[examples/python/tensorflow] better skeleton for blocksparse
This commit is contained in:
@@ -15,6 +15,9 @@
|
||||
#include "tensorflow/core/framework/common_shape_fns.h"
|
||||
|
||||
using namespace tensorflow;
|
||||
using shape_inference::DimensionHandle;
|
||||
using shape_inference::InferenceContext;
|
||||
using shape_inference::ShapeHandle;
|
||||
using GPUDevice = Eigen::GpuDevice;
|
||||
|
||||
|
||||
@@ -25,139 +28,133 @@ const tunable int32 TN = {16, 32, 64, 128};
|
||||
const tunable int32 TK = {8};
|
||||
const tunable int32 GZ = {1};
|
||||
|
||||
void matmul(restrict read_only fp32 *A, restrict read_only fp32 *B, fp32 *C,
|
||||
void bsmm (restrict read_only fp32 *A, restrict read_only fp32 *B, fp32 *C,
|
||||
int32 M, int32 N, int32 K,
|
||||
int32 lda, int32 ldb, int32 ldc,
|
||||
int32 *locks, int32 grid0, int32 grid1) {
|
||||
int32 rxa[TM] = get_global_range[TM](0);
|
||||
int32 ryb[TN] = get_global_range[TN](1);
|
||||
int32 rz = get_global_range[1](2);
|
||||
int32 rka[TK] = 0 ... TK;
|
||||
int32 rkb[TK] = 0 ... TK;
|
||||
fp32 c[TM, TN] = 0;
|
||||
int32 div = K / GZ;
|
||||
int32 rem = K % GZ;
|
||||
K = select(rz < rem, div - 1, div);
|
||||
int32 offk = select(rz < rem, rz*(div + 1), rz*div + rem);
|
||||
fp32* pa[TM, TK] = A + (offk + rka[newaxis, :])*lda + rxa[:, newaxis];
|
||||
fp32* pb[TN, TK] = B + (offk + rkb[newaxis, :])*ldb + ryb[:, newaxis];
|
||||
fp32 a[TM, TK] = *pa;
|
||||
fp32 b[TN, TK] = *pb;
|
||||
int32 last_a = ((M*K - 1) - (TM*TK + 1)) / lda;
|
||||
int32 last_b = ((K*N - 1) - (TN*TK + 1)) / ldb;
|
||||
last_a = last_a / TK * TK;
|
||||
last_b = last_b / TK * TK;
|
||||
int32 bound = K - max(last_a, last_b);
|
||||
for(int32 k = K; k > bound; k = k - TK){
|
||||
c = dot(a, trans(b), c);
|
||||
pa = pa + TK*lda;
|
||||
pb = pb + TK*ldb;
|
||||
a = *pa;
|
||||
b = *pb;
|
||||
}
|
||||
int32 rxc[TM] = get_global_range[TM](0);
|
||||
int32 ryc[TN] = get_global_range[TN](1);
|
||||
for(int32 k = bound; k > 0; k = k - 1){
|
||||
int1 checka[TM, 1] = rxc[:, newaxis] < M;
|
||||
int1 checkb[TN, 1] = ryc[:, newaxis] < N;
|
||||
fp32* pa[TM, 1] = A + (offk + K - k)*lda + rxc[:, newaxis];
|
||||
fp32* pb[TN, 1] = B + (offk + K - k)*ldb + ryc[:, newaxis];
|
||||
fp32 a[TM, 1] = checka ? *pa : 0;
|
||||
fp32 b[TN, 1] = checkb ? *pb : 0;
|
||||
c = dot(a, trans(b), c);
|
||||
}
|
||||
int32 ridx = get_range_id(0);
|
||||
int32 ridy = get_range_id(1);
|
||||
fp32* pc[TM, TN] = C + ryc[newaxis, :]*ldc + rxc[:, newaxis];
|
||||
int32 *plock = locks + ridx + ridy*grid0;
|
||||
while(__atomic_cas(plock, 0, 1));
|
||||
int32 *pcount = plock + grid0*grid1;
|
||||
int32 count = *pcount;
|
||||
int32 countp1 = select(count == GZ - 1, 0, count + 1);
|
||||
int1 checkc0[TM] = rxc < M;
|
||||
int1 checkc1[TN] = ryc < N;
|
||||
int1 checkc[TM, TN] = checkc0[:, newaxis] && checkc1[newaxis, :];
|
||||
if(count == 0) {
|
||||
@checkc *pc = c;
|
||||
*pcount = countp1;
|
||||
}
|
||||
else {
|
||||
@checkc *pc = c + *pc;
|
||||
*pcount = countp1;
|
||||
}
|
||||
__atomic_cas(plock, 1, 0);
|
||||
|
||||
}
|
||||
)";
|
||||
|
||||
REGISTER_OP("BlockSparseMatMul")
|
||||
.Input("a: T")
|
||||
.Input("b: T")
|
||||
.Input("locks: int32")
|
||||
.Output("c: T")
|
||||
.Attr("T: {float}")
|
||||
;
|
||||
Status XpropShape(InferenceContext* ctx)
|
||||
{
|
||||
int K; TF_RETURN_IF_ERROR(ctx->GetAttr( "K", &K));
|
||||
int axis; TF_RETURN_IF_ERROR(ctx->GetAttr("axis", &axis));
|
||||
|
||||
class BlockSparseGemmOp : public OpKernel {
|
||||
// C ==> K
|
||||
ShapeHandle x = ctx->input(0);
|
||||
int rank = ctx->Rank(x);
|
||||
//printf("XpropShape: %d\n", rank);
|
||||
if (rank > 0)
|
||||
{
|
||||
std::vector<DimensionHandle> shape;
|
||||
shape.reserve(rank);
|
||||
for (int i = 0; i < rank; i++)
|
||||
shape.push_back(i == axis ? ctx->MakeDim(K) : ctx->Dim(x, i));
|
||||
|
||||
ctx->set_output(0, ctx->MakeShape(shape));
|
||||
}
|
||||
else
|
||||
ctx->set_output(0, ctx->UnknownShape());
|
||||
ctx->set_output(1, ctx->UnknownShape());
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
|
||||
REGISTER_OP("BlocksparseMatmul")
|
||||
.Input("x: T")
|
||||
.Input("w: T")
|
||||
.Input("lut: int64")
|
||||
.Input("lut_dx: int64")
|
||||
.Input("lut_dw: int64")
|
||||
.Input("gate: ngate * float")
|
||||
.Output("y: T")
|
||||
.Output("temp: int32")
|
||||
.Attr("T: {half, float, bfloat16}")
|
||||
.Attr("blocks: int >=0")
|
||||
.Attr("bsize: int")
|
||||
.Attr("segments: int = 0")
|
||||
.Attr("segments_dx: int = 0")
|
||||
.Attr("locks: int = 0")
|
||||
.Attr("locks_dx: int = 0")
|
||||
.Attr("axis: int = 1")
|
||||
.Attr("C: int >=0")
|
||||
.Attr("K: int >=0")
|
||||
.Attr("shared: int = 0")
|
||||
.Attr("shared_dx: int = 0")
|
||||
.Attr("alpha: float = 1.0")
|
||||
.Attr("beta: float = 0.0")
|
||||
.Attr("gated_dw: bool = false")
|
||||
.Attr("gate_grad: bool = false")
|
||||
.Attr("bench: int = 0")
|
||||
.Attr("ngate: int >= 0")
|
||||
.SetShapeFn(XpropShape)
|
||||
.Doc(R"doc(
|
||||
Multiply the matrix "a" by the blocksparse matrix "b".
|
||||
)doc");
|
||||
|
||||
|
||||
typedef struct bsmm_params
|
||||
{
|
||||
const int* Lut;
|
||||
const float* Gate;
|
||||
int* Lock;
|
||||
//float4* Scratch;
|
||||
int blocks;
|
||||
int bsize;
|
||||
int segments;
|
||||
int locks;
|
||||
int C;
|
||||
int K;
|
||||
int N;
|
||||
int shared;
|
||||
int pcount;
|
||||
uint blk_a;
|
||||
uint blk_A;
|
||||
uint blk_b;
|
||||
uint blk_B;
|
||||
float alpha;
|
||||
float beta;
|
||||
CUstream stream;
|
||||
} bsmm_params;
|
||||
|
||||
class BlocksparseMatmulOp : public OpKernel {
|
||||
public:
|
||||
explicit BlockSparseGemmOp(OpKernelConstruction* context) : OpKernel(context) {
|
||||
explicit BlocksparseMatmulOp(OpKernelConstruction* ctx) : OpKernel(ctx) {
|
||||
OP_REQUIRES_OK(ctx, ctx->GetAttr("segments", ¶ms_.segments));
|
||||
OP_REQUIRES_OK(ctx, ctx->GetAttr("locks", ¶ms_.locks ));
|
||||
OP_REQUIRES_OK(ctx, ctx->GetAttr("blocks", ¶ms_.blocks ));
|
||||
OP_REQUIRES_OK(ctx, ctx->GetAttr("bsize", ¶ms_.bsize ));
|
||||
OP_REQUIRES_OK(ctx, ctx->GetAttr("C", ¶ms_.C ));
|
||||
OP_REQUIRES_OK(ctx, ctx->GetAttr("K", ¶ms_.K ));
|
||||
OP_REQUIRES_OK(ctx, ctx->GetAttr("shared", ¶ms_.shared ));
|
||||
OP_REQUIRES_OK(ctx, ctx->GetAttr("alpha", ¶ms_.alpha ));
|
||||
OP_REQUIRES_OK(ctx, ctx->GetAttr("beta", ¶ms_.beta ));
|
||||
OP_REQUIRES_OK(ctx, ctx->GetAttr("gated_dw", &gated_dw_ ));
|
||||
OP_REQUIRES_OK(ctx, ctx->GetAttr("axis", &axis_ ));
|
||||
OP_REQUIRES_OK(ctx, ctx->GetAttr("bench", &bench_));
|
||||
OP_REQUIRES(ctx, params_.K < params_.bsize*65536, errors::InvalidArgument("K < bsize*65536"));
|
||||
OP_REQUIRES(ctx, params_.C < params_.bsize*65536, errors::InvalidArgument("C < bsize*65536"));
|
||||
params_.pcount = 1;
|
||||
params_.blk_A = 0;
|
||||
is_gpu_ = ctx->device_type() == DEVICE_GPU;
|
||||
if (bench_) {
|
||||
repeat_ = bench_;
|
||||
flops_ = (float)(params_.blocks * params_.bsize*params_.bsize);
|
||||
const char* op = "FPROP";
|
||||
sprintf(bench_string_, "%s %02d-%d C:%05d K:%05d blks:%d", op, params_.bsize, axis_, params_.C, params_.K, params_.blocks);
|
||||
}
|
||||
}
|
||||
|
||||
void Compute(OpKernelContext* context){
|
||||
// get device/stream
|
||||
GPUDevice device = context->eigen_device<GPUDevice>();
|
||||
triton::driver::cu_stream sstream(device.stream(), false);
|
||||
triton::driver::context* ctx = sstream.context();
|
||||
triton::driver::stream* stream = &sstream;
|
||||
// get inputs
|
||||
const Tensor& a = context->input(0);
|
||||
const Tensor& b = context->input(1);
|
||||
const Tensor& locks = context->input(2);
|
||||
// get shapes
|
||||
const int32_t M = a.dim_size(0);
|
||||
const int32_t N = b.dim_size(0);
|
||||
const int32_t K = a.dim_size(1);
|
||||
// allocate output
|
||||
Tensor* c = nullptr;
|
||||
TensorShape out_shape({(int64)M, (int64)N});
|
||||
OP_REQUIRES_OK(context, context->allocate_output(0, out_shape, &c));
|
||||
// return early if possible
|
||||
if (out_shape.num_elements() == 0)
|
||||
return;
|
||||
// initialize default compute device
|
||||
triton::jit jit(ctx);
|
||||
// matrix multiplication parameters
|
||||
triton::driver::cu_buffer da(ctx, (CUdeviceptr)a.flat<float>().data(), false);
|
||||
triton::driver::cu_buffer db(ctx, (CUdeviceptr)b.flat<float>().data(), false);
|
||||
triton::driver::cu_buffer dc(ctx, (CUdeviceptr)c->flat<float>().data(), false);
|
||||
triton::driver::cu_buffer dlocks(ctx, (CUdeviceptr)locks.flat<int32_t>().data(), false);
|
||||
stream->synchronize();
|
||||
// just-in-time compile source-code
|
||||
jit.add_module("matmul", src, {16, 2, 64, 16, 2, 64, 16, 8, 2, 2, 8, 8, 8, 1});
|
||||
triton::driver::kernel* kernel = jit.get_function("matmul");
|
||||
triton::jit::launch_information info = jit.get_launch_info("matmul");
|
||||
// launch info
|
||||
unsigned TM = info.global_range_size[0];
|
||||
unsigned TN = info.global_range_size[1];
|
||||
unsigned nthreads = info.num_threads;
|
||||
unsigned GZ = jit.get_int("GZ");
|
||||
std::array<size_t, 3> grid = {(M + TM - 1)/TM, (N + TN - 1)/TN, GZ};
|
||||
// set argument
|
||||
kernel->setArg(0, *da.cu());
|
||||
kernel->setArg(1, *db.cu());
|
||||
kernel->setArg(2, *dc.cu());
|
||||
kernel->setArg(3, M);
|
||||
kernel->setArg(4, N);
|
||||
kernel->setArg(5, K);
|
||||
kernel->setArg(6, M);
|
||||
kernel->setArg(7, N);
|
||||
kernel->setArg(8, M);
|
||||
kernel->setArg(9, *dlocks.cu());
|
||||
kernel->setArg(10, grid[0]);
|
||||
kernel->setArg(11, grid[1]);
|
||||
stream->enqueue(kernel, grid, {nthreads, 1, 1});
|
||||
}
|
||||
|
||||
private:
|
||||
bsmm_params params_;
|
||||
int axis_, bench_, repeat_, SMs_, major_, grid_n_;
|
||||
float flops_;
|
||||
bool gated_dw_, is_gpu_;
|
||||
char bench_string_[256];
|
||||
};
|
||||
|
||||
REGISTER_KERNEL_BUILDER(Name("BlockSparseMatMul").Device(DEVICE_GPU).TypeConstraint<float>("T"), BlockSparseGemmOp);
|
||||
REGISTER_KERNEL_BUILDER(Name("BlocksparseMatmul").Device(DEVICE_GPU).TypeConstraint<float>("T"), BlocksparseMatmulOp);
|
||||
|
@@ -1,20 +0,0 @@
|
||||
import os
|
||||
import tensorflow as tf
|
||||
import numpy as np
|
||||
|
||||
data_files_path = tf.resource_loader.get_data_files_path()
|
||||
library_dir = '/home/philippe/Development/triton/build/examples/python/tensorflow'
|
||||
module = tf.load_op_library(os.path.join(library_dir, 'libtf_blocksparse.so'))
|
||||
|
||||
M, N, K = 512, 512, 512
|
||||
a = tf.placeholder(tf.float32, shape=[M, K])
|
||||
b = tf.placeholder(tf.float32, shape=[N, K])
|
||||
locks = tf.placeholder(tf.int32, shape=[4096])
|
||||
c = module.block_sparse_mat_mul(a, b, locks)
|
||||
# Run
|
||||
sess = tf.InteractiveSession()
|
||||
sess.run(tf.global_variables_initializer())
|
||||
result = sess.run([c], feed_dict = {locks: np.zeros(4096),
|
||||
a: np.random.rand(M, K),
|
||||
b: np.random.rand(N, K)})
|
||||
print(result)
|
163
examples/python/tensorflow/dot.cpp
Normal file
163
examples/python/tensorflow/dot.cpp
Normal file
@@ -0,0 +1,163 @@
|
||||
#include <iostream>
|
||||
|
||||
#include "triton/driver/buffer.h"
|
||||
#include "triton/driver/backend.h"
|
||||
#include "triton/driver/stream.h"
|
||||
#include "triton/jit.h"
|
||||
|
||||
#define EIGEN_USE_GPU
|
||||
#include "tensorflow/core/framework/op.h"
|
||||
#include "tensorflow/core/framework/shape_inference.h"
|
||||
#include "tensorflow/core/framework/op_kernel.h"
|
||||
#include "tensorflow/core/util/cuda_kernel_helper.h"
|
||||
#include "tensorflow/core/util/padding.h"
|
||||
#include "tensorflow/core/util/tensor_format.h"
|
||||
#include "tensorflow/core/framework/common_shape_fns.h"
|
||||
|
||||
using namespace tensorflow;
|
||||
using GPUDevice = Eigen::GpuDevice;
|
||||
|
||||
|
||||
const char* src =
|
||||
R"(
|
||||
const tunable int32 TM = {16, 32, 64, 128};
|
||||
const tunable int32 TN = {16, 32, 64, 128};
|
||||
const tunable int32 TK = {8};
|
||||
const tunable int32 GZ = {1};
|
||||
|
||||
void matmul(restrict read_only fp32 *A, restrict read_only fp32 *B, fp32 *C,
|
||||
int32 M, int32 N, int32 K,
|
||||
int32 lda, int32 ldb, int32 ldc,
|
||||
int32 *locks, int32 grid0, int32 grid1) {
|
||||
int32 rxa[TM] = get_global_range[TM](0);
|
||||
int32 ryb[TN] = get_global_range[TN](1);
|
||||
int32 rz = get_global_range[1](2);
|
||||
int32 rka[TK] = 0 ... TK;
|
||||
int32 rkb[TK] = 0 ... TK;
|
||||
fp32 c[TM, TN] = 0;
|
||||
int32 div = K / GZ;
|
||||
int32 rem = K % GZ;
|
||||
K = select(rz < rem, div - 1, div);
|
||||
int32 offk = select(rz < rem, rz*(div + 1), rz*div + rem);
|
||||
fp32* pa[TM, TK] = A + (offk + rka[newaxis, :])*lda + rxa[:, newaxis];
|
||||
fp32* pb[TN, TK] = B + (offk + rkb[newaxis, :])*ldb + ryb[:, newaxis];
|
||||
fp32 a[TM, TK] = *pa;
|
||||
fp32 b[TN, TK] = *pb;
|
||||
int32 last_a = ((M*K - 1) - (TM*TK + 1)) / lda;
|
||||
int32 last_b = ((K*N - 1) - (TN*TK + 1)) / ldb;
|
||||
last_a = last_a / TK * TK;
|
||||
last_b = last_b / TK * TK;
|
||||
int32 bound = K - max(last_a, last_b);
|
||||
for(int32 k = K; k > bound; k = k - TK){
|
||||
c = dot(a, trans(b), c);
|
||||
pa = pa + TK*lda;
|
||||
pb = pb + TK*ldb;
|
||||
a = *pa;
|
||||
b = *pb;
|
||||
}
|
||||
int32 rxc[TM] = get_global_range[TM](0);
|
||||
int32 ryc[TN] = get_global_range[TN](1);
|
||||
for(int32 k = bound; k > 0; k = k - 1){
|
||||
int1 checka[TM, 1] = rxc[:, newaxis] < M;
|
||||
int1 checkb[TN, 1] = ryc[:, newaxis] < N;
|
||||
fp32* pa[TM, 1] = A + (offk + K - k)*lda + rxc[:, newaxis];
|
||||
fp32* pb[TN, 1] = B + (offk + K - k)*ldb + ryc[:, newaxis];
|
||||
fp32 a[TM, 1] = checka ? *pa : 0;
|
||||
fp32 b[TN, 1] = checkb ? *pb : 0;
|
||||
c = dot(a, trans(b), c);
|
||||
}
|
||||
int32 ridx = get_range_id(0);
|
||||
int32 ridy = get_range_id(1);
|
||||
fp32* pc[TM, TN] = C + ryc[newaxis, :]*ldc + rxc[:, newaxis];
|
||||
int32 *plock = locks + ridx + ridy*grid0;
|
||||
while(__atomic_cas(plock, 0, 1));
|
||||
int32 *pcount = plock + grid0*grid1;
|
||||
int32 count = *pcount;
|
||||
int32 countp1 = select(count == GZ - 1, 0, count + 1);
|
||||
int1 checkc0[TM] = rxc < M;
|
||||
int1 checkc1[TN] = ryc < N;
|
||||
int1 checkc[TM, TN] = checkc0[:, newaxis] && checkc1[newaxis, :];
|
||||
if(count == 0) {
|
||||
@checkc *pc = c;
|
||||
*pcount = countp1;
|
||||
}
|
||||
else {
|
||||
@checkc *pc = c + *pc;
|
||||
*pcount = countp1;
|
||||
}
|
||||
__atomic_cas(plock, 1, 0);
|
||||
}
|
||||
)";
|
||||
|
||||
REGISTER_OP("Dot")
|
||||
.Input("a: T")
|
||||
.Input("b: T")
|
||||
.Input("locks: int32")
|
||||
.Output("c: T")
|
||||
.Attr("T: {float}")
|
||||
;
|
||||
|
||||
class BlockSparseGemmOp : public OpKernel {
|
||||
public:
|
||||
explicit BlockSparseGemmOp(OpKernelConstruction* context) : OpKernel(context) {
|
||||
}
|
||||
|
||||
void Compute(OpKernelContext* context){
|
||||
// get device/stream
|
||||
GPUDevice device = context->eigen_device<GPUDevice>();
|
||||
triton::driver::cu_stream sstream(device.stream(), false);
|
||||
triton::driver::context* ctx = sstream.context();
|
||||
triton::driver::stream* stream = &sstream;
|
||||
// get inputs
|
||||
const Tensor& a = context->input(0);
|
||||
const Tensor& b = context->input(1);
|
||||
const Tensor& locks = context->input(2);
|
||||
// get shapes
|
||||
const int32_t M = a.dim_size(0);
|
||||
const int32_t N = b.dim_size(0);
|
||||
const int32_t K = a.dim_size(1);
|
||||
// allocate output
|
||||
Tensor* c = nullptr;
|
||||
TensorShape out_shape({(int64)M, (int64)N});
|
||||
OP_REQUIRES_OK(context, context->allocate_output(0, out_shape, &c));
|
||||
// return early if possible
|
||||
if (out_shape.num_elements() == 0)
|
||||
return;
|
||||
// initialize default compute device
|
||||
triton::jit jit(ctx);
|
||||
// matrix multiplication parameters
|
||||
triton::driver::cu_buffer da(ctx, (CUdeviceptr)a.flat<float>().data(), false);
|
||||
triton::driver::cu_buffer db(ctx, (CUdeviceptr)b.flat<float>().data(), false);
|
||||
triton::driver::cu_buffer dc(ctx, (CUdeviceptr)c->flat<float>().data(), false);
|
||||
triton::driver::cu_buffer dlocks(ctx, (CUdeviceptr)locks.flat<int32_t>().data(), false);
|
||||
stream->synchronize();
|
||||
// just-in-time compile source-code
|
||||
jit.add_module("matmul", src, {16, 2, 64, 16, 2, 64, 16, 8, 2, 2, 8, 8, 8, 1});
|
||||
triton::driver::kernel* kernel = jit.get_function("matmul");
|
||||
triton::jit::launch_information info = jit.get_launch_info("matmul");
|
||||
// launch info
|
||||
unsigned TM = info.global_range_size[0];
|
||||
unsigned TN = info.global_range_size[1];
|
||||
unsigned nthreads = info.num_threads;
|
||||
unsigned GZ = jit.get_int("GZ");
|
||||
std::array<size_t, 3> grid = {(M + TM - 1)/TM, (N + TN - 1)/TN, GZ};
|
||||
// set argument
|
||||
kernel->setArg(0, *da.cu());
|
||||
kernel->setArg(1, *db.cu());
|
||||
kernel->setArg(2, *dc.cu());
|
||||
kernel->setArg(3, M);
|
||||
kernel->setArg(4, N);
|
||||
kernel->setArg(5, K);
|
||||
kernel->setArg(6, M);
|
||||
kernel->setArg(7, N);
|
||||
kernel->setArg(8, M);
|
||||
kernel->setArg(9, *dlocks.cu());
|
||||
kernel->setArg(10, grid[0]);
|
||||
kernel->setArg(11, grid[1]);
|
||||
stream->enqueue(kernel, grid, {nthreads, 1, 1});
|
||||
}
|
||||
|
||||
private:
|
||||
};
|
||||
|
||||
REGISTER_KERNEL_BUILDER(Name("Dot").Device(DEVICE_GPU).TypeConstraint<float>("T"), BlockSparseGemmOp);
|
Reference in New Issue
Block a user