[examples/python/tensorflow] bugfix in tensorflow wrapper example

This commit is contained in:
Philippe Tillet
2019-04-30 21:04:30 -04:00
parent d934d8fb40
commit 7b6efc0463
12 changed files with 90 additions and 171 deletions

View File

@@ -66,35 +66,18 @@ void matmul(restrict read_only fp32 *A, restrict read_only fp32 *B, fp32 *C,
fp32 b[TN, 1] = checkb ? *pb : 0;
c = dot(a, trans(b), c);
}
int32 ridx = get_range_id(0);
int32 ridy = get_range_id(1);
fp32* pc[TM, TN] = C + ryc[newaxis, :]*ldc + rxc[:, newaxis];
int32 *plock = locks + ridx + ridy*grid0;
while(__atomic_cas(plock, 0, 1));
int32 *pcount = plock + grid0*grid1;
int32 count = *pcount;
int32 countp1 = select(count == GZ - 1, 0, count + 1);
int1 checkc0[TM] = rxc < M;
int1 checkc1[TN] = ryc < N;
int1 checkc[TM, TN] = checkc0[:, newaxis] && checkc1[newaxis, :];
if(count == 0) {
@checkc *pc = c;
*pcount = countp1;
}
else {
@checkc *pc = c + *pc;
*pcount = countp1;
}
__atomic_cas(plock, 1, 0);
*pc = c;
}
)";
REGISTER_OP("BlockSparseGemm")
REGISTER_OP("BlockSparseMatMul")
.Input("a: T")
.Input("b: T")
.Input("locks: int32")
.Output("c: T")
.Attr("T: {float}")
.Input("A: float")
.Input("B: float")
.Input("locks: int")
.Output("C: float");
;
class BlockSparseGemmOp : public OpKernel {
public:
@@ -104,59 +87,60 @@ class BlockSparseGemmOp : public OpKernel {
void Compute(OpKernelContext* context){
// get device/stream
GPUDevice device = context->eigen_device<GPUDevice>();
triton::driver::cu_stream stream(device.stream(), false);
triton::driver::cu_stream sstream(device.stream(), false);
triton::driver::context* ctx = sstream.context();
triton::driver::stream* stream = &sstream;
// get inputs
const Tensor& a = context->input(0);
const Tensor& b = context->input(1);
const Tensor& locks = context->input(2);
// get shapes
const int64 M = a.dim_size(0);
const int64 N = b.dim_size(0);
const int64 K = a.dim_size(1);
const int32_t M = a.dim_size(0);
const int32_t N = b.dim_size(0);
const int32_t K = a.dim_size(1);
// allocate output
Tensor* c = nullptr;
TensorShape out_shape({M, N});
TensorShape out_shape({(int64)M, (int64)N});
OP_REQUIRES_OK(context, context->allocate_output(0, out_shape, &c));
// return early if possible
if (out_shape.num_elements() == 0)
return;
// wraps into buffers
triton::driver::cu_buffer ta(stream.context(), (CUdeviceptr)a.flat<float>().data(), false);
triton::driver::cu_buffer tb(stream.context(), (CUdeviceptr)b.flat<float>().data(), false);
triton::driver::cu_buffer tlocks(stream.context(), (CUdeviceptr)locks.flat<int32_t>().data(), false);
triton::driver::cu_buffer tc(stream.context(), (CUdeviceptr)c->flat<float>().data(), false);
// launch info
triton::jit jit(stream.context());
// initialize default compute device
triton::jit jit(ctx);
// matrix multiplication parameters
triton::driver::cu_buffer da(ctx, (CUdeviceptr)a.flat<float>().data(), false);
triton::driver::cu_buffer db(ctx, (CUdeviceptr)b.flat<float>().data(), false);
triton::driver::cu_buffer dc(ctx, (CUdeviceptr)c->flat<float>().data(), false);
triton::driver::cu_buffer dlocks(ctx, (CUdeviceptr)locks.flat<int32_t>().data(), false);
stream->synchronize();
// just-in-time compile source-code
jit.add_module("matmul", src, {16, 2, 64, 16, 2, 64, 16, 8, 2, 2, 8, 8, 8, 1});
triton::driver::kernel* kernel = jit.get_function("matmul");
triton::jit::launch_information info = jit.get_launch_info("matmul");
int64 TM = info.global_range_size[0];
int64 TN = info.global_range_size[1];
// launch info
unsigned TM = info.global_range_size[0];
unsigned TN = info.global_range_size[1];
unsigned nthreads = info.num_threads;
int64 GZ = jit.get_int("GZ");
std::array<size_t, 3> grid;
grid[0] = (M + TM - 1)/TM;
grid[1] = (N + TN - 1)/TN;
grid[2] = GZ;
unsigned GZ = jit.get_int("GZ");
std::array<size_t, 3> grid = {(M + TM - 1)/TM, (N + TN - 1)/TN, GZ};
// set argument
kernel->setArg(0, &ta);
kernel->setArg(1, &tb);
kernel->setArg(2, &tc);
kernel->setArg(0, *da.cu());
kernel->setArg(1, *db.cu());
kernel->setArg(2, *dc.cu());
kernel->setArg(3, M);
kernel->setArg(4, N);
kernel->setArg(5, K);
kernel->setArg(6, M);
kernel->setArg(7, N);
kernel->setArg(8, M);
kernel->setArg(9, tlocks);
kernel->setArg(9, *dlocks.cu());
kernel->setArg(10, grid[0]);
kernel->setArg(11, grid[1]);
// dry run
stream.enqueue(kernel, grid, {nthreads, 1, 1}, nullptr, nullptr);
return;
stream->enqueue(kernel, grid, {nthreads, 1, 1});
stream->synchronize();
}
private:
};
REGISTER_KERNEL_BUILDER(Name("BlockSparse").Device(DEVICE_GPU), BlockSparseGemmOp);
REGISTER_KERNEL_BUILDER(Name("BlockSparseMatMul").Device(DEVICE_GPU).TypeConstraint<float>("T"), BlockSparseGemmOp);