More on TritonGPU conversion
This commit is contained in:
@@ -13,7 +13,9 @@ def ConvertTritonToTritonGPU: Pass<"convert-triton-to-tritongpu", "mlir::ModuleO
|
||||
let dependentDialects = ["mlir::arith::ArithmeticDialect",
|
||||
"mlir::StandardOpsDialect",
|
||||
// TODO: Does this pass depend on SCF?
|
||||
"mlir::scf::SCFDialect"];
|
||||
"mlir::scf::SCFDialect",
|
||||
"mlir::triton::TritonDialect",
|
||||
"mlir::triton::gpu::TritonGPUDialect"];
|
||||
}
|
||||
|
||||
#endif
|
||||
|
@@ -20,8 +20,9 @@ private:
|
||||
};
|
||||
|
||||
class TritonGPUConversionTarget : public ConversionTarget {
|
||||
TritonGPUTypeConverter &typeConverter;
|
||||
public:
|
||||
explicit TritonGPUConversionTarget(MLIRContext &ctx);
|
||||
explicit TritonGPUConversionTarget(MLIRContext &ctx, TritonGPUTypeConverter &typeConverter);
|
||||
};
|
||||
|
||||
} // namespace mlir
|
||||
|
@@ -1,4 +1,5 @@
|
||||
#include "triton/Dialect/Triton/IR/Dialect.h"
|
||||
#include "triton/Dialect/TritonGPU/IR/Dialect.h"
|
||||
#include "triton/Conversion/TritonToTritonGPU/TritonToTritonGPU.h"
|
||||
#include "triton/Dialect/TritonGPU/Transforms/TritonGPUConversion.h"
|
||||
#include "mlir/Transforms/DialectConversion.h"
|
||||
@@ -12,7 +13,7 @@ namespace {
|
||||
|
||||
class ConvertArithmeticOp: public ConversionPattern {
|
||||
public:
|
||||
ConvertArithmeticOp(TypeConverter &typeConverter, MLIRContext *context)
|
||||
ConvertArithmeticOp(TritonGPUTypeConverter &typeConverter, MLIRContext *context)
|
||||
: ConversionPattern(typeConverter, MatchAnyOpTypeTag(), /*benefit=*/1,
|
||||
context) {}
|
||||
|
||||
@@ -21,14 +22,13 @@ public:
|
||||
Dialect* dialect = op->getDialect();
|
||||
if(dialect->getTypeID() != mlir::TypeID::get<arith::ArithmeticDialect>())
|
||||
return failure();
|
||||
// Arithmetic op to legalize here. Create layout conversion if necessary
|
||||
return success();
|
||||
}
|
||||
};
|
||||
|
||||
void populateArithmeticPatternsAndLegality(
|
||||
TypeConverter& typeConverter, RewritePatternSet &patterns,
|
||||
ConversionTarget &target){
|
||||
TritonGPUTypeConverter& typeConverter, RewritePatternSet &patterns,
|
||||
TritonGPUConversionTarget &target){
|
||||
// --------------
|
||||
// Add legality and rewrite pattern rules for operations
|
||||
// from the Arithmetic dialect. The basic premise is that
|
||||
@@ -47,6 +47,75 @@ void populateArithmeticPatternsAndLegality(
|
||||
patterns.add<ConvertArithmeticOp>(typeConverter, context);
|
||||
}
|
||||
|
||||
//
|
||||
// Triton patterns
|
||||
//
|
||||
// TODO: Do we need to put them in anonymous namespace?
|
||||
struct TritonMakeRangePattern : public OpConversionPattern<triton::MakeRangeOp> {
|
||||
using OpConversionPattern<triton::MakeRangeOp>::OpConversionPattern;
|
||||
|
||||
LogicalResult matchAndRewrite(triton::MakeRangeOp op, OpAdaptor adaptor,
|
||||
ConversionPatternRewriter &rewriter) const override {
|
||||
Type retType = getTypeConverter()->convertType(op.getType());
|
||||
|
||||
rewriter.replaceOpWithNewOp<triton::MakeRangeOp>(
|
||||
op.getOperation(), retType, op.start(), op.end()
|
||||
);
|
||||
return success();
|
||||
}
|
||||
};
|
||||
|
||||
struct TritonBroadcastPattern : public OpConversionPattern<triton::BroadcastOp> {
|
||||
using OpConversionPattern<triton::BroadcastOp>::OpConversionPattern;
|
||||
|
||||
LogicalResult matchAndRewrite(triton::BroadcastOp op, OpAdaptor adaptor,
|
||||
ConversionPatternRewriter &rewriter) const override {
|
||||
Type retType = getTypeConverter()->convertType(op.getType());
|
||||
rewriter.replaceOpWithNewOp<triton::BroadcastOp>(
|
||||
op.getOperation(), retType, op.src()
|
||||
);
|
||||
return success();
|
||||
}
|
||||
};
|
||||
|
||||
struct TritonGEPPattern : public OpConversionPattern<triton::GEPOp> {
|
||||
using OpConversionPattern<triton::GEPOp>::OpConversionPattern;
|
||||
|
||||
LogicalResult matchAndRewrite(triton::GEPOp op, OpAdaptor adaptor,
|
||||
ConversionPatternRewriter &rewriter) const override {
|
||||
Type retType = getTypeConverter()->convertType(op.getType());
|
||||
rewriter.replaceOpWithNewOp<triton::GEPOp>(
|
||||
op.getOperation(), retType, op.ptr(), op.offset()
|
||||
);
|
||||
return success();
|
||||
}
|
||||
};
|
||||
|
||||
struct TritonLoadPattern : public OpConversionPattern<triton::LoadOp> {
|
||||
using OpConversionPattern<triton::LoadOp>::OpConversionPattern;
|
||||
|
||||
LogicalResult matchAndRewrite(triton::LoadOp op, OpAdaptor adaptor,
|
||||
ConversionPatternRewriter &rewriter) const override {
|
||||
Type retType = getTypeConverter()->convertType(op.getType());
|
||||
rewriter.replaceOpWithNewOp<triton::LoadOp>(
|
||||
op.getOperation(), retType,
|
||||
op.ptr(), op.mask(), op.other(), op.cache(), op.evict(), op.isVolatile()
|
||||
);
|
||||
return success();
|
||||
}
|
||||
};
|
||||
|
||||
void populateTritonPatterns(
|
||||
TritonGPUTypeConverter& typeConverter, RewritePatternSet &patterns
|
||||
) {
|
||||
MLIRContext *context = patterns.getContext();
|
||||
patterns.add<TritonMakeRangePattern,
|
||||
TritonBroadcastPattern,
|
||||
TritonGEPPattern,
|
||||
TritonLoadPattern
|
||||
>(typeConverter, context);
|
||||
}
|
||||
|
||||
|
||||
class ConvertTritonToTritonGPU :
|
||||
public ConvertTritonToTritonGPUBase<ConvertTritonToTritonGPU> {
|
||||
@@ -54,18 +123,19 @@ class ConvertTritonToTritonGPU :
|
||||
public:
|
||||
void runOnOperation() override {
|
||||
MLIRContext *context = &getContext();
|
||||
TritonGPUConversionTarget target(*context);
|
||||
ModuleOp mod = getOperation();
|
||||
// int numThreads = mod.getAttr();
|
||||
// type converter
|
||||
TritonGPUTypeConverter typeConverter(context, /*numThreads*/4*32);
|
||||
TritonGPUTypeConverter typeConverter(context, /*numThreads*/128);
|
||||
TritonGPUConversionTarget target(*context, typeConverter);
|
||||
// rewrite patterns
|
||||
RewritePatternSet patterns(context);
|
||||
// add rules
|
||||
populateArithmeticPatternsAndLegality(typeConverter, patterns, target);
|
||||
populateTritonPatterns(typeConverter, patterns);
|
||||
|
||||
|
||||
if(failed(applyPartialConversion(getOperation(), target,
|
||||
if(failed(applyPartialConversion(mod, target,
|
||||
std::move(patterns))))
|
||||
return signalPassFailure();
|
||||
}
|
||||
|
@@ -41,6 +41,10 @@ void TritonGPUSharedEncodingAttr::print(mlir::AsmPrinter &printer) const {
|
||||
}
|
||||
|
||||
void TritonGPUDialect::initialize() {
|
||||
addAttributes<
|
||||
#define GET_ATTRDEF_LIST
|
||||
#include "triton/Dialect/TritonGPU/IR/TritonGPUAttrDefs.cpp.inc"
|
||||
>();
|
||||
addOperations<
|
||||
#define GET_OP_LIST
|
||||
#include "triton/Dialect/TritonGPU/IR/Ops.cpp.inc"
|
||||
|
@@ -11,7 +11,12 @@ using namespace mlir;
|
||||
TritonGPUTypeConverter::TritonGPUTypeConverter(MLIRContext *context,
|
||||
int numThreads)
|
||||
: context(context), numThreads(numThreads) {
|
||||
addConversion([&](RankedTensorType tensorType) -> RankedTensorType {
|
||||
// TODO: how does MLIR pick the right conversion?
|
||||
addConversion([](Type type) { return type; });
|
||||
addConversion([this](RankedTensorType tensorType) -> RankedTensorType {
|
||||
MLIRContext *context = this->context;
|
||||
int numThreads = this->numThreads;
|
||||
|
||||
llvm::ArrayRef<int64_t> shape = tensorType.getShape();
|
||||
Type elementType = tensorType.getElementType();
|
||||
int64_t rank = tensorType.getRank();
|
||||
@@ -45,16 +50,29 @@ TritonGPUTypeConverter::TritonGPUTypeConverter(MLIRContext *context,
|
||||
//
|
||||
// TritonGPUConversion
|
||||
//
|
||||
TritonGPUConversionTarget::TritonGPUConversionTarget(MLIRContext &context)
|
||||
: ConversionTarget(context) {
|
||||
TritonGPUConversionTarget::TritonGPUConversionTarget(
|
||||
MLIRContext &context, TritonGPUTypeConverter &typeConverter)
|
||||
: ConversionTarget(context), typeConverter(typeConverter) {
|
||||
addLegalDialect<triton::TritonDialect,
|
||||
arith::ArithmeticDialect,
|
||||
StandardOpsDialect,
|
||||
scf::SCFDialect>();
|
||||
|
||||
// Some ops from SCF are illegal
|
||||
addIllegalOp<scf::ExecuteRegionOp, scf::ParallelOp,
|
||||
scf::ReduceOp, scf::ReduceReturnOp>();
|
||||
|
||||
addDynamicallyLegalDialect<arith::ArithmeticDialect>([&](Operation *op) {
|
||||
if (typeConverter.isLegal(op))
|
||||
return true;
|
||||
return false;
|
||||
});
|
||||
|
||||
addDynamicallyLegalDialect<triton::TritonDialect>([&](Operation *op) {
|
||||
if (typeConverter.isLegal(op))
|
||||
return true;
|
||||
return false;
|
||||
});
|
||||
|
||||
// // We have requirements for the data layouts
|
||||
// addDynamicallyLegalOp<triton::DotOp>([](triton::DotOp dotOp) -> bool {
|
||||
// Attribute aEncoding = dotOp.a().getType().cast<RankedTensorType>().getEncoding();
|
||||
|
@@ -94,8 +94,8 @@ mod, ctx = matmul_kernel.compile_to_ttir(
|
||||
8, grid=(2,)
|
||||
)
|
||||
|
||||
assert mod.verify()
|
||||
mod.dump()
|
||||
# assert mod.verify()
|
||||
# mod.dump()
|
||||
|
||||
pm = _triton.ir.pass_manager(ctx)
|
||||
pm.add_inliner_pass()
|
||||
@@ -104,5 +104,5 @@ pm.add_canonicalizer_pass()
|
||||
pm.add_convert_triton_to_tritongpu_pass()
|
||||
pm.run(mod)
|
||||
|
||||
assert mod.verify()
|
||||
mod.dump()
|
||||
# assert mod.verify()
|
||||
# mod.dump()
|
||||
|
@@ -1,7 +1,8 @@
|
||||
from tarfile import BLOCKSIZE
|
||||
import torch
|
||||
import triton
|
||||
import triton.language as tl
|
||||
import triton._C.libtriton.triton as _triton
|
||||
|
||||
|
||||
|
||||
@triton.jit
|
||||
|
Reference in New Issue
Block a user