[TRITON][NN][CONV] Renamed input -> x to not modify built-in functions

This commit is contained in:
Philippe Tillet
2020-02-25 10:56:39 -05:00
committed by Philippe Tillet
parent 420e36a038
commit 926acc2e28

View File

@@ -6,7 +6,7 @@ import torch.nn.functional as F
class _conv2d(torch.autograd.Function): class _conv2d(torch.autograd.Function):
@staticmethod @staticmethod
def forward(ctx, input, weight, bias, def forward(ctx, x, weight, bias,
stride, padding, dilation, groups, stride, padding, dilation, groups,
acc_bitmask): acc_bitmask):
assert dilation == (1, 1) assert dilation == (1, 1)
@@ -14,25 +14,25 @@ class _conv2d(torch.autograd.Function):
assert bias == None assert bias == None
pad_h, pad_w = padding pad_h, pad_w = padding
stride_h, stride_w = stride stride_h, stride_w = stride
n, c, h, w = input.size() n, c, h, w = x.size()
k, c, r, s = weight.size() k, c, r, s = weight.size()
# allocate output # allocate output
p = (h + 2*padding[0] - r)//stride[0] + 1 p = (h + 2*padding[0] - r)//stride[0] + 1
q = (w + 2*padding[1] - s)//stride[1] + 1 q = (w + 2*padding[1] - s)//stride[1] + 1
output = torch.empty((n, k, p, q), dtype=input.dtype, device=input.device) output = torch.empty((n, k, p, q), dtype=x.dtype, device=x.device)
# padding # padding
if pad_h or pad_w: if pad_h or pad_w:
input = triton.ops._einsum.pad(input, [pad_w, pad_w, pad_h, pad_h]) x = triton.ops._einsum.pad(x, [pad_w, pad_w, pad_h, pad_h])
# convolution # convolution
triton.ops.einsum(f'nc(h*stride_h + r - pad_h)(w*stride_w + s - pad_w),kcrs->nkhw', triton.ops.einsum(f'nc(h*stride_h + r - pad_h)(w*stride_w + s - pad_w),kcrs->nkhw',
input, weight, mask=acc_bitmask, x, weight, mask=acc_bitmask,
output=output, output=output,
values = {'pad_h': pad_h, values = {'pad_h': pad_h,
'stride_h': stride_h, 'stride_h': stride_h,
'pad_w': pad_w, 'pad_w': pad_w,
'stride_w': stride_w}) 'stride_w': stride_w})
# prepare backprop # prepare backprop
ctx.save_for_backward(input, weight) ctx.save_for_backward(x, weight)
ctx.stride = stride ctx.stride = stride
ctx.padding = padding ctx.padding = padding
ctx.acc_bitmask = acc_bitmask ctx.acc_bitmask = acc_bitmask
@@ -42,7 +42,7 @@ class _conv2d(torch.autograd.Function):
@staticmethod @staticmethod
def backward(ctx, dy): def backward(ctx, dy):
# retrieve contextual information # retrieve contextual information
input, weight = ctx.saved_tensors x, weight = ctx.saved_tensors
stride = ctx.stride stride = ctx.stride
padding = ctx.padding padding = ctx.padding
acc_bitmask = ctx.acc_bitmask acc_bitmask = ctx.acc_bitmask
@@ -51,13 +51,13 @@ class _conv2d(torch.autograd.Function):
if ctx.needs_input_grad[0]: if ctx.needs_input_grad[0]:
# dy must be padded # dy must be padded
n, k, p, q = dy.size() n, k, p, q = dy.size()
n, c, h, w = input.size() n, c, h, w = x.size()
k, c, r, s = weight.size() k, c, r, s = weight.size()
dypad = triton.ops._einsum.pad(dy, [4, 4, 4, 4]) dypad = triton.ops._einsum.pad(dy, [4, 4, 4, 4])
# have to be careful here # have to be careful here
# the gradient of strided conv is a conv over a sparse image # the gradient of strided conv is a conv over a sparse image
# which can be decomposed as a set of smaller convs # which can be decomposed as a set of smaller convs
dx = torch.empty_like(input) dx = torch.empty_like(x)
for offh in range(stride[0]): for offh in range(stride[0]):
for offw in range(stride[1]): for offw in range(stride[1]):
poffh = (offh + padding[0]) % stride[0] poffh = (offh + padding[0]) % stride[0]
@@ -74,15 +74,13 @@ class _conv2d(torch.autograd.Function):
mask = acc_bitmask, mask = acc_bitmask,
values = {'pad_h': pad_h, values = {'pad_h': pad_h,
'pad_w': pad_w}) 'pad_w': pad_w})
#if stride[0] == 2 and r == 3:
# print('dx: ', dx[0,0,0,0])
# gradient for the weight # gradient for the weight
dw = None dw = None
if ctx.needs_input_grad[1]: if ctx.needs_input_grad[1]:
dw = torch.empty_like(weight) dw = torch.empty_like(weight)
triton.ops.einsum(f'nc(p*{stride[0]}+r-{padding[0]})(q*{stride[1]}+s-{padding[1]}),nkpq->kcrs', triton.ops.einsum(f'nc(p*{stride[0]}+r-{padding[0]})(q*{stride[1]}+s-{padding[1]}),nkpq->kcrs',
input, dy, output = dw, mask = acc_bitmask) x, dy, output = dw, mask = acc_bitmask)
#print('dw: ', dw.view(-1)[0]) #print('dw: ', dw.view(-1)[0])
return dx, dw, None, None, None, None, None, None return dx, dw, None, None, None, None, None, None
conv2d = _conv2d.apply conv2d = _conv2d.apply
@@ -100,7 +98,7 @@ class Conv2d(nn.Conv2d):
def forward(self, input): def forward(self, input):
#if self.kernel_size[0] == 3 and self.stride[0] != 1: #if self.kernel_size[0] == 3 and self.stride[0] != 1:
# print(self.padding, self.stride, input.size(), self.weight.size()) #print(self.padding, self.stride, input.size(), self.weight.size())
# return F.conv2d(input, self.weight, self.bias, self.stride, self.padding, self.dilation, self.groups) # return F.conv2d(input, self.weight, self.bias, self.stride, self.padding, self.dilation, self.groups)
return conv2d(input, self.weight, self.bias, self.stride, return conv2d(input, self.weight, self.bias, self.stride,
self.padding, self.dilation, self.groups, self.padding, self.dilation, self.groups,
@@ -127,13 +125,14 @@ def replace_conv2d(model, acc_bitmask = None):
#torch.Size([128, 256, 8, 8]) torch.Size([512, 256, 3, 3]) #torch.Size([128, 256, 8, 8]) torch.Size([512, 256, 3, 3])
if __name__ == '__main__': if __name__ == '__main__':
#N, C, H, W, K, RS = 128, 64, 30, 30, 128, 3 N, C, H, W, K, RS = 128, 64, 30, 30, 128, 1
#N, C, H, W, K, RS = 128, 128, 15, 15, 256, 3 #N, C, H, W, K, RS = 128, 128, 15, 15, 256, 3
N, C, H, W, K, RS = 128, 256, 8, 8, 512, 3 #N, C, H, W, K, RS = 128, 256, 8, 8, 512, 3
pad, stride = 1, 2 pad, stride = 0, 1
torch.manual_seed(0) torch.manual_seed(0)
x = torch.randn((N, C, H, W)).cuda() x = torch.randn((N, C, H, W)).cuda()
x.requires_grad_(True) x.requires_grad_(True)
#x.data[:] = 1
# initialize layers # initialize layers
torch.manual_seed(0) torch.manual_seed(0)
rconv2d = nn.Conv2d(C, K, RS, stride, pad, bias=False).cuda() rconv2d = nn.Conv2d(C, K, RS, stride, pad, bias=False).cuda()
@@ -156,9 +155,10 @@ if __name__ == '__main__':
tdw = tconv2d.weight.grad.clone() tdw = tconv2d.weight.grad.clone()
x.grad.zero_() x.grad.zero_()
# print error # print error
print((ry - ty).abs().max()) diff = lambda x, y: (x - y).abs().max()
print((rdx - tdx).abs().max()) print(diff(ry, ty))
print((rdw - tdw).abs().max()) print(diff(rdx, tdx))
print(diff(rdw, tdw))
#print((rdx - tdx).abs()) #print((rdx - tdx).abs())
#print((rdx[0,0,:,:] - tdx[0,0,:,:])) #print((rdx[0,0,:,:] - tdx[0,0,:,:]))