[GH-PAGES] Updated website

This commit is contained in:
Philippe Tillet
2022-09-02 00:49:33 +00:00
parent 41ab369e01
commit 6f3b262d6c
159 changed files with 252 additions and 252 deletions

View File

@@ -1,4 +1,4 @@
# Sphinx build info version 1
# This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done.
config: b326a5f82069fe7d9377c0723652b097
config: fb481ce8643a6a807c7728f4e3e3acb6
tags: 645f666f9bcd5a90fca523b33c5a78b7

Binary file not shown.

Binary file not shown.

Binary file not shown.

Before

Width:  |  Height:  |  Size: 24 KiB

After

Width:  |  Height:  |  Size: 24 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 16 KiB

After

Width:  |  Height:  |  Size: 15 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 36 KiB

After

Width:  |  Height:  |  Size: 37 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 23 KiB

After

Width:  |  Height:  |  Size: 23 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 60 KiB

After

Width:  |  Height:  |  Size: 59 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 34 KiB

After

Width:  |  Height:  |  Size: 34 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 36 KiB

After

Width:  |  Height:  |  Size: 35 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 22 KiB

After

Width:  |  Height:  |  Size: 22 KiB

View File

@@ -235,17 +235,17 @@ We can now run the decorated function above. Pass `print_data=True` to see the p
0 4096.0 9.600000 9.600000
1 8192.0 19.200000 19.200000
2 16384.0 38.400001 38.400001
3 32768.0 76.800002 76.800002
3 32768.0 63.999998 63.999998
4 65536.0 127.999995 127.999995
5 131072.0 219.428568 219.428568
6 262144.0 384.000001 341.333321
6 262144.0 384.000001 384.000001
7 524288.0 472.615390 472.615390
8 1048576.0 614.400016 614.400016
9 2097152.0 722.823517 722.823517
10 4194304.0 780.190482 780.190482
11 8388608.0 812.429770 812.429770
12 16777216.0 833.084721 833.084721
13 33554432.0 842.004273 842.004273
13 33554432.0 842.004273 843.811163
14 67108864.0 847.448255 848.362445
15 134217728.0 849.737435 850.656574
@@ -255,7 +255,7 @@ We can now run the decorated function above. Pass `print_data=True` to see the p
.. rst-class:: sphx-glr-timing
**Total running time of the script:** ( 1 minutes 49.009 seconds)
**Total running time of the script:** ( 1 minutes 45.420 seconds)
.. _sphx_glr_download_getting-started_tutorials_01-vector-add.py:

View File

@@ -278,17 +278,17 @@ We will then compare its performance against (1) :code:`torch.softmax` and (2) t
softmax-performance:
N Triton Torch (native) Torch (jit)
0 256.0 546.133347 546.133347 188.321838
0 256.0 546.133347 512.000001 188.321838
1 384.0 614.400016 585.142862 153.600004
2 512.0 655.360017 606.814814 154.566038
3 640.0 706.206879 640.000002 158.759699
2 512.0 655.360017 585.142849 154.566038
3 640.0 706.206879 640.000002 160.000000
4 768.0 722.823517 664.216187 162.754967
.. ... ... ... ...
93 12160.0 812.359066 406.179533 198.733401
94 12288.0 812.429770 415.661740 198.995960
95 12416.0 812.498981 412.149375 198.655991
96 12544.0 810.925276 412.546756 198.913776
97 12672.0 811.007961 412.097543 198.971549
93 12160.0 812.359066 406.179533 198.530610
94 12288.0 812.429770 415.661740 198.895304
95 12416.0 812.498981 412.149375 198.457532
96 12544.0 810.925276 412.971190 198.716830
97 12672.0 811.007961 412.097543 198.776477
[98 rows x 4 columns]
@@ -306,7 +306,7 @@ In the above plot, we can see that:
.. rst-class:: sphx-glr-timing
**Total running time of the script:** ( 3 minutes 30.846 seconds)
**Total running time of the script:** ( 3 minutes 31.344 seconds)
.. _sphx_glr_download_getting-started_tutorials_02-fused-softmax.py:

View File

@@ -459,9 +459,9 @@ We can now compare the performance of our kernel against that of cuBLAS. Here we
matmul-performance:
M cuBLAS ... Triton Triton (+ LeakyReLU)
0 256.0 2.978909 ... 3.276800 3.276800
0 256.0 2.978909 ... 2.978909 2.978909
1 384.0 7.372800 ... 8.507077 8.507077
2 512.0 14.563555 ... 16.384000 16.384000
2 512.0 14.563555 ... 16.384000 15.420235
3 640.0 22.260869 ... 24.380953 24.380953
4 768.0 32.768000 ... 35.389441 34.028308
5 896.0 39.025776 ... 40.140799 39.025776
@@ -472,24 +472,24 @@ We can now compare the performance of our kernel against that of cuBLAS. Here we
10 1536.0 80.430545 ... 80.430545 79.526831
11 1664.0 62.929456 ... 63.372618 62.492442
12 1792.0 72.512412 ... 73.460287 59.467852
13 1920.0 69.120002 ... 71.626943 71.257735
13 1920.0 69.120002 ... 71.257735 71.257735
14 2048.0 73.908442 ... 78.398206 77.314362
15 2176.0 83.500614 ... 87.876193 85.998493
16 2304.0 68.446623 ... 78.064941 77.307030
17 2432.0 71.305746 ... 85.653855 83.119713
18 2560.0 77.833728 ... 82.539044 81.108913
19 2688.0 83.369354 ... 90.532356 89.044730
20 2816.0 81.674548 ... 83.712490 83.074685
21 2944.0 82.373605 ... 83.060049 81.967162
22 3072.0 82.062468 ... 89.451983 87.787755
23 3200.0 79.701121 ... 88.765601 95.880147
24 3328.0 83.323259 ... 83.808259 83.034941
25 3456.0 82.688790 ... 84.597660 87.442050
26 3584.0 86.291162 ... 97.416461 98.483450
27 3712.0 82.152425 ... 83.526206 87.629253
28 3840.0 81.019778 ... 88.544438 90.352941
29 3968.0 87.976885 ... 92.652949 85.242012
30 4096.0 93.271527 ... 87.211002 84.573239
15 2176.0 83.155572 ... 87.876193 86.367588
16 2304.0 68.446623 ... 77.810656 77.307030
17 2432.0 71.305746 ... 86.711310 84.621881
18 2560.0 77.833728 ... 82.539044 81.715711
19 2688.0 83.737433 ... 90.102270 89.464755
20 2816.0 79.443003 ... 84.360174 83.712490
21 2944.0 81.832567 ... 83.337844 82.784108
22 3072.0 81.707223 ... 90.164177 87.924073
23 3200.0 83.879425 ... 97.116842 93.841640
24 3328.0 83.082856 ... 85.196803 84.695641
25 3456.0 78.732000 ... 91.824110 91.304157
26 3584.0 86.540320 ... 91.563533 92.600816
27 3712.0 85.748791 ... 84.766519 85.748791
28 3840.0 84.679936 ... 93.484358 84.809814
29 3968.0 92.512459 ... 85.003554 89.133631
30 4096.0 86.258181 ... 92.884244 86.369197
[31 rows x 5 columns]
@@ -499,7 +499,7 @@ We can now compare the performance of our kernel against that of cuBLAS. Here we
.. rst-class:: sphx-glr-timing
**Total running time of the script:** ( 6 minutes 35.059 seconds)
**Total running time of the script:** ( 6 minutes 40.538 seconds)
.. _sphx_glr_download_getting-started_tutorials_03-matrix-multiplication.py:

View File

@@ -41,28 +41,28 @@ Layer Normalization
0 1024.0 585.142849 277.694907 468.114273
1 1536.0 630.153868 323.368435 511.999982
2 2048.0 682.666643 334.367358 520.126988
3 2560.0 694.237267 365.714281 512.000013
3 2560.0 694.237267 365.714281 518.481028
4 3072.0 712.347810 378.092307 496.484863
5 3584.0 725.873439 384.859062 448.000001
5 3584.0 725.873439 384.859062 455.111115
6 4096.0 728.177767 381.023256 455.111095
7 4608.0 670.254540 394.267384 426.173427
8 5120.0 688.403381 397.669909 420.102563
9 5632.0 704.000002 395.228063 415.262685
7 4608.0 670.254540 394.267384 421.302872
8 5120.0 688.403381 397.669909 424.455959
9 5632.0 704.000002 395.228063 413.357796
10 6144.0 697.191505 402.885254 409.600010
11 6656.0 705.271522 400.360920 400.360920
12 7168.0 690.891575 396.844306 386.154893
13 7680.0 678.895043 393.846167 386.415087
14 8192.0 636.271854 393.609605 371.308771
13 7680.0 678.895043 393.846167 387.634072
14 8192.0 633.198054 393.609605 371.308771
15 8704.0 627.315309 389.005597 380.502740
16 9216.0 606.814809 407.337026 383.999986
17 9728.0 587.350922 409.599987 383.369452
18 10240.0 564.965524 408.578556 382.803739
19 10752.0 547.872604 411.559798 381.445676
20 11264.0 533.207081 406.826188 373.134567
21 11776.0 520.486200 409.599991 378.345375
22 12288.0 514.680630 414.784810 383.251457
21 11776.0 520.486200 409.599991 377.587162
22 12288.0 513.336807 413.911572 383.251457
23 12800.0 504.433489 410.420828 376.470582
24 13312.0 494.180982 405.699062 376.976995
24 13312.0 494.180982 405.699062 376.310952
25 13824.0 482.934503 411.888257 379.389355
26 14336.0 471.967074 406.695045 374.185964
27 14848.0 461.297068 408.192434 375.304904
@@ -393,7 +393,7 @@ Layer Normalization
.. rst-class:: sphx-glr-timing
**Total running time of the script:** ( 5 minutes 36.661 seconds)
**Total running time of the script:** ( 5 minutes 41.161 seconds)
.. _sphx_glr_download_getting-started_tutorials_05-layer-norm.py:

View File

@@ -5,16 +5,16 @@
Computation times
=================
**17:31.669** total execution time for **getting-started_tutorials** files:
**17:38.558** total execution time for **getting-started_tutorials** files:
+---------------------------------------------------------------------------------------------------------+-----------+--------+
| :ref:`sphx_glr_getting-started_tutorials_03-matrix-multiplication.py` (``03-matrix-multiplication.py``) | 06:35.059 | 0.0 MB |
| :ref:`sphx_glr_getting-started_tutorials_03-matrix-multiplication.py` (``03-matrix-multiplication.py``) | 06:40.538 | 0.0 MB |
+---------------------------------------------------------------------------------------------------------+-----------+--------+
| :ref:`sphx_glr_getting-started_tutorials_05-layer-norm.py` (``05-layer-norm.py``) | 05:36.661 | 0.0 MB |
| :ref:`sphx_glr_getting-started_tutorials_05-layer-norm.py` (``05-layer-norm.py``) | 05:41.161 | 0.0 MB |
+---------------------------------------------------------------------------------------------------------+-----------+--------+
| :ref:`sphx_glr_getting-started_tutorials_02-fused-softmax.py` (``02-fused-softmax.py``) | 03:30.846 | 0.0 MB |
| :ref:`sphx_glr_getting-started_tutorials_02-fused-softmax.py` (``02-fused-softmax.py``) | 03:31.344 | 0.0 MB |
+---------------------------------------------------------------------------------------------------------+-----------+--------+
| :ref:`sphx_glr_getting-started_tutorials_01-vector-add.py` (``01-vector-add.py``) | 01:49.009 | 0.0 MB |
| :ref:`sphx_glr_getting-started_tutorials_01-vector-add.py` (``01-vector-add.py``) | 01:45.420 | 0.0 MB |
+---------------------------------------------------------------------------------------------------------+-----------+--------+
| :ref:`sphx_glr_getting-started_tutorials_06-fused-attention.py` (``06-fused-attention.py``) | 00:00.072 | 0.0 MB |
+---------------------------------------------------------------------------------------------------------+-----------+--------+

View File

@@ -327,22 +327,22 @@ for different problem sizes.</p>
0 4096.0 9.600000 9.600000
1 8192.0 19.200000 19.200000
2 16384.0 38.400001 38.400001
3 32768.0 76.800002 76.800002
3 32768.0 63.999998 63.999998
4 65536.0 127.999995 127.999995
5 131072.0 219.428568 219.428568
6 262144.0 384.000001 341.333321
6 262144.0 384.000001 384.000001
7 524288.0 472.615390 472.615390
8 1048576.0 614.400016 614.400016
9 2097152.0 722.823517 722.823517
10 4194304.0 780.190482 780.190482
11 8388608.0 812.429770 812.429770
12 16777216.0 833.084721 833.084721
13 33554432.0 842.004273 842.004273
13 33554432.0 842.004273 843.811163
14 67108864.0 847.448255 848.362445
15 134217728.0 849.737435 850.656574
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 1 minutes 49.009 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 1 minutes 45.420 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-01-vector-add-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/62d97d49a32414049819dd8bb8378080/01-vector-add.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">01-vector-add.py</span></code></a></p>

View File

@@ -371,17 +371,17 @@ We will then compare its performance against (1) <code class="code docutils lite
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>softmax-performance:
N Triton Torch (native) Torch (jit)
0 256.0 546.133347 546.133347 188.321838
0 256.0 546.133347 512.000001 188.321838
1 384.0 614.400016 585.142862 153.600004
2 512.0 655.360017 606.814814 154.566038
3 640.0 706.206879 640.000002 158.759699
2 512.0 655.360017 585.142849 154.566038
3 640.0 706.206879 640.000002 160.000000
4 768.0 722.823517 664.216187 162.754967
.. ... ... ... ...
93 12160.0 812.359066 406.179533 198.733401
94 12288.0 812.429770 415.661740 198.995960
95 12416.0 812.498981 412.149375 198.655991
96 12544.0 810.925276 412.546756 198.913776
97 12672.0 811.007961 412.097543 198.971549
93 12160.0 812.359066 406.179533 198.530610
94 12288.0 812.429770 415.661740 198.895304
95 12416.0 812.498981 412.149375 198.457532
96 12544.0 810.925276 412.971190 198.716830
97 12672.0 811.007961 412.097543 198.776477
[98 rows x 4 columns]
</pre></div>
@@ -394,7 +394,7 @@ We will then compare its performance against (1) <code class="code docutils lite
Note however that the PyTorch <cite>softmax</cite> operation is more general and will works on tensors of any shape.</p></li>
</ul>
</div></blockquote>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 3 minutes 30.846 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 3 minutes 31.344 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-02-fused-softmax-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/d91442ac2982c4e0cc3ab0f43534afbc/02-fused-softmax.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">02-fused-softmax.py</span></code></a></p>

View File

@@ -567,9 +567,9 @@ torch_output=tensor([[ 1.1045, -36.9688, 31.4688, ..., -11.3906, 24.4531, -3
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>matmul-performance:
M cuBLAS ... Triton Triton (+ LeakyReLU)
0 256.0 2.978909 ... 3.276800 3.276800
0 256.0 2.978909 ... 2.978909 2.978909
1 384.0 7.372800 ... 8.507077 8.507077
2 512.0 14.563555 ... 16.384000 16.384000
2 512.0 14.563555 ... 16.384000 15.420235
3 640.0 22.260869 ... 24.380953 24.380953
4 768.0 32.768000 ... 35.389441 34.028308
5 896.0 39.025776 ... 40.140799 39.025776
@@ -580,29 +580,29 @@ torch_output=tensor([[ 1.1045, -36.9688, 31.4688, ..., -11.3906, 24.4531, -3
10 1536.0 80.430545 ... 80.430545 79.526831
11 1664.0 62.929456 ... 63.372618 62.492442
12 1792.0 72.512412 ... 73.460287 59.467852
13 1920.0 69.120002 ... 71.626943 71.257735
13 1920.0 69.120002 ... 71.257735 71.257735
14 2048.0 73.908442 ... 78.398206 77.314362
15 2176.0 83.500614 ... 87.876193 85.998493
16 2304.0 68.446623 ... 78.064941 77.307030
17 2432.0 71.305746 ... 85.653855 83.119713
18 2560.0 77.833728 ... 82.539044 81.108913
19 2688.0 83.369354 ... 90.532356 89.044730
20 2816.0 81.674548 ... 83.712490 83.074685
21 2944.0 82.373605 ... 83.060049 81.967162
22 3072.0 82.062468 ... 89.451983 87.787755
23 3200.0 79.701121 ... 88.765601 95.880147
24 3328.0 83.323259 ... 83.808259 83.034941
25 3456.0 82.688790 ... 84.597660 87.442050
26 3584.0 86.291162 ... 97.416461 98.483450
27 3712.0 82.152425 ... 83.526206 87.629253
28 3840.0 81.019778 ... 88.544438 90.352941
29 3968.0 87.976885 ... 92.652949 85.242012
30 4096.0 93.271527 ... 87.211002 84.573239
15 2176.0 83.155572 ... 87.876193 86.367588
16 2304.0 68.446623 ... 77.810656 77.307030
17 2432.0 71.305746 ... 86.711310 84.621881
18 2560.0 77.833728 ... 82.539044 81.715711
19 2688.0 83.737433 ... 90.102270 89.464755
20 2816.0 79.443003 ... 84.360174 83.712490
21 2944.0 81.832567 ... 83.337844 82.784108
22 3072.0 81.707223 ... 90.164177 87.924073
23 3200.0 83.879425 ... 97.116842 93.841640
24 3328.0 83.082856 ... 85.196803 84.695641
25 3456.0 78.732000 ... 91.824110 91.304157
26 3584.0 86.540320 ... 91.563533 92.600816
27 3712.0 85.748791 ... 84.766519 85.748791
28 3840.0 84.679936 ... 93.484358 84.809814
29 3968.0 92.512459 ... 85.003554 89.133631
30 4096.0 86.258181 ... 92.884244 86.369197
[31 rows x 5 columns]
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 6 minutes 35.059 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 6 minutes 40.538 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-03-matrix-multiplication-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/d5fee5b55a64e47f1b5724ec39adf171/03-matrix-multiplication.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">03-matrix-multiplication.py</span></code></a></p>

View File

@@ -199,28 +199,28 @@ to download the full example code</p>
0 1024.0 585.142849 277.694907 468.114273
1 1536.0 630.153868 323.368435 511.999982
2 2048.0 682.666643 334.367358 520.126988
3 2560.0 694.237267 365.714281 512.000013
3 2560.0 694.237267 365.714281 518.481028
4 3072.0 712.347810 378.092307 496.484863
5 3584.0 725.873439 384.859062 448.000001
5 3584.0 725.873439 384.859062 455.111115
6 4096.0 728.177767 381.023256 455.111095
7 4608.0 670.254540 394.267384 426.173427
8 5120.0 688.403381 397.669909 420.102563
9 5632.0 704.000002 395.228063 415.262685
7 4608.0 670.254540 394.267384 421.302872
8 5120.0 688.403381 397.669909 424.455959
9 5632.0 704.000002 395.228063 413.357796
10 6144.0 697.191505 402.885254 409.600010
11 6656.0 705.271522 400.360920 400.360920
12 7168.0 690.891575 396.844306 386.154893
13 7680.0 678.895043 393.846167 386.415087
14 8192.0 636.271854 393.609605 371.308771
13 7680.0 678.895043 393.846167 387.634072
14 8192.0 633.198054 393.609605 371.308771
15 8704.0 627.315309 389.005597 380.502740
16 9216.0 606.814809 407.337026 383.999986
17 9728.0 587.350922 409.599987 383.369452
18 10240.0 564.965524 408.578556 382.803739
19 10752.0 547.872604 411.559798 381.445676
20 11264.0 533.207081 406.826188 373.134567
21 11776.0 520.486200 409.599991 378.345375
22 12288.0 514.680630 414.784810 383.251457
21 11776.0 520.486200 409.599991 377.587162
22 12288.0 513.336807 413.911572 383.251457
23 12800.0 504.433489 410.420828 376.470582
24 13312.0 494.180982 405.699062 376.976995
24 13312.0 494.180982 405.699062 376.310952
25 13824.0 482.934503 411.888257 379.389355
26 14336.0 471.967074 406.695045 374.185964
27 14848.0 461.297068 408.192434 375.304904
@@ -543,7 +543,7 @@ to download the full example code</p>
<span class="n">bench_layer_norm</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">save_path</span><span class="o">=</span><span class="s1">&#39;.&#39;</span><span class="p">,</span> <span class="n">print_data</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 5 minutes 36.661 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 5 minutes 41.161 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-05-layer-norm-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/935c0dd0fbeb4b2e69588471cbb2d4b2/05-layer-norm.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">05-layer-norm.py</span></code></a></p>

View File

@@ -174,7 +174,7 @@
<div class="section" id="computation-times">
<span id="sphx-glr-getting-started-tutorials-sg-execution-times"></span><h1>Computation times<a class="headerlink" href="#computation-times" title="Permalink to this headline"></a></h1>
<p><strong>17:31.669</strong> total execution time for <strong>getting-started_tutorials</strong> files:</p>
<p><strong>17:38.558</strong> total execution time for <strong>getting-started_tutorials</strong> files:</p>
<table class="docutils align-default">
<colgroup>
<col style="width: 85%" />
@@ -183,19 +183,19 @@
</colgroup>
<tbody>
<tr class="row-odd"><td><p><a class="reference internal" href="03-matrix-multiplication.html#sphx-glr-getting-started-tutorials-03-matrix-multiplication-py"><span class="std std-ref">Matrix Multiplication</span></a> (<code class="docutils literal notranslate"><span class="pre">03-matrix-multiplication.py</span></code>)</p></td>
<td><p>06:35.059</p></td>
<td><p>06:40.538</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="05-layer-norm.html#sphx-glr-getting-started-tutorials-05-layer-norm-py"><span class="std std-ref">Layer Normalization</span></a> (<code class="docutils literal notranslate"><span class="pre">05-layer-norm.py</span></code>)</p></td>
<td><p>05:36.661</p></td>
<td><p>05:41.161</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="02-fused-softmax.html#sphx-glr-getting-started-tutorials-02-fused-softmax-py"><span class="std std-ref">Fused Softmax</span></a> (<code class="docutils literal notranslate"><span class="pre">02-fused-softmax.py</span></code>)</p></td>
<td><p>03:30.846</p></td>
<td><p>03:31.344</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="01-vector-add.html#sphx-glr-getting-started-tutorials-01-vector-add-py"><span class="std std-ref">Vector Addition</span></a> (<code class="docutils literal notranslate"><span class="pre">01-vector-add.py</span></code>)</p></td>
<td><p>01:49.009</p></td>
<td><p>01:45.420</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="06-fused-attention.html#sphx-glr-getting-started-tutorials-06-fused-attention-py"><span class="std std-ref">Fused Attention</span></a> (<code class="docutils literal notranslate"><span class="pre">06-fused-attention.py</span></code>)</p></td>

File diff suppressed because one or more lines are too long

View File

@@ -1,4 +1,4 @@
# Sphinx build info version 1
# This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done.
config: 47cbbecdad74e18531a84afd2fe817b9
config: 91b41e55be7bba1c50ca38e8ca077da5
tags: 645f666f9bcd5a90fca523b33c5a78b7

Binary file not shown.

Binary file not shown.

Some files were not shown because too many files have changed in this diff Show More