[RUNTIME] Added auto-alignment mechanism (#71)

This PR adds an automatic memory alignment mechanism in the Triton runtime. Specifically, the JIT compiler detects the alignment (in bytes) of each pointer argument as well as the largest power of two divisor (between 1 and 16) of each integer argument. Proper .aligned and .multipleof attributes are then added to the Triton-IR on-the-fly for all auto-tunable kernels. There is a cache that remembers all the kernels compiled for each possible configuration.

This PR also includes substantial cleaning of the Python API. This adds 2-3us overhead, mostly due to accessing integer #defines from the auto-tuned compilation options. The previous solution was slightly faster but hacky and potentially unsafe, so this is preferred for now.
This commit is contained in:
Philippe Tillet
2021-03-04 01:51:11 -05:00
committed by Philippe Tillet
parent ff62f7fffc
commit 62835a0979
19 changed files with 668 additions and 707 deletions

View File

@@ -0,0 +1,76 @@
import torch
import triton
# source-code for Triton compute kernel
# here we just copy-paste the above code without the extensive comments.
# you may prefer to store it in a .c file and load it from there instead.
_src = """
__global__ void add(float* z, float* x, float* y, int N){
// program id
int pid = get_program_id(0);
// create arrays of pointers
int offset[BLOCK] = pid * BLOCK + 0 ... BLOCK;
float* pz[BLOCK] = z + offset;
float* px[BLOCK] = x + offset;
float* py[BLOCK] = y + offset;
// bounds checking
bool check[BLOCK] = offset < N;
// write-back
*?(check)pz = *?(check)px + *?(check)py;
}
"""
# This function returns a callable `triton.kernel` object
# created from the above source code.
# For portability, we maintain a cache of kernels for different `torch.device`
# We compile the kernel with -DBLOCK=1024
_kernels = dict()
def make_add_kernel(device):
if device not in _kernels:
defines = {'BLOCK': 1024}
autotune_vals = [({'BLOCK': '1024'}, 4), ({'BLOCK': '2048'}, 4)]
autotune_key = ["N"]
_kernels[device] = triton.kernel(_src, device=device, defines=defines, autotune_vals=autotune_vals,
autotune_key=autotune_key)
return _kernels[device]
# This is a standard torch custom autograd Function
# The only difference is that we can now use the above kernel
# in the `forward` and `backward` functions.`
class _add(torch.autograd.Function):
@staticmethod
def forward(ctx, x, y):
# constraints of the op
assert x.dtype == torch.float32
# *allocate output*
z = torch.empty_like(x)
# *create launch grid*:
# this is a function which takes compilation parameters `opt`
# as input and returns a tuple of int (i.e., launch grid) for the kernel.
# triton.cdiv is a shortcut for ceil division:
# triton.cdiv(a, b) = (a + b - 1) // b
grid = lambda opt: (triton.cdiv(z.shape[0], opt.BLOCK), )
# *launch kernel*:
# pointer to the data of torch tensors can be retrieved with
# the `.data_ptr()` method
kernel = make_add_kernel(z.device)
kernel(z.data_ptr(), x.data_ptr(), y.data_ptr(), z.shape[0], grid=grid)
return z
# Just like we standard PyTorch ops
# We use the `.apply` method to create a
# callable object for our function
add = _add.apply
torch.manual_seed(0)
x = torch.rand(32, device='cuda')
y = torch.rand(32, device='cuda')
za = x + y
zb = add(x, y)
print(za)
print(zb)
print(f'The maximum difference between torch and triton is ' f'{torch.max(torch.abs(za - zb))}')
th_ms = triton.testing.do_bench(lambda: x + y)
tr_ms = triton.testing.do_bench(lambda: add(x, y))
print(th_ms, tr_ms)