More progress on Triton=>TritonGPU conversion (works for matmul)

This commit is contained in:
Yan Da
2022-05-09 21:19:53 +08:00
parent 0c5319eed9
commit 96876a46d1
3 changed files with 64 additions and 32 deletions

View File

@@ -4,8 +4,8 @@
#include "triton/Dialect/TritonGPU/Transforms/TritonGPUConversion.h"
#include "mlir/Transforms/DialectConversion.h"
#include "mlir/Dialect/Arithmetic/IR/Arithmetic.h"
// #include "mlir/IR/BlockAndValueMapping.h"
#include "../PassDetail.h"
#include <llvm-6.0/llvm/Support/ErrorHandling.h>
using namespace mlir;
using namespace mlir::triton;
@@ -155,9 +155,31 @@ struct TritonDotPattern : public OpConversionPattern<triton::DotOp> {
LogicalResult matchAndRewrite(triton::DotOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Type retType = getTypeConverter()->convertType(op.getType());
rewriter.replaceOpWithNewOp<triton::DotOp>(
op, retType, adaptor.a(), adaptor.b(), adaptor.c(), adaptor.allowTF32()
// a & b must be of smem layout
auto aType = adaptor.a().getType().cast<RankedTensorType>();
auto bType = adaptor.b().getType().cast<RankedTensorType>();
Attribute aEncoding = aType.getEncoding();
Attribute bEncoding = bType.getEncoding();
if (!aEncoding || !bEncoding)
return failure();
Value a = adaptor.a();
Value b = adaptor.b();
if (!aEncoding.isa<triton::gpu::TritonGPUSharedEncodingAttr>()) {
Attribute encoding = triton::gpu::TritonGPUSharedEncodingAttr::get(getContext(), 1, 1, 1);
auto dstType = RankedTensorType::get(aType.getShape(), aType.getElementType(), encoding);
a = rewriter.create<triton::gpu::ConvertLayoutOp>(a.getLoc(), dstType, a);
}
if (!bEncoding.isa<triton::gpu::TritonGPUSharedEncodingAttr>()) {
Attribute encoding = triton::gpu::TritonGPUSharedEncodingAttr::get(getContext(), 1, 1, 1);
auto dstType = RankedTensorType::get(bType.getShape(), bType.getElementType(), encoding);
b = rewriter.create<triton::gpu::ConvertLayoutOp>(b.getLoc(), dstType, b);
}
auto newDot = rewriter.replaceOpWithNewOp<triton::DotOp>(
op, retType, a, b, adaptor.c(), adaptor.allowTF32()
);
// auto newDot = rewriter.create<triton::DotOp>(op.getLoc(), retType,
// a, b, adaptor.c(), adaptor.allowTF32());
// rewriter.replaceOp(op, {newDot});
return success();
}
};
@@ -182,7 +204,7 @@ struct TritonStorePattern : public OpConversionPattern<triton::StoreOp> {
LogicalResult matchAndRewrite(triton::StoreOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
rewriter.replaceOpWithNewOp<triton::StoreOp>(
auto newOp = rewriter.replaceOpWithNewOp<triton::StoreOp>(
op, adaptor.ptr(), adaptor.value(), adaptor.mask()
);
return success();
@@ -220,26 +242,24 @@ void populateTritonPatterns(
//
// SCF patterns
//
// This is borrowed from ConvertForOpTypes in
// SCF/Transforms/StructuralTypeConversions.cpp
struct SCFForPattern : public OpConversionPattern<scf::ForOp> {
using OpConversionPattern<scf::ForOp>::OpConversionPattern;
// Ref: ConvertForOpTypes
LogicalResult matchAndRewrite(scf::ForOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
SmallVector<Type> newResultTypes;
for (Type type : op.getResultTypes()) {
Type newType = typeConverter->convertType(type);
if (!newType)
return rewriter.notifyMatchFailure(op, "not a 1:1 type conversion");
newResultTypes.push_back(newType);
}
auto newOp = cast<scf::ForOp>(rewriter.cloneWithoutRegions(*op.getOperation()));
rewriter.inlineRegionBefore(op.getLoopBody(), newOp.getLoopBody(),
newOp.getLoopBody().end());
// Now, update all the types.
// Convert the type of the entry block of the ForOp's body.
// Convert the types of block arguments within the given region. This
// replaces each block with a new block containing the updated signature. The
// entry block may have a special conversion if `entryConversion` is
// provided. On success, the new entry block to the region is returned for
// convenience. Otherwise, failure is returned.
if (failed(rewriter.convertRegionTypes(&newOp.getLoopBody(),
*getTypeConverter()))) {
return rewriter.notifyMatchFailure(op, "could not convert body types");
@@ -248,11 +268,17 @@ struct SCFForPattern : public OpConversionPattern<scf::ForOp> {
// a BlockAndValueMapping, but this seems a bit more direct.
newOp->setOperands(adaptor.getOperands());
// Update the result types to the new converted types.
SmallVector<Type> newResultTypes;
for (Type type : op.getResultTypes()) {
Type newType = typeConverter->convertType(type);
if (!newType)
return rewriter.notifyMatchFailure(op, "not a 1:1 type conversion");
newResultTypes.push_back(newType);
}
for (auto t : llvm::zip(newOp.getResults(), newResultTypes))
std::get<0>(t).setType(std::get<1>(t));
rewriter.replaceOp(op, newOp.getResults());
return success();
return success();
}
@@ -277,8 +303,7 @@ void populateSCFPatterns(
TritonGPUTypeConverter &typeConverter, RewritePatternSet &patterns
) {
MLIRContext *context = patterns.getContext();
patterns.add<SCFForPattern,
SCFYieldPattern
patterns.add<SCFYieldPattern, SCFForPattern
>(typeConverter, context);
}

View File

@@ -41,7 +41,11 @@ TritonGPUSharedEncodingAttr::parse(mlir::AsmParser &parser, ::mlir::Type type) {
}
void TritonGPUSharedEncodingAttr::print(mlir::AsmPrinter &printer) const {
llvm_unreachable("Not implemented");
printer << "<"
// << "threadTileSize = " << getThreadTileSize()
// << ", blockTileSize = " << getBlockTileSize()
// << ", order = " << getOrder()
<< ">";
}
void TritonGPUDialect::initialize() {

View File

@@ -50,9 +50,6 @@ TritonGPUTypeConverter::TritonGPUTypeConverter(MLIRContext *context,
// materailizations
addArgumentMaterialization([&](OpBuilder &builder, RankedTensorType tensorType,
ValueRange inputs, Location loc) {
llvm::errs() << "Trying to materialize target... " << inputs[0] << "\n"
<< "in: \n";
inputs[0].dyn_cast<BlockArgument>().getOwner()->getParentOp()->getParentOp()->print(llvm::errs());
llvm_unreachable("Not implemented");
return llvm::None;
});
@@ -63,8 +60,8 @@ TritonGPUTypeConverter::TritonGPUTypeConverter(MLIRContext *context,
});
addTargetMaterialization([&](OpBuilder &builder, RankedTensorType tensorType,
ValueRange inputs, Location loc) {
assert(inputs.size() == 1);
llvm_unreachable("Not implemented");
// llvm::errs() << "Trying to materialize target... " << inputs[0] << "\n";
return llvm::None;
});
}
@@ -75,13 +72,15 @@ TritonGPUTypeConverter::TritonGPUTypeConverter(MLIRContext *context,
TritonGPUConversionTarget::TritonGPUConversionTarget(
MLIRContext &context, TritonGPUTypeConverter &typeConverter)
: ConversionTarget(context), typeConverter(typeConverter) {
// TODO: we should also verify ops of TritonGPUDialect
addLegalDialect<triton::gpu::TritonGPUDialect>();
// Some ops from SCF are illegal
addIllegalOp<scf::ExecuteRegionOp, scf::ParallelOp,
scf::ReduceOp, scf::ReduceReturnOp>();
addDynamicallyLegalDialect<arith::ArithmeticDialect,
triton::TritonDialect,
triton::gpu::TritonGPUDialect,
StandardOpsDialect,
scf::SCFDialect>([&](Operation *op) {
if (typeConverter.isLegal(op))
@@ -89,14 +88,18 @@ TritonGPUConversionTarget::TritonGPUConversionTarget(
return false;
});
// // We have requirements for the data layouts
// addDynamicallyLegalOp<triton::DotOp>([](triton::DotOp dotOp) -> bool {
// Attribute aEncoding = dotOp.a().getType().cast<RankedTensorType>().getEncoding();
// Attribute bEncoding = dotOp.b().getType().cast<RankedTensorType>().getEncoding();
// if (aEncoding && aEncoding.isa<triton::gpu::TritonGPUSharedEncodingAttr>() &&
// bEncoding && bEncoding.isa<triton::gpu::TritonGPUSharedEncodingAttr>())
// return true;
// return false;
// });
// We have requirements for the data layouts
addDynamicallyLegalOp<triton::DotOp>([this](triton::DotOp dotOp) -> bool {
Attribute aEncoding = dotOp.a().getType().cast<RankedTensorType>().getEncoding();
Attribute bEncoding = dotOp.b().getType().cast<RankedTensorType>().getEncoding();
if (aEncoding && aEncoding.isa<triton::gpu::TritonGPUSharedEncodingAttr>() &&
bEncoding && bEncoding.isa<triton::gpu::TritonGPUSharedEncodingAttr>())
return true;
// TODO: we should delete this
if (this->typeConverter.isLegal(dotOp))
return true;
return false;
});
}