[TRITON][NN][CONV] Renamed input -> x to not modify built-in functions

This commit is contained in:
Philippe Tillet
2020-02-25 10:56:39 -05:00
committed by Philippe Tillet
parent 420e36a038
commit 926acc2e28

View File

@@ -6,7 +6,7 @@ import torch.nn.functional as F
class _conv2d(torch.autograd.Function):
@staticmethod
def forward(ctx, input, weight, bias,
def forward(ctx, x, weight, bias,
stride, padding, dilation, groups,
acc_bitmask):
assert dilation == (1, 1)
@@ -14,25 +14,25 @@ class _conv2d(torch.autograd.Function):
assert bias == None
pad_h, pad_w = padding
stride_h, stride_w = stride
n, c, h, w = input.size()
n, c, h, w = x.size()
k, c, r, s = weight.size()
# allocate output
p = (h + 2*padding[0] - r)//stride[0] + 1
q = (w + 2*padding[1] - s)//stride[1] + 1
output = torch.empty((n, k, p, q), dtype=input.dtype, device=input.device)
output = torch.empty((n, k, p, q), dtype=x.dtype, device=x.device)
# padding
if pad_h or pad_w:
input = triton.ops._einsum.pad(input, [pad_w, pad_w, pad_h, pad_h])
x = triton.ops._einsum.pad(x, [pad_w, pad_w, pad_h, pad_h])
# convolution
triton.ops.einsum(f'nc(h*stride_h + r - pad_h)(w*stride_w + s - pad_w),kcrs->nkhw',
input, weight, mask=acc_bitmask,
x, weight, mask=acc_bitmask,
output=output,
values = {'pad_h': pad_h,
'stride_h': stride_h,
'pad_w': pad_w,
'stride_w': stride_w})
# prepare backprop
ctx.save_for_backward(input, weight)
ctx.save_for_backward(x, weight)
ctx.stride = stride
ctx.padding = padding
ctx.acc_bitmask = acc_bitmask
@@ -42,7 +42,7 @@ class _conv2d(torch.autograd.Function):
@staticmethod
def backward(ctx, dy):
# retrieve contextual information
input, weight = ctx.saved_tensors
x, weight = ctx.saved_tensors
stride = ctx.stride
padding = ctx.padding
acc_bitmask = ctx.acc_bitmask
@@ -51,13 +51,13 @@ class _conv2d(torch.autograd.Function):
if ctx.needs_input_grad[0]:
# dy must be padded
n, k, p, q = dy.size()
n, c, h, w = input.size()
n, c, h, w = x.size()
k, c, r, s = weight.size()
dypad = triton.ops._einsum.pad(dy, [4, 4, 4, 4])
# have to be careful here
# the gradient of strided conv is a conv over a sparse image
# which can be decomposed as a set of smaller convs
dx = torch.empty_like(input)
dx = torch.empty_like(x)
for offh in range(stride[0]):
for offw in range(stride[1]):
poffh = (offh + padding[0]) % stride[0]
@@ -74,15 +74,13 @@ class _conv2d(torch.autograd.Function):
mask = acc_bitmask,
values = {'pad_h': pad_h,
'pad_w': pad_w})
#if stride[0] == 2 and r == 3:
# print('dx: ', dx[0,0,0,0])
# gradient for the weight
dw = None
if ctx.needs_input_grad[1]:
dw = torch.empty_like(weight)
triton.ops.einsum(f'nc(p*{stride[0]}+r-{padding[0]})(q*{stride[1]}+s-{padding[1]}),nkpq->kcrs',
input, dy, output = dw, mask = acc_bitmask)
x, dy, output = dw, mask = acc_bitmask)
#print('dw: ', dw.view(-1)[0])
return dx, dw, None, None, None, None, None, None
conv2d = _conv2d.apply
@@ -127,13 +125,14 @@ def replace_conv2d(model, acc_bitmask = None):
#torch.Size([128, 256, 8, 8]) torch.Size([512, 256, 3, 3])
if __name__ == '__main__':
#N, C, H, W, K, RS = 128, 64, 30, 30, 128, 3
N, C, H, W, K, RS = 128, 64, 30, 30, 128, 1
#N, C, H, W, K, RS = 128, 128, 15, 15, 256, 3
N, C, H, W, K, RS = 128, 256, 8, 8, 512, 3
pad, stride = 1, 2
#N, C, H, W, K, RS = 128, 256, 8, 8, 512, 3
pad, stride = 0, 1
torch.manual_seed(0)
x = torch.randn((N, C, H, W)).cuda()
x.requires_grad_(True)
#x.data[:] = 1
# initialize layers
torch.manual_seed(0)
rconv2d = nn.Conv2d(C, K, RS, stride, pad, bias=False).cuda()
@@ -156,9 +155,10 @@ if __name__ == '__main__':
tdw = tconv2d.weight.grad.clone()
x.grad.zero_()
# print error
print((ry - ty).abs().max())
print((rdx - tdx).abs().max())
print((rdw - tdw).abs().max())
diff = lambda x, y: (x - y).abs().max()
print(diff(ry, ty))
print(diff(rdx, tdx))
print(diff(rdw, tdw))
#print((rdx - tdx).abs())
#print((rdx[0,0,:,:] - tdx[0,0,:,:]))