[examples/python/tensorflow] improved matmul wrapper

This commit is contained in:
Philippe Tillet
2019-04-30 12:25:14 -04:00
parent 8e809a9536
commit d934d8fb40

View File

@@ -3,6 +3,7 @@
#include "triton/driver/buffer.h"
#include "triton/driver/backend.h"
#include "triton/driver/stream.h"
#include "triton/jit.h"
#define EIGEN_USE_GPU
#include "tensorflow/core/framework/op.h"
@@ -16,10 +17,83 @@
using namespace tensorflow;
using GPUDevice = Eigen::GpuDevice;
const char* src =
R"(
const tunable int32 TM = {16, 32, 64, 128};
const tunable int32 TN = {16, 32, 64, 128};
const tunable int32 TK = {8};
const tunable int32 GZ = {1};
void matmul(restrict read_only fp32 *A, restrict read_only fp32 *B, fp32 *C,
int32 M, int32 N, int32 K,
int32 lda, int32 ldb, int32 ldc,
int32 *locks, int32 grid0, int32 grid1) {
int32 rxa[TM] = get_global_range[TM](0);
int32 ryb[TN] = get_global_range[TN](1);
int32 rz = get_global_range[1](2);
int32 rka[TK] = 0 ... TK;
int32 rkb[TK] = 0 ... TK;
fp32 c[TM, TN] = 0;
int32 div = K / GZ;
int32 rem = K % GZ;
K = select(rz < rem, div - 1, div);
int32 offk = select(rz < rem, rz*(div + 1), rz*div + rem);
fp32* pa[TM, TK] = A + (offk + rka[newaxis, :])*lda + rxa[:, newaxis];
fp32* pb[TN, TK] = B + (offk + rkb[newaxis, :])*ldb + ryb[:, newaxis];
fp32 a[TM, TK] = *pa;
fp32 b[TN, TK] = *pb;
int32 last_a = ((M*K - 1) - (TM*TK + 1)) / lda;
int32 last_b = ((K*N - 1) - (TN*TK + 1)) / ldb;
last_a = last_a / TK * TK;
last_b = last_b / TK * TK;
int32 bound = K - max(last_a, last_b);
for(int32 k = K; k > bound; k = k - TK){
c = dot(a, trans(b), c);
pa = pa + TK*lda;
pb = pb + TK*ldb;
a = *pa;
b = *pb;
}
int32 rxc[TM] = get_global_range[TM](0);
int32 ryc[TN] = get_global_range[TN](1);
for(int32 k = bound; k > 0; k = k - 1){
int1 checka[TM, 1] = rxc[:, newaxis] < M;
int1 checkb[TN, 1] = ryc[:, newaxis] < N;
fp32* pa[TM, 1] = A + (offk + K - k)*lda + rxc[:, newaxis];
fp32* pb[TN, 1] = B + (offk + K - k)*ldb + ryc[:, newaxis];
fp32 a[TM, 1] = checka ? *pa : 0;
fp32 b[TN, 1] = checkb ? *pb : 0;
c = dot(a, trans(b), c);
}
int32 ridx = get_range_id(0);
int32 ridy = get_range_id(1);
fp32* pc[TM, TN] = C + ryc[newaxis, :]*ldc + rxc[:, newaxis];
int32 *plock = locks + ridx + ridy*grid0;
while(__atomic_cas(plock, 0, 1));
int32 *pcount = plock + grid0*grid1;
int32 count = *pcount;
int32 countp1 = select(count == GZ - 1, 0, count + 1);
int1 checkc0[TM] = rxc < M;
int1 checkc1[TN] = ryc < N;
int1 checkc[TM, TN] = checkc0[:, newaxis] && checkc1[newaxis, :];
if(count == 0) {
@checkc *pc = c;
*pcount = countp1;
}
else {
@checkc *pc = c + *pc;
*pcount = countp1;
}
__atomic_cas(plock, 1, 0);
}
)";
REGISTER_OP("BlockSparseGemm")
.Attr("T: {float}")
.Input("A: float")
.Input("B: float")
.Input("locks: int")
.Output("C: float");
class BlockSparseGemmOp : public OpKernel {
@@ -28,8 +102,58 @@ class BlockSparseGemmOp : public OpKernel {
}
void Compute(OpKernelContext* context){
// get device/stream
GPUDevice device = context->eigen_device<GPUDevice>();
triton::driver::cu_stream stream(device.stream(), false);
// get inputs
const Tensor& a = context->input(0);
const Tensor& b = context->input(1);
const Tensor& locks = context->input(2);
// get shapes
const int64 M = a.dim_size(0);
const int64 N = b.dim_size(0);
const int64 K = a.dim_size(1);
// allocate output
Tensor* c = nullptr;
TensorShape out_shape({M, N});
OP_REQUIRES_OK(context, context->allocate_output(0, out_shape, &c));
// return early if possible
if (out_shape.num_elements() == 0)
return;
// wraps into buffers
triton::driver::cu_buffer ta(stream.context(), (CUdeviceptr)a.flat<float>().data(), false);
triton::driver::cu_buffer tb(stream.context(), (CUdeviceptr)b.flat<float>().data(), false);
triton::driver::cu_buffer tlocks(stream.context(), (CUdeviceptr)locks.flat<int32_t>().data(), false);
triton::driver::cu_buffer tc(stream.context(), (CUdeviceptr)c->flat<float>().data(), false);
// launch info
triton::jit jit(stream.context());
jit.add_module("matmul", src, {16, 2, 64, 16, 2, 64, 16, 8, 2, 2, 8, 8, 8, 1});
triton::driver::kernel* kernel = jit.get_function("matmul");
triton::jit::launch_information info = jit.get_launch_info("matmul");
int64 TM = info.global_range_size[0];
int64 TN = info.global_range_size[1];
unsigned nthreads = info.num_threads;
int64 GZ = jit.get_int("GZ");
std::array<size_t, 3> grid;
grid[0] = (M + TM - 1)/TM;
grid[1] = (N + TN - 1)/TN;
grid[2] = GZ;
// set argument
kernel->setArg(0, &ta);
kernel->setArg(1, &tb);
kernel->setArg(2, &tc);
kernel->setArg(3, M);
kernel->setArg(4, N);
kernel->setArg(5, K);
kernel->setArg(6, M);
kernel->setArg(7, N);
kernel->setArg(8, M);
kernel->setArg(9, tlocks);
kernel->setArg(10, grid[0]);
kernel->setArg(11, grid[1]);
// dry run
stream.enqueue(kernel, grid, {nthreads, 1, 1}, nullptr, nullptr);
return;
}
private: