More optimizations

This commit is contained in:
Philippe Tillet
2023-01-06 11:04:20 -08:00
parent e6f1a9ad34
commit 874ee11ab5

View File

@@ -14,6 +14,7 @@ module attributes {"triton_gpu.num-warps" = 8 : i32} {
%cst = arith.constant dense<0.000000e+00> : tensor<128x64xf32, #mma1>
%cst_0 = arith.constant dense<0.000000e+00> : tensor<128x128xf32, #mma0>
%cst_1 = arith.constant dense<0xFF800000> : tensor<128x128xf32, #mma0>
%cst_10 = arith.constant dense<0.000000e+00> : tensor<128x64xf32, #mma1>
%0 = tt.get_program_id {axis = 0 : i32} : i32
%1 = arith.divsi %0, %arg22 : i32
%2 = arith.remsi %0, %arg22 : i32
@@ -31,22 +32,22 @@ module attributes {"triton_gpu.num-warps" = 8 : i32} {
%14 = tt.make_range {end = 128 : i32, start = 0 : i32} : tensor<128xi32, #blocked0>
%15 = tt.make_range {end = 128 : i32, start = 0 : i32} : tensor<128xi32, #triton_gpu.slice<{dim = 1, parent = #blocked1}>>
%16 = tt.make_range {end = 128 : i32, start = 0 : i32} : tensor<128xi32, #triton_gpu.slice<{dim = 0, parent = #mma0}>>
%17 = tt.make_range {end = 128 : i32, start = 0 : i32} : tensor<128xi32, #triton_gpu.slice<{dim = 1, parent = #mma1}>>
%17 = tt.make_range {end = 128 : i32, start = 0 : i32} : tensor<128xi32, #triton_gpu.slice<{dim = 1, parent = #blocked2}>>
%18 = tt.make_range {end = 128 : i32, start = 0 : i32} : tensor<128xi32, #triton_gpu.slice<{dim = 1, parent = #mma0}>>
%19 = tt.splat %arg14 : (i32) -> tensor<128x1xi32, #blocked1>
%20 = tt.splat %arg14 : (i32) -> tensor<128x1xi32, #mma1>
%20 = tt.splat %arg14 : (i32) -> tensor<128x1xi32, #blocked2>
%21 = tt.make_range {end = 64 : i32, start = 0 : i32} : tensor<64xi32, #triton_gpu.slice<{dim = 0, parent = #blocked1}>>
%22 = tt.make_range {end = 64 : i32, start = 0 : i32} : tensor<64xi32, #triton_gpu.slice<{dim = 0, parent = #mma1}>>
%22 = tt.make_range {end = 64 : i32, start = 0 : i32} : tensor<64xi32, #triton_gpu.slice<{dim = 0, parent = #blocked2}>>
%23 = tt.expand_dims %21 {axis = 0 : i32} : (tensor<64xi32, #triton_gpu.slice<{dim = 0, parent = #blocked1}>>) -> tensor<1x64xi32, #blocked1>
%24 = tt.broadcast %23 : (tensor<1x64xi32, #blocked1>) -> tensor<128x64xi32, #blocked1>
%25 = tt.expand_dims %22 {axis = 0 : i32} : (tensor<64xi32, #triton_gpu.slice<{dim = 0, parent = #mma1}>>) -> tensor<1x64xi32, #mma1>
%26 = tt.broadcast %25 : (tensor<1x64xi32, #mma1>) -> tensor<128x64xi32, #mma1>
%25 = tt.expand_dims %22 {axis = 0 : i32} : (tensor<64xi32, #triton_gpu.slice<{dim = 0, parent = #blocked2}>>) -> tensor<1x64xi32, #blocked2>
%26 = tt.broadcast %25 : (tensor<1x64xi32, #blocked2>) -> tensor<128x64xi32, #blocked2>
%27 = tt.splat %6 : (!tt.ptr<f16>) -> tensor<128x64x!tt.ptr<f16>, #blocked1>
%28 = tt.splat %arg17 : (i32) -> tensor<128x1xi32, #blocked1>
%29 = tt.splat %7 : (!tt.ptr<f16>) -> tensor<128x64x!tt.ptr<f16>, #blocked1>
%30 = tt.splat %8 : (!tt.ptr<f16>) -> tensor<128x64x!tt.ptr<f16>, #blocked1>
%31 = tt.splat %9 : (!tt.ptr<f16>) -> tensor<128x64x!tt.ptr<f16>, #blocked1>
%32 = tt.splat %10 : (!tt.ptr<f32>) -> tensor<128x64x!tt.ptr<f32>, #mma1>
%32 = tt.splat %10 : (!tt.ptr<f32>) -> tensor<128x64x!tt.ptr<f32>, #blocked2>
%33 = arith.muli %0, %arg23 : i32
%34 = tt.addptr %arg11, %33 : !tt.ptr<f32>, i32
%35 = tt.addptr %arg10, %33 : !tt.ptr<f32>, i32
@@ -57,7 +58,7 @@ module attributes {"triton_gpu.num-warps" = 8 : i32} {
%40 = tt.splat %34 : (!tt.ptr<f32>) -> tensor<128x!tt.ptr<f32>, #blocked0>
%41 = arith.muli %arg14, %c128_i32 : i32
%42 = tt.splat %41 : (i32) -> tensor<128x64xi32, #blocked1>
%43 = tt.splat %41 : (i32) -> tensor<128x64xi32, #mma1>
%43 = tt.splat %41 : (i32) -> tensor<128x64xi32, #blocked2>
%44 = tt.splat %12 : (!tt.ptr<f16>) -> tensor<128x64x!tt.ptr<f16>, #blocked1>
%45 = tt.splat %11 : (!tt.ptr<f16>) -> tensor<128x64x!tt.ptr<f16>, #blocked1>
scf.for %arg25 = %c0 to %13 step %c1 {
@@ -65,11 +66,11 @@ module attributes {"triton_gpu.num-warps" = 8 : i32} {
%47 = arith.muli %46, %c128_i32 : i32
%48 = tt.splat %47 : (i32) -> tensor<128xi32, #triton_gpu.slice<{dim = 1, parent = #blocked1}>>
%49 = tt.splat %47 : (i32) -> tensor<128xi32, #triton_gpu.slice<{dim = 0, parent = #mma0}>>
%50 = tt.splat %47 : (i32) -> tensor<128xi32, #triton_gpu.slice<{dim = 1, parent = #mma1}>>
%50 = tt.splat %47 : (i32) -> tensor<128xi32, #triton_gpu.slice<{dim = 1, parent = #blocked2}>>
%51 = arith.addi %48, %15 : tensor<128xi32, #triton_gpu.slice<{dim = 1, parent = #blocked1}>>
%52 = arith.addi %50, %17 : tensor<128xi32, #triton_gpu.slice<{dim = 1, parent = #mma1}>>
%52 = arith.addi %50, %17 : tensor<128xi32, #triton_gpu.slice<{dim = 1, parent = #blocked2}>>
%53 = tt.expand_dims %51 {axis = 1 : i32} : (tensor<128xi32, #triton_gpu.slice<{dim = 1, parent = #blocked1}>>) -> tensor<128x1xi32, #blocked1>
%54 = tt.expand_dims %52 {axis = 1 : i32} : (tensor<128xi32, #triton_gpu.slice<{dim = 1, parent = #mma1}>>) -> tensor<128x1xi32, #mma1>
%54 = tt.expand_dims %52 {axis = 1 : i32} : (tensor<128xi32, #triton_gpu.slice<{dim = 1, parent = #blocked2}>>) -> tensor<128x1xi32, #blocked2>
%55 = arith.muli %53, %28 : tensor<128x1xi32, #blocked1>
%56 = tt.broadcast %55 : (tensor<128x1xi32, #blocked1>) -> tensor<128x64xi32, #blocked1>
%57 = arith.addi %56, %24 : tensor<128x64xi32, #blocked1>
@@ -88,13 +89,13 @@ module attributes {"triton_gpu.num-warps" = 8 : i32} {
%70 = tt.broadcast %69 : (tensor<1x128xi32, #mma0>) -> tensor<128x128xi32, #mma0>
%71 = triton_gpu.convert_layout %64 : (tensor<128x64xf16, #blocked1>) -> tensor<128x64xf16, #shared1>
%72 = tt.trans %71 : (tensor<128x64xf16, #shared1>) -> tensor<64x128xf16, #shared0>
%73 = arith.muli %54, %20 : tensor<128x1xi32, #mma1>
%74 = tt.broadcast %73 : (tensor<128x1xi32, #mma1>) -> tensor<128x64xi32, #mma1>
%75 = arith.addi %74, %26 : tensor<128x64xi32, #mma1>
%76 = tt.addptr %32, %75 : tensor<128x64x!tt.ptr<f32>, #mma1>, tensor<128x64xi32, #mma1>
%73 = arith.muli %54, %20 : tensor<128x1xi32, #blocked2>
%74 = tt.broadcast %73 : (tensor<128x1xi32, #blocked2>) -> tensor<128x64xi32, #blocked2>
%75 = arith.addi %74, %26 : tensor<128x64xi32, #blocked2>
%76 = tt.addptr %32, %75 : tensor<128x64x!tt.ptr<f32>, #blocked2>, tensor<128x64xi32, #blocked2>
%77 = tt.addptr %27, %62 : tensor<128x64x!tt.ptr<f16>, #blocked1>, tensor<128x64xi32, #blocked1>
%78 = tt.addptr %31, %62 : tensor<128x64x!tt.ptr<f16>, #blocked1>, tensor<128x64xi32, #blocked1>
%79:5 = scf.for %arg26 = %65 to %37 step %c128 iter_args(%arg27 = %cst, %arg28 = %cst, %arg29 = %76, %arg30 = %77, %arg31 = %78) -> (tensor<128x64xf32, #mma1>, tensor<128x64xf32, #mma1>, tensor<128x64x!tt.ptr<f32>, #mma1>, tensor<128x64x!tt.ptr<f16>, #blocked1>, tensor<128x64x!tt.ptr<f16>, #blocked1>) {
%79:5 = scf.for %arg26 = %65 to %37 step %c128 iter_args(%arg27 = %cst, %arg28 = %cst, %arg29 = %76, %arg30 = %77, %arg31 = %78) -> (tensor<128x64xf32, #mma1>, tensor<128x64xf32, #mma1>, tensor<128x64x!tt.ptr<f32>, #blocked2>, tensor<128x64x!tt.ptr<f16>, #blocked1>, tensor<128x64x!tt.ptr<f16>, #blocked1>) {
%86 = arith.index_cast %arg26 : index to i32
%87 = tt.splat %86 : (i32) -> tensor<128xi32, #blocked0>
%88 = tt.splat %86 : (i32) -> tensor<128xi32, #triton_gpu.slice<{dim = 1, parent = #mma0}>>
@@ -142,15 +143,17 @@ module attributes {"triton_gpu.num-warps" = 8 : i32} {
%128 = triton_gpu.convert_layout %127 : (tensor<128x128xf16, #shared0>) -> tensor<128x128xf16, #triton_gpu.dot_op<{opIdx = 0, parent = #mma1}>>
%129 = triton_gpu.convert_layout %90 : (tensor<128x64xf16, #shared1>) -> tensor<128x64xf16, #triton_gpu.dot_op<{opIdx = 1, parent = #mma1}>>
%130 = tt.dot %128, %129, %arg28 {allowTF32 = true} : tensor<128x128xf16, #triton_gpu.dot_op<{opIdx = 0, parent = #mma1}>> * tensor<128x64xf16, #triton_gpu.dot_op<{opIdx = 1, parent = #mma1}>> -> tensor<128x64xf32, #mma1>
%132 = tt.load %arg29 {cache = 1 : i32, evict = 1 : i32, isVolatile = false} : tensor<128x64xf32, #mma1>
//%133 = triton_gpu.convert_layout %126 : (tensor<128x128xf16, #shared1>) -> tensor<128x128xf16, #triton_gpu.dot_op<{opIdx = 0, parent = #mma1}>>
//%134 = triton_gpu.convert_layout %66 : (tensor<128x64xf16, #shared1>) -> tensor<128x64xf16, #triton_gpu.dot_op<{opIdx = 1, parent = #mma1}>>
//%135 = tt.dot %133, %134, %132 {allowTF32 = true} : tensor<128x128xf16, #triton_gpu.dot_op<{opIdx = 0, parent = #mma1}>> * tensor<128x64xf16, #triton_gpu.dot_op<{opIdx = 1, parent = #mma1}>> -> tensor<128x64xf32, #mma1>
tt.store %arg29, %132 : tensor<128x64xf32, #mma1>
%137 = tt.addptr %arg29, %43 : tensor<128x64x!tt.ptr<f32>, #mma1>, tensor<128x64xi32, #mma1>
%131 = tt.load %arg29 {cache = 1 : i32, evict = 1 : i32, isVolatile = false} : tensor<128x64xf32, #blocked2>
%133 = triton_gpu.convert_layout %126 : (tensor<128x128xf16, #shared1>) -> tensor<128x128xf16, #triton_gpu.dot_op<{opIdx = 0, parent = #mma1}>>
%134 = triton_gpu.convert_layout %66 : (tensor<128x64xf16, #shared1>) -> tensor<128x64xf16, #triton_gpu.dot_op<{opIdx = 1, parent = #mma1}>>
%135 = tt.dot %133, %134, %cst_10 {allowTF32 = true} : tensor<128x128xf16, #triton_gpu.dot_op<{opIdx = 0, parent = #mma1}>> * tensor<128x64xf16, #triton_gpu.dot_op<{opIdx = 1, parent = #mma1}>> -> tensor<128x64xf32, #mma1>
%136 = triton_gpu.convert_layout %135 : (tensor<128x64xf32, #mma1>) -> tensor<128x64xf32, #blocked2>
%140 = arith.addf %136, %131 : tensor<128x64xf32, #blocked2>
tt.store %arg29, %140: tensor<128x64xf32, #blocked2>
%137 = tt.addptr %arg29, %43 : tensor<128x64x!tt.ptr<f32>, #blocked2>, tensor<128x64xi32, #blocked2>
%138 = tt.addptr %arg30, %42 : tensor<128x64x!tt.ptr<f16>, #blocked1>, tensor<128x64xi32, #blocked1>
%139 = tt.addptr %arg31, %42 : tensor<128x64x!tt.ptr<f16>, #blocked1>, tensor<128x64xi32, #blocked1>
scf.yield %113, %130, %137, %138, %139 : tensor<128x64xf32, #mma1>, tensor<128x64xf32, #mma1>, tensor<128x64x!tt.ptr<f32>, #mma1>, tensor<128x64x!tt.ptr<f16>, #blocked1>, tensor<128x64x!tt.ptr<f16>, #blocked1>
scf.yield %113, %130, %137, %138, %139 : tensor<128x64xf32, #mma1>, tensor<128x64xf32, #mma1>, tensor<128x64x!tt.ptr<f32>, #blocked2>, tensor<128x64x!tt.ptr<f16>, #blocked1>, tensor<128x64x!tt.ptr<f16>, #blocked1>
}
%82 = tt.addptr %44, %62 : tensor<128x64x!tt.ptr<f16>, #blocked1>, tensor<128x64xi32, #blocked1>
%81 = arith.truncf %79#0 : tensor<128x64xf32, #mma1> to tensor<128x64xf16, #mma1>