|
||||
namespace dnn{
|
||||
|
||||
conv::conv(int B, int NC,
|
||||
int D, int H, int W,
|
||||
int T, int R, int S, int NF,
|
||||
int stride_d, int stride_h, int stride_w,
|
||||
int pad_d, int pad_h, int pad_w,
|
||||
type ty)
|
||||
: NB_(B), NC_(NC), AD_(D), AH_(H), AW_(W), BD_(T), BH_(R), BW_(S), NF_(NF),
|
||||
stride_d_(stride_d), stride_h_(stride_h), stride_w_(stride_w),
|
||||
upsample_d_(1), upsample_h_(1), upsample_w_(1),
|
||||
pad_d_(pad_d), pad_h_(pad_h), pad_w_(pad_w),
|
||||
ty_(ty)
|
||||
{
|
||||
CD_ = (AD_*upsample_d_ - BD_ + 1 + 2*pad_d_ + stride_d_ - 1)/stride_d_;
|
||||
CH_ = (AH_*upsample_h_ - BH_ + 1 + 2*pad_h_ + stride_h_ - 1)/stride_h_;
|
||||
CW_ = (AW_*upsample_w_ - BW_ + 1 + 2*pad_w_ + stride_w_ - 1)/stride_w_;
|
||||
// shapes
|
||||
shapes_a_ = {NB_, NC_, AD_, AH_, AW_};
|
||||
shapes_b_ = {NC_, BD_, BH_, BW_, NF_};
|
||||
shapes_c_ = {NB_, NF_, CD_, CH_, CW_};
|
||||
// swap a and c for bprop
|
||||
if(ty_ == BPROP){
|
||||
pad_d_ = (CD_ - AD_ + BD_ - 1) / 2;
|
||||
pad_h_ = (CH_ - AH_ + BH_ - 1) / 2;
|
||||
pad_w_ = (CW_ - AW_ + BW_ - 1) / 2;
|
||||
shapes_a_.swap(shapes_c_);
|
||||
}
|
||||
// swap b and c for wgrad
|
||||
if(ty_ == WGRAD){
|
||||
shapes_b_.swap(shapes_c_);
|
||||
std::swap(BD_, CD_);
|
||||
std::swap(BH_, CH_);
|
||||
std::swap(BW_, CW_);
|
||||
}
|
||||
// leading dimensions
|
||||
auto set_ld = [](const std::vector<int32_t>& shapes,
|
||||
std::vector<int32_t>& ld) {
|
||||
size_t size = shapes.size();
|
||||
ld.resize(size);
|
||||
ld[4] = 1;
|
||||
ld[3] = shapes[4]*ld[4];
|
||||
ld[2] = shapes[3]*ld[3];
|
||||
ld[1] = shapes[2]*ld[2];
|
||||
ld[0] = shapes[1]*ld[1];
|
||||
};
|
||||
set_ld(shapes_a_, ld_a_);
|
||||
set_ld(shapes_b_, ld_b_);
|
||||
set_ld(shapes_c_, ld_c_);
|
||||
// equivalent matmul
|
||||
b_trans_ = ty_ != BPROP;
|
||||
b_lut_ = ty_ == WGRAD;
|
||||
if(ty_ == WGRAD){
|
||||
M_ = shapes_c_[0]*shapes_c_[1]*shapes_c_[2]*shapes_c_[3];
|
||||
N_ = shapes_c_[4];
|
||||
K_ = shapes_b_[0]*shapes_b_[2]*shapes_b_[3]*shapes_b_[4];
|
||||
}
|
||||
else{
|
||||
M_ = shapes_c_[0]*shapes_c_[2]*shapes_c_[3]*shapes_c_[4];
|
||||
N_ = shapes_c_[1];
|
||||
K_ = shapes_b_[0]*shapes_b_[1]*shapes_b_[2]*shapes_b_[3];
|
||||
}
|
||||
// look-up table info
|
||||
if(ty_ == FPROP)
|
||||
Fs_ = shapes_b_[1]*shapes_b_[2]*shapes_b_[3];
|
||||
else
|
||||
Fs_ = K_;
|
||||
TK_ = 8;
|
||||
Luts_ = (TK_ + Fs_ - 1) / Fs_ * Fs_;
|
||||
build_deltas();
|
||||
build_masks();
|
||||
size_t cst_size = h_b_deltas_.size()*4;
|
||||
is_b_deltas_cst_ = cst_size < 65536;
|
||||
cst_size += h_a_deltas_.size()*4;
|
||||
is_a_deltas_cst = cst_size < 65536;
|
||||
cst_size += h_masks_.size()*4;
|
||||
is_mask_cst_ = cst_size < 65536;
|
||||
}
|
||||
|
||||
size_t conv::a_size()
|
||||
{ return std::accumulate(shapes_a_.begin(), shapes_a_.end(),
|
||||
1, std::multiplies<int>()); }
|
||||
|
||||
size_t conv::b_size()
|
||||
{ return std::accumulate(shapes_b_.begin(), shapes_b_.end(),
|
||||
1, std::multiplies<int>()); }
|
||||
|
||||
size_t conv::c_size()
|
||||
{ return std::accumulate(shapes_c_.begin(), shapes_c_.end(),
|
||||
1, std::multiplies<int>()); }
|
||||
|
||||
std::vector<int32_t> conv::c_shapes()
|
||||
{ return shapes_c_; }
|
||||
|
||||
void conv::build_deltas(){
|
||||
h_a_deltas_.resize(Luts_ + upsample_d_*upsample_h_*upsample_w_*Luts_);
|
||||
if(b_lut_)
|
||||
h_b_deltas_.resize(Luts_);
|
||||
|
||||
auto unpack = [&](int32_t ltrs){
|
||||
int32_t l = (ty_ == BPROP) ? ltrs % NF_ : ltrs / (BD_*BH_*BW_);
|
||||
int32_t trs = (ty_ == BPROP) ? ltrs / NF_ : ltrs % (BD_*BH_*BW_);
|
||||
int32_t tr = trs / BW_;
|
||||
int32_t s = trs % BW_;
|
||||
int32_t t = tr / BH_;
|
||||
int32_t r = tr % BH_;
|
||||
if(ty_ == BPROP){
|
||||
r = BH_ - 1 - r;
|
||||
s = BW_ - 1 - s;
|
||||
}
|
||||
return std::make_tuple(l, t, r, s);
|
||||
};
|
||||
|
||||
for(size_t i = 0; i < Luts_; ++i)
|
||||
h_a_deltas_[i] = (((i + TK_) % Luts_) - i);
|
||||
|
||||
size_t Ds0 = Luts_;
|
||||
size_t Ds1 = upsample_w_;
|
||||
size_t Ds2 = upsample_h_;
|
||||
size_t Ds3 = upsample_d_;
|
||||
for(size_t pd = 0; pd < Ds3; ++pd)
|
||||
for(size_t ph = 0; ph < Ds2; ++ph)
|
||||
for(size_t pw = 0; pw < Ds1; ++pw){
|
||||
int32_t* deltas_ptr = &h_a_deltas_[Luts_ + pw*Ds0 + ph*Ds0*Ds1 + pd*Ds0*Ds1*Ds2];
|
||||
// cumulative increments
|
||||
for(size_t i = 0; i < Ds0; ++i) {
|
||||
// unpack
|
||||
int32_t ctrs = i;
|
||||
int32_t c, t, r, s;
|
||||
std::tie(c, t, r, s) = unpack(ctrs);
|
||||
// next indices
|
||||
int32_t nextctrs = ctrs + TK_;
|
||||
int32_t nextc, nextt, nextr, nexts;
|
||||
std::tie(nextc, nextt, nextr, nexts) = unpack(nextctrs);
|
||||
// diffs
|
||||
int32_t cdiff = nextc - c;
|
||||
int32_t tdiff = (nextt + pd)/upsample_d_ - (t + pd)/upsample_d_;
|
||||
int32_t rdiff = (nextr + ph)/upsample_h_ - (r + ph)/upsample_h_;
|
||||
int32_t sdiff = (nexts + pw)/upsample_w_ - (s + pw)/upsample_w_;
|
||||
// delta pointers
|
||||
if(ty_ == WGRAD)
|
||||
deltas_ptr[i] = cdiff*ld_a_[0] + tdiff*ld_a_[2] + rdiff*ld_a_[3] + sdiff*ld_a_[4];
|
||||
else
|
||||
deltas_ptr[i] = cdiff*ld_a_[1] + tdiff*ld_a_[2] + rdiff*ld_a_[3] + sdiff*ld_a_[4];
|
||||
}
|
||||
}
|
||||
|
||||
if(ty_ == WGRAD){
|
||||
for(size_t i = 0; i < Ds0; ++i) {
|
||||
int32_t c, t, r, s;
|
||||
int32_t nextc, nextt, nextr, nexts;
|
||||
std::tie(c, t, r, s) = unpack(i);
|
||||
std::tie(nextc, nextt, nextr, nexts) = unpack(i + TK_);
|
||||
int32_t cdiff = nextc - c, tdiff = nextt - t, rdiff = nextr - r, sdiff = nexts - s;
|
||||
h_b_deltas_[i] = cdiff*ld_b_[0] + tdiff*ld_b_[2] + rdiff*ld_b_[3] + sdiff*ld_b_[4];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void conv::build_masks(){
|
||||
h_masks_.resize(Luts_ + (2*pad_h_+1)*(2*pad_w_+1)*(2*pad_d_+1)*Luts_);
|
||||
|
||||
auto unpack = [&](int32_t ltrs){
|
||||
int32_t l = (ty_ == BPROP) ? ltrs % NF_ : ltrs / (BD_*BH_*BW_);
|
||||
int32_t trs = (ty_ == BPROP) ? ltrs / NF_ : ltrs % (BD_*BH_*BW_);
|
||||
int32_t tr = trs / BW_;
|
||||
int32_t s = trs % BW_;
|
||||
int32_t t = tr / BH_;
|
||||
int32_t r = tr % BH_;
|
||||
if(ty_ == BPROP){
|
||||
r = BH_ - 1 - r;
|
||||
s = BW_ - 1 - s;
|
||||
}
|
||||
return std::make_tuple(l, t, r, s);
|
||||
};
|
||||
size_t Ms0 = Luts_;
|
||||
size_t Ms1 = 2*pad_w_ + 1;
|
||||
size_t Ms2 = 2*pad_h_ + 1;
|
||||
size_t Ms3 = 2*pad_d_ + 1;
|
||||
for(size_t pd = 0; pd < Ms3; ++pd)
|
||||
for(size_t ph = 0; ph < Ms2; ++ph)
|
||||
for(size_t pw = 0; pw < Ms1; ++pw){
|
||||
int32_t* masks_ptr = &h_masks_[Luts_ + pw*Ms0 + ph*Ms0*Ms1 + pd*Ms0*Ms1*Ms2];
|
||||
for(size_t i = 0; i < Ms0; ++i){
|
||||
int32_t l, t, r, s;
|
||||
int32_t mask = 0x0;
|
||||
for(size_t j = 0; j < TK_; ++j){
|
||||
std::tie(l, t, r, s) = unpack(i + j);
|
||||
bool in_bounds_d = (t + pd) >= pad_d_ && (t + pd) < (BD_ + pad_d_);
|
||||
bool in_bounds_h = (r + ph) >= pad_h_ && (r + ph) < (BH_ + pad_h_);
|
||||
bool in_bounds_w = (s + pw) >= pad_w_ && (s + pw) < (BW_ + pad_w_);
|
||||
mask |= (in_bounds_d && in_bounds_h && in_bounds_w) << j;
|
||||
}
|
||||
masks_ptr[i] = mask;
|
||||
}
|
||||
}
|
||||
for(size_t i = 0; i < Luts_; ++i)
|
||||
h_masks_[i] = 0x0;
|
||||
}
|
||||
|
||||
std::array<size_t, 3> conv::get_grid(size_t TM, size_t TN)
|
||||
{ return {(M_ + TM - 1)/TM, (N_ + TN - 1)/TN, 1}; }
|
||||
|
||||
size_t conv::get_nflops()
|
||||
{ return 2.*M_*N_*K_; }
|
||||
|
||||
void conv::init(driver::stream *stream, triton::jit &jit) {
|
||||
auto init_lut = [&](bool is_cst, const char *name, std::vector<int32_t> host) -> triton::driver::buffer*{
|
||||
if(host.empty())
|
||||
return nullptr;
|
||||
size_t nbytes = host.size()*4;
|
||||
// get buffer
|
||||
triton::driver::buffer* buffer;
|
||||
if(is_cst)
|
||||
buffer = jit.get_buffer(name);
|
||||
else
|
||||
buffer = triton::driver::buffer::create(stream->context(), nbytes);
|
||||
// copy
|
||||
stream->write(buffer, false, 0, nbytes, host.data());
|
||||
return buffer;
|
||||
};
|
||||
|
||||
d_a_deltas_ = init_lut(is_a_deltas_cst, "delta", h_a_deltas_);
|
||||
d_b_deltas_ = init_lut(is_b_deltas_cst_, "b_delta", h_b_deltas_);
|
||||
d_masks_ = init_lut(is_mask_cst_, "masks", h_masks_);
|
||||
}
|
||||
|
||||
void conv::set_arg(driver::kernel *kernel,
|
||||
driver::buffer *a, driver::buffer *b, driver::buffer *c)
|
||||
{
|
||||
kernel->setArg(0, a);
|
||||
kernel->setArg(1, b);
|
||||
kernel->setArg(2, c);
|
||||
kernel->setArg(3, M_);
|
||||
kernel->setArg(4, N_);
|
||||
kernel->setArg(5, K_);
|
||||
kernel->setArg(6, AH_);
|
||||
kernel->setArg(7, AW_);
|
||||
kernel->setArg(8, BH_);
|
||||
kernel->setArg(9, BW_);
|
||||
kernel->setArg(10, CH_);
|
||||
kernel->setArg(11, CW_);
|
||||
// A arguments
|
||||
if(ty_ == WGRAD){
|
||||
kernel->setArg(12, ld_a_[1]);
|
||||
kernel->setArg(13, ld_a_[0]);
|
||||
}
|
||||
else{
|
||||
kernel->setArg(12, ld_a_[0]);
|
||||
kernel->setArg(13, ld_a_[1]);
|
||||
}
|
||||
kernel->setArg(14, ld_a_[2]);
|
||||
kernel->setArg(15, ld_a_[3]);
|
||||
kernel->setArg(16, ld_a_[4]);
|
||||
// B arguments
|
||||
if(ty_ == WGRAD){
|
||||
kernel->setArg(17, ld_b_[0]);
|
||||
kernel->setArg(18, ld_b_[2]);
|
||||
kernel->setArg(19, ld_b_[3]);
|
||||
kernel->setArg(20, ld_b_[4]);
|
||||
kernel->setArg(21, ld_b_[1]);
|
||||
}
|
||||
else{
|
||||
kernel->setArg(17, ld_b_[0]);
|
||||
kernel->setArg(18, ld_b_[1]);
|
||||
kernel->setArg(19, ld_b_[2]);
|
||||
kernel->setArg(20, ld_b_[3]);
|
||||
kernel->setArg(21, ld_b_[4]);
|
||||
}
|
||||
// C arguments
|
||||
if(ty_ == WGRAD){
|
||||
kernel->setArg(22, ld_c_[0]);
|
||||
kernel->setArg(23, ld_c_[4]);
|
||||
kernel->setArg(24, ld_c_[1]);
|
||||
kernel->setArg(25, ld_c_[2]);
|
||||
kernel->setArg(26, ld_c_[3]);
|
||||
}
|
||||
else{
|
||||
kernel->setArg(22, ld_c_[0]);
|
||||
kernel->setArg(23, ld_c_[1]);
|
||||
kernel->setArg(24, ld_c_[2]);
|
||||
kernel->setArg(25, ld_c_[3]);
|
||||
kernel->setArg(26, ld_c_[4]);
|
||||
}
|
||||
kernel->setArg(27, pad_h_);
|
||||
kernel->setArg(28, pad_w_);
|
||||
size_t idx = 29;
|
||||
if(!is_a_deltas_cst)
|
||||
kernel->setArg(idx++, d_a_deltas_);
|
||||
if(!is_b_deltas_cst_)
|
||||
kernel->setArg(idx++, d_b_deltas_);
|
||||
if(!is_mask_cst_)
|
||||
kernel->setArg(idx++, d_masks_);
|
||||
}
|
||||
|
||||
std::vector<unsigned> conv::default_params() {
|
||||
if(ty_==FPROP)
|
||||
return {16, 2, 64, 32, 2, 64, 16, 8, 2, 2, 8, 1, 8, 4};
|
||||
else if(ty_ == BPROP)
|
||||
return {32, 2, 64, 32, 64, 32, 4, 2, 2, 4, 2, 8, 4, 2};
|
||||
else if(ty_ == WGRAD)
|
||||
return {32, 2, 64, 32, 2, 64, 16, 8, 2, 2, 4, 2, 8};
|
||||
}
|
||||
|
||||
|
||||
std::string conv::src() {
|
||||
bool is_wgrad = ty_ == WGRAD;
|
||||
std::string BS = b_trans_ ? "[TN,TK]" : "[TK, TN]";
|
||||
std::string bcb0 = b_trans_ ? "[:, newaxis]" : "[newaxis, :]";
|
||||
std::string bcb1 = b_trans_ ? "[newaxis, :]" : "[:, newaxis]";
|
||||
std::string ldb0 = b_trans_ ? "*ldb_s" : "";
|
||||
std::string ldb1 = b_trans_ ? "*ldb_k" : "*ldb_c";
|
||||
std::string useb = b_trans_ ? "trans(b)" : "b";
|
||||
std::string flipr = b_trans_ ? "" : "BH - 1 -";
|
||||
std::string flips = b_trans_ ? "" : "BW - 1 -";
|
||||
std::string ax = b_trans_ ? "crs" : "rsc";
|
||||
std::vector<std::string> redax;
|
||||
if(b_trans_)
|
||||
redax = {"C", "BH", "BW"};
|
||||
else
|
||||
redax = {"BH", "BW", "N"};
|
||||
std::string inc_pb = is_wgrad ? "db[newaxis, :]" : "TK" + ldb0;
|
||||
std::string a_delta_mem = is_a_deltas_cst ? "__constant__" : "";
|
||||
std::string b_delta_mem = is_b_deltas_cst_? "__constant__" : "";
|
||||
std::string masks_mem = is_mask_cst_? "__constant__" : "";
|
||||
|
||||
std::string res =
|
||||
R"(
|
||||
const tunable int32 TM = {16, 32, 64};
|
||||
const tunable int32 TN = {16, 32, 64};
|
||||
const tunable int32 TK = {8};
|
||||
)";
|
||||
if(is_a_deltas_cst)
|
||||
res += "__constant__ int32* delta = alloc_const int32[" + std::to_string(h_a_deltas_.size()) + "];\n";
|
||||
if(is_wgrad && is_b_deltas_cst_)
|
||||
res += "__constant__ int32* b_delta = alloc_const int32[" + std::to_string(h_b_deltas_.size()) + "];\n";
|
||||
if(is_mask_cst_)
|
||||
res += "__constant__ int32* masks = alloc_const int32[" + std::to_string(h_masks_.size()) + "];\n";
|
||||
res += R"(
|
||||
|
||||
void conv(read_only restrict fp32 *a,
|
||||
read_only restrict fp32 *b,
|
||||
fp32 *c,
|
||||
int32 M, int32 N, int32 K,
|
||||
int32 AH, int32 AW,
|
||||
int32 BH, int32 BW,
|
||||
int32 CH, int32 CW,
|
||||
int32 lda_n, int32 lda_c, int32 lda_d, int32 lda_h, int32 lda_w,
|
||||
int32 ldb_c, int32 ldb_t, int32 ldb_r, int32 ldb_s, int32 ldb_k,
|
||||
int32 ldc_n, int32 ldc_k, int32 ldc_m, int32 ldc_p, int32 ldc_q,
|
||||
int32 pad_h, int32 pad_w)";
|
||||
if(!is_a_deltas_cst)
|
||||
res += ", int32* delta";
|
||||
if(is_wgrad && !is_b_deltas_cst_)
|
||||
res += ", int32* b_delta";
|
||||
if(!is_mask_cst_)
|
||||
res += ", int32* masks";
|
||||
res += R"(){
|
||||
int32 rxa[TM] = get_global_range[TM](0);
|
||||
int32 rb0[TN] = get_global_range[TN](1);
|
||||
int32 rka[TK] = 0 ... TK;
|
||||
int32 rkb[TK] = 0 ... TK;
|
||||
fp32 C[TM, TN] = 0;
|
||||
int32 ldlut = )" + std::to_string(Fs_) + R"(;
|
||||
int32 rabh[TM] = rxa / CW;
|
||||
int32 raw[TM] = rxa % CW - pad_w;
|
||||
int32 rab[TM] = rabh / CH;
|
||||
int32 rah[TM] = rabh % CH - pad_h;
|
||||
int32 ra0[TM] = rab*lda_n + rah*lda_h + raw*lda_w;
|
||||
int32 ra)" + ax[0] + ax[1] + "[TK] = rka / " + redax[2] + R"(;
|
||||
int32 ra)" + ax[2] + "[TK] = rka % " + redax[2] + R"(;
|
||||
int32 ra)" + ax[0] + "[TK] = ra" + ax[0] + ax[1] + " / " + redax[1] + R"(;
|
||||
int32 ra)" + ax[1] + "[TK] = ra" + ax[0] + ax[1] + " % " + redax[1] + R"(;
|
||||
rar = )" + flipr + R"( rar;
|
||||
ras = )" + flips + R"( ras;
|
||||
int32 ra1[TK] = rac*lda_c + rar*lda_h + ras*lda_w;
|
||||
fp32* pa[TM, TK] = a + ra1[newaxis, :] + ra0[:, newaxis];)";
|
||||
if(ty_ == WGRAD){
|
||||
res += R"(
|
||||
int32 rbcr[TK] = rkb / BW;
|
||||
int32 rbs[TK] = rkb % BW;
|
||||
int32 rbc[TK] = rbcr / BH;
|
||||
int32 rbr[TK] = rbcr % BH;
|
||||
int32 rb1[TK] = rbc*ldb_c + rbr*ldb_r + ras*ldb_s;
|
||||
)" + b_delta_mem + R"( int32* pdb[TK] = b_delta + rkb;
|
||||
int32 db[TK] = *pdb;)";
|
||||
}
|
||||
else{
|
||||
res += R"(
|
||||
int32 rb1[TK] = rkb;)";
|
||||
}
|
||||
res += R"(
|
||||
fp32* pb)" + BS + " = b + rb1" + bcb1 + ldb0 + " + rb0" + bcb0 + ldb1 + R"(;
|
||||
)" + a_delta_mem + R"( int32* pincd[TK] = delta + rka;
|
||||
)" + a_delta_mem + R"( int32* pd[TK] = delta + ldlut + rka;
|
||||
int32 d[TK] = *pd;
|
||||
int32 incd[TK] = *pincd;
|
||||
int32 maskh[TM] = pad_h + min(rah, 0) + max(rah + BH - AH, 0);
|
||||
int32 maskw[TM] = pad_w + min(raw, 0) + max(raw + BW - AW, 0);
|
||||
)" + masks_mem + R"( int32* pm[TM] = masks + ldlut + maskw*ldlut + maskh*ldlut*(2*pad_w + 1);
|
||||
)" + a_delta_mem + R"( int32* pincm[TM] = delta;
|
||||
int32 incm[TM] = *pincm;
|
||||
int32 checka0[TM] = *pm;
|
||||
int32 checka1[TK] = 1 << rka;
|
||||
int1 checka[TM, TK] = (checka0[:, newaxis] & checka1[newaxis, :]) > 0;
|
||||
fp32 a[TM, TK] = checka ? *pa : 0;
|
||||
fp32 b)" + BS + R"( = *pb;
|
||||
for(int32 k = K; k > 0; k = k - TK){
|
||||
C = dot(a, )" + useb + R"(, C);
|
||||
pa = pa + d[newaxis, :];
|
||||
pb = pb + )" + inc_pb + R"(;
|
||||
b = *pb;
|
||||
pd = pd + incd;)";
|
||||
if(ty_ == WGRAD){
|
||||
res += R"(
|
||||
pdb = pdb + TK;
|
||||
db = *pdb;)";
|
||||
}
|
||||
res += R"(
|
||||
pincd = pincd + incd;
|
||||
d = *pd;
|
||||
incd = *pincd;
|
||||
pm = pm + incm;
|
||||
pincm = pincm + incm;
|
||||
incm = *pincm;
|
||||
checka0 = *pm;
|
||||
checka = (checka0[:, newaxis] & checka1[newaxis, :]) > 0;
|
||||
checka = checka && (k > TK);
|
||||
a = checka ? *pa : 0;
|
||||
}
|
||||
int32 rxc[TM] = get_global_range[TM](0);
|
||||
int32 rc1[TN] = get_global_range[TN](1);
|
||||
int32 rcn[TM] = rxc / (CH*CW);
|
||||
int32 rcpq[TM] = rxc % (CH*CW);
|
||||
int32 rc0[TM] = rcn * ldc_n + rcpq * ldc_q;
|
||||
fp32* pc[TM, TN] = c + rc1[newaxis, :]*ldc_k + rc0[:, newaxis];
|
||||
int1 checkc0[TM] = rxc < M;
|
||||
int1 checkc1[TN] = rc1 < N;
|
||||
int1 checkc[TM, TN] = checkc0[:, newaxis] && checkc1[newaxis, :];
|
||||
@checkc *pc = C;
|
||||
})";
|
||||
return res;
|
||||
}
|
||||
|
||||
template<class IN_DTYPE, class OUT_DTYPE>
|
||||
void conv::cpu_xprop(OUT_DTYPE* C, IN_DTYPE* A, IN_DTYPE* B)
|
||||
{
|
||||
IN_DTYPE acc;
|
||||
for(int32_t n = 0; n < shapes_c_[0]; ++n)
|
||||
for(int32_t cf = 0; cf < shapes_c_[1] ; ++cf)
|
||||
for(int32_t cd = 0 ; cd < shapes_c_[2]; ++cd)
|
||||
for(int32_t ch = 0 ; ch < shapes_c_[3]; ++ch)
|
||||
for(int32_t cw = 0; cw < shapes_c_[4]; ++cw)
|
||||
{
|
||||
acc = 0;
|
||||
int32_t d = cd*stride_d_ - pad_d_;
|
||||
int32_t h = ch*stride_h_ - pad_h_;
|
||||
int32_t w = cw*stride_w_ - pad_w_;
|
||||
for(int32_t ac = 0; ac < shapes_a_[1]; ++ac)
|
||||
for(int32_t bd = 0; bd < shapes_b_[1]; ++bd)
|
||||
for(int32_t bh = 0; bh < shapes_b_[2]; ++bh)
|
||||
for(int32_t bw = 0; bw < shapes_b_[3]; ++bw){
|
||||
int32_t ad = d + bd;
|
||||
int32_t ah = h + bh;
|
||||
int32_t aw = w + bw;
|
||||
bool in_bounds = (ad >= 0 && ad < shapes_a_[2] &&
|
||||
ah >= 0 && ah < shapes_a_[3] &&
|
||||
aw >= 0 && aw < shapes_a_[4]);
|
||||
IN_DTYPE a = 0;
|
||||
if(in_bounds)
|
||||
a = A[n*ld_a_[0] + ac*ld_a_[1] + ad*ld_a_[2] + ah*ld_a_[3] + aw*ld_a_[4]];
|
||||
IN_DTYPE b;
|
||||
if(ty_==FPROP)
|
||||
b = B[ac*ld_b_[0] + bd*ld_b_[1] + bh*ld_b_[2] + bw*ld_b_[3] + cf*ld_b_[4]];
|
||||
else{
|
||||
int32_t bdd = shapes_b_[1] - 1 - bd;
|
||||
int32_t bhh = shapes_b_[2] - 1 - bh;
|
||||
int32_t bww = shapes_b_[3] - 1 - bw;
|
||||
b = B[cf*ld_b_[0] + bdd*ld_b_[1] + bhh*ld_b_[2] + bww*ld_b_[3] + ac*ld_b_[4]];
|
||||
}
|
||||
acc = std::fma(a, b, acc);
|
||||
}
|
||||
C[n*ld_c_[0] + cf*ld_c_[1] + cd*ld_c_[2] + ch*ld_c_[3] + cw*ld_c_[4]] = acc;
|
||||
}
|
||||
}
|
||||
|
||||
template<class IN_DTYPE, class OUT_DTYPE>
|
||||
void conv::cpu_wgrad(OUT_DTYPE* C, IN_DTYPE* A, IN_DTYPE* B)
|
||||
{
|
||||
IN_DTYPE acc;
|
||||
for(int32_t c = 0 ; c < shapes_c_[0]; ++c)
|
||||
for(int32_t cd = 0; cd < shapes_c_[1]; ++cd)
|
||||
for(int32_t ch = 0; ch < shapes_c_[2]; ++ch)
|
||||
for(int32_t cw = 0; cw < shapes_c_[3]; ++cw)
|
||||
for(int32_t k = 0 ; k < shapes_c_[4]; ++k)
|
||||
{
|
||||
acc = 0;
|
||||
int32_t d = cd*stride_d_ - pad_d_;
|
||||
int32_t h = ch*stride_h_ - pad_h_;
|
||||
int32_t w = cw*stride_w_ - pad_w_;
|
||||
for(int32_t n = 0; n < shapes_b_[0]; ++n)
|
||||
for(int32_t bd = 0; bd < shapes_b_[2]; ++bd)
|
||||
for(int32_t bh = 0; bh < shapes_b_[3]; ++bh)
|
||||
for(int32_t bw = 0; bw < shapes_b_[4]; ++bw){
|
||||
int32_t ad = d + bd;
|
||||
int32_t ah = h + bh;
|
||||
int32_t aw = w + bw;
|
||||
bool in_bounds = (ad >= 0 && ad < shapes_a_[2] &&
|
||||
ah >= 0 && ah < shapes_a_[3] &&
|
||||
aw >= 0 && aw < shapes_a_[4]);
|
||||
IN_DTYPE a = 0;
|
||||
if(in_bounds)
|
||||
a = A[n*ld_a_[0] + c*ld_a_[1] + ad*ld_a_[2] + ah*ld_a_[3] + aw*ld_a_[4]];
|
||||
IN_DTYPE b = B[n*ld_b_[0] + k*ld_b_[1] + bd*ld_b_[2] + bh*ld_b_[3] + bw*ld_b_[4]];
|
||||
acc = std::fma(a, b, acc);
|
||||
}
|
||||
C[c*ld_c_[0] + cd*ld_c_[1] + ch*ld_c_[2] + cw*ld_c_[3] + k*ld_c_[4]] = acc;
|
||||
}
|
||||
}
|
||||
|
||||
template<class IN_DTYPE, class OUT_DTYPE>
|
||||
void conv::cpu_ref(OUT_DTYPE* C, IN_DTYPE* A, IN_DTYPE* B)
|
||||
{
|
||||
if(ty_ == FPROP || ty_ == BPROP)
|
||||
cpu_xprop(C, A, B);
|
||||
else
|
||||
cpu_wgrad(C, A, B);
|
||||
}
|
||||
|
||||
template void conv::cpu_ref<float,float>(float*, float*, float*);
|
||||
template void conv::cpu_xprop<float,float>(float*, float*, float*);
|
||||
template void conv::cpu_wgrad<float,float>(float*, float*, float*);
|
||||
|
||||
}
|
||||
}
|
Reference in New Issue
Block a user