Merge branch 'c-reduction'

This commit is contained in:
Philippe Tillet
2019-09-12 17:04:09 -04:00
19 changed files with 487 additions and 105 deletions

View File

@@ -136,7 +136,7 @@ public:
value *create_dot(value *A, value *B, value *C, const std::string &name = "");
value *create_trans(value *A, const std::vector<constant_int *> &perm = {}, const std::string &name = "");
value *create_sqrt(value *A, const std::string &name = "");
value *create_reduce(value *A, unsigned axis, const std::string &name = "");
value *create_reduce(value *A, reduce_inst::op_t op, unsigned axis, const std::string &name = "");
value *create_select(value *pred, value *if_value, value *else_value, const std::string &name = "");
// Intrinsics
value *create_copy_to_shared(value *arg, const std::string &name = "");

View File

@@ -611,19 +611,28 @@ public:
};
class reduce_inst: public builtin_inst {
public:
enum op_t{
ADD, SUB, MAX, MIN,
FADD, FSUB, FMAX, FMIN
};
private:
static type* get_res_type(value *arg, unsigned axis);
static std::string to_str(op_t op);
private:
reduce_inst(value* arg, unsigned axis, const std::string& name, instruction* next);
std::string repr_impl() const { return "reduce"; }
reduce_inst(value* arg, op_t op, unsigned axis, const std::string& name, instruction* next);
std::string repr_impl() const { return "red<" + std::to_string(axis_) + ">"; }
public:
static instruction* create(value *arg, unsigned axis, const std::string &name = "", instruction *next = nullptr);
static instruction* create(value *arg, op_t op, unsigned axis, const std::string &name = "", instruction *next = nullptr);
unsigned get_axis() const { return axis_; }
op_t get_op() const { return op_; }
private:
unsigned axis_;
op_t op_;
};
class select_inst: public builtin_inst {

View File

@@ -418,22 +418,25 @@ class UnaryOp : public Expr {
friend class LValAssigner;
public:
static UnaryOp* New(int op, Expr* operand, QualType type=nullptr);
static UnaryOp* New(int op, Expr* operand, QualType type=nullptr, int info=0);
virtual ~UnaryOp() {}
virtual void Accept(Visitor* v);
virtual bool IsLVal();
::Type *Convert();
static int encodeRed(int ax, int tag);
static void decodeRed(int info, int& ax, int& tag);
void TypeChecking();
void IncDecOpTypeChecking();
void AddrOpTypeChecking();
void DerefOpTypeChecking();
void ReduceOpTypeChecking();
void TransOpTypeChecking();
void UnaryArithmOpTypeChecking();
void CastOpTypeChecking();
protected:
UnaryOp(int op, Expr* operand, QualType type=nullptr)
: Expr(operand->Tok(), type), op_(op) {
UnaryOp(int op, Expr* operand, QualType type=nullptr, int info=0)
: Expr(operand->Tok(), type), op_(op), info_(info) {
operand_ = operand;
if (op_ != Token::CAST && op_ != Token::ADDR) {
operand_ = MayCast(operand);
@@ -441,6 +444,7 @@ protected:
}
int op_;
int info_;
Expr* operand_;
};

View File

@@ -131,6 +131,8 @@ public:
// TILE ARITHMETICS BEGIN
NEWAXIS,
MAX,
MIN,
// TILE ARITHMETICS END
ALIGNAS, // _Alignas
@@ -180,6 +182,7 @@ public:
PLUS,
MINUS,
CAST,
REDUCE,
// For preprocessor
PP_IF,

View File

@@ -70,7 +70,7 @@ public:
struct options_space_t {
typedef std::pair<std::string, std::vector<std::string>> define_t;
std::vector<define_t> defines;
std::vector<size_t> num_warps;
std::vector<int> num_warps;
};
struct options_t {

View File

@@ -59,16 +59,7 @@ void grids::init_c_graph(ir::instruction *v) {
shapes = atom->get_operand(0)->get_type()->get_tile_shapes();
else if(dynamic_cast<ir::downcast_inst*>(v))
return;
else if(auto *reduce = dynamic_cast<ir::reduce_inst*>(v)) {
unsigned axis = reduce->get_axis();
ir::value *arg = reduce->get_operand(0);
auto in_shapes = arg->get_type()->get_tile_shapes();
unsigned current = 0;
for(unsigned i = 0; i < in_shapes.size(); i++){
if(i == axis)
continue;
add_constraint({reduce, current++}, {arg, i});
}
else if(dynamic_cast<ir::reduce_inst*>(v)) {
return;
}
else
@@ -244,7 +235,6 @@ void grids::run(ir::module &mod) {
unsigned size = i->get_type()->get_tile_num_elements();
/* HMMA parameters*/
if(fragments_.at({i, 0}) == HMMA_FRAGMENT_C){
/* fragments per warp */
// try to make things as square as possible to maximize data re-use
std::vector<unsigned> fpw = {1, 1, 1};
@@ -285,7 +275,6 @@ void grids::run(ir::module &mod) {
if(num_warps_ != effective_num_warps)
throw std::runtime_error("cannot create a kernel with this amount of warps");
}
/* Scan-line */

View File

@@ -923,52 +923,74 @@ void selection::lower_downcast(ir::downcast_inst *x, LLVMContext &ctx, Function
}
void selection::lower_reduce(ir::reduce_inst *x, LLVMContext &ctx, Function *fn, IRBuilder<> &builder) {
ir::instruction *ins = (ir::instruction*)x;
Module *module = fn->getParent();
std::map<indices_t, Value*> partial;
ir::value *op = x->get_operand(0);
distributed_tile* op_tile = (distributed_tile*)tmap_.at(op);
ir::value *arg = x->get_operand(0);
distributed_tile* arg_tile = (distributed_tile*)tmap_.at(arg);
ir::reduce_inst::op_t op = x->get_op();
auto accumulate = [&](Value* x, Value *y) -> Value* {
switch(op) {
case ir::reduce_inst::ADD: return builder.CreateAdd(x, y);
case ir::reduce_inst::SUB: return builder.CreateSub(x, y);
case ir::reduce_inst::MAX: return builder.CreateMaximum(x, y);
case ir::reduce_inst::MIN: return builder.CreateMinimum(x, y);
case ir::reduce_inst::FADD: return builder.CreateFAdd(x, y);
case ir::reduce_inst::FSUB: return builder.CreateFSub(x, y);
case ir::reduce_inst::FMAX: return builder.CreateSelect(builder.CreateFCmpOGT(x, y), x, y);
case ir::reduce_inst::FMIN: return builder.CreateSelect(builder.CreateFCmpOLT(x, y), x, y);
default: break;
}
assert(false);
return nullptr;
};
unsigned axis = x->get_axis();
// reduce within thread
op_tile->for_each([&](indices_t idx) {
arg_tile->for_each([&](indices_t idx) {
indices_t pidx = idx;
pidx.erase(pidx.begin() + axis);
Value *current = op_tile->get_value(idx);
pidx[axis] = builder.getInt32(0);
Value *current = arg_tile->get_value(idx);
// current partial result is not initialized -- create
if(partial.find(pidx) == partial.end())
partial[pidx] = current;
// current partial result is initialized -- accumulate
else
partial[pidx] = builder.CreateFAdd(partial[pidx], current);
partial[pidx] = accumulate(partial[pidx], current);
});
// depth
unsigned shape_ax = arg->get_type()->get_tile_shapes()[axis];
unsigned per_thread = arg_tile->axis(axis).values.size();
unsigned depth = shape_ax / per_thread;
// shapes
auto shared_shapes = arg_tile->get_shapes();
shared_shapes[axis] = depth;
// reduce within blocks
unsigned addr_space = sh_mem_ptr_->getType()->getPointerAddressSpace();
Type *res_ty = builder.getFloatTy();
Value *base_ptr = builder.CreateBitCast(sh_mem_ptr_, PointerType::get(res_ty, addr_space));
for(auto& x: partial) {
// current element being computed
Value *lane = axes_.at(params_->get_param_group(op, axis)).thread_id;
Value *lane = axes_.at(params_->get_param_group(arg, axis)).thread_id;
Value *&result = x.second;
indices_t write_idx = x.first;
write_idx.insert(write_idx.begin() + axis, lane);
write_idx[axis] = lane;
// shared memory write pointer
Value *write_offset = shared_tile::shared_offset(builder, op_tile->get_shapes(), write_idx);
Value *write_offset = shared_tile::shared_offset(builder, shared_shapes, write_idx);
Value *write_ptr = builder.CreateGEP(base_ptr, write_offset);
// initialize shared memory
tgt_->add_barrier(module, builder);
builder.CreateStore(result, write_ptr);
// build result
unsigned depth = params_->get_param(op, "wpt.d" + std::to_string(axis))->get_value();
for(unsigned i = depth/2; i > 0; i >>= 1){
// current indices
indices_t current(write_idx.size(), builder.getInt32(0));
current[axis] = builder.getInt32(i);
// shared memory offset
Value *read_offset = shared_tile::shared_offset(builder, op_tile->get_shapes(), current);
Value *read_offset = shared_tile::shared_offset(builder, shared_shapes, current);
Value *is_active = builder.CreateICmpULT(lane, builder.getInt32(i));
read_offset = builder.CreateSelect(is_active, read_offset, builder.getInt32(0));
// shared memory read pointer
@@ -976,25 +998,21 @@ void selection::lower_reduce(ir::reduce_inst *x, LLVMContext &ctx, Function *fn,
tgt_->add_barrier(module, builder);
Value *next = builder.CreateLoad(read_ptr);
// accumulate
result = builder.CreateFAdd(result, next);
result = accumulate(result, next);
// write back
builder.CreateStore(result, write_ptr);
}
// result is on the first lane of shared memory
indices_t final = write_idx;
final[axis] = builder.getInt32(0);
Value *read_offset = shared_tile::shared_offset(builder, op_tile->get_shapes(), final);
Value *read_ptr = builder.CreateGEP(base_ptr, read_offset);
tgt_->add_barrier(module, builder);
result = builder.CreateLoad(read_ptr);
if(tmap_.find(ins) == tmap_.end())
vmap_[ins] = result;
else{
distributed_tile *ti = (distributed_tile*)tmap_[ins];
ti->set_value(x.first, result);
}
}
tgt_->add_barrier(module, builder);
distributed_tile* x_tile = (distributed_tile*)tmap_.at(x);
x_tile->for_each([&](indices_t idx) {
indices_t red_idx = idx;
red_idx.insert(red_idx.begin() + axis, builder.getInt32(0));
Value *read_offset = shared_tile::shared_offset(builder, shared_shapes, red_idx);
Value *read_ptr = builder.CreateGEP(base_ptr, read_offset);
x_tile->set_value(idx, builder.CreateLoad(read_ptr));
});
}
void selection::lower_dynamic_program_idx(ir::nv_dynamic_program_idx_inst *x, LLVMContext &ctx, Function *fn, IRBuilder<> &builder) {

View File

@@ -323,8 +323,8 @@ value *builder::create_sqrt(value *A, const std::string &name) {
return insert(sqrt_inst::create(A, name));
}
value *builder::create_reduce(value *A, unsigned axis, const std::string &name) {
return insert(reduce_inst::create(A, axis, name));
value *builder::create_reduce(value *A, reduce_inst::op_t op, unsigned axis, const std::string &name) {
return insert(reduce_inst::create(A, op, axis, name));
}
value *builder::create_select(value *pred, value *if_value, value *else_value, const std::string &name){

View File

@@ -615,6 +615,23 @@ instruction* sqrt_inst::create(value *arg, const std::string &name, instruction
//===----------------------------------------------------------------------===//
// reduce instructions
//===----------------------------------------------------------------------===//
std::string reduce_inst::to_str(op_t op) {
switch (op) {
case ADD: return "+";
case SUB: return "-";
case MAX: return "imax";
case MIN: return "imin";
case FADD: return "+";
case FSUB: return "-";
case FMAX: return "fmax";
case FMIN: return "fmin";
default: break;
}
assert(false);
return "";
}
type* reduce_inst::get_res_type(value *arg, unsigned axis) {
ir::tile_type::tile_shapes_t shapes = arg->get_type()->get_tile_shapes();
shapes.erase(shapes.begin() + axis);
@@ -625,14 +642,15 @@ type* reduce_inst::get_res_type(value *arg, unsigned axis) {
return tile_type::get(scalar_ty, shapes);
}
reduce_inst::reduce_inst(value *arg, unsigned axis, const std::string &name, instruction *next)
reduce_inst::reduce_inst(value *arg, op_t op, unsigned axis, const std::string &name, instruction *next)
: builtin_inst(get_res_type(arg, axis), 1, 1, name, next),
op_(op),
axis_(axis){
set_operand(0, arg);
}
instruction* reduce_inst::create(value *arg, unsigned axis, const std::string &name, instruction *next) {
return new reduce_inst(arg, axis, name, next);
instruction* reduce_inst::create(value *arg, op_t op, unsigned axis, const std::string &name, instruction *next) {
return new reduce_inst(arg, op, axis, name, next);
}

View File

@@ -448,6 +448,8 @@ void BinaryOp::RangeOpTypeChecking() {
}
void BinaryOp::MaskedDerefOpTypeChecking() {
// auto lhsTileType = lhs_->Type()->ToTile();
// auto rhsTileType = rhs_->Type()->ToTile();
::Type* lhsScalType = TryExtractScalarType(this, lhs_);
::Type* rhsScalType = TryExtractScalarType(this, rhs_);
auto lhsType = lhsScalType->ToArithm();
@@ -572,8 +574,8 @@ void BinaryOp::AssignOpTypeChecking() {
* Unary Operators
*/
UnaryOp* UnaryOp::New(int op, Expr* operand, QualType type) {
auto ret = new (unaryOpPool.Alloc()) UnaryOp(op, operand, type);
UnaryOp* UnaryOp::New(int op, Expr* operand, QualType type, int info) {
auto ret = new (unaryOpPool.Alloc()) UnaryOp(op, operand, type, info);
ret->pool_ = &unaryOpPool;
ret->TypeChecking();
@@ -581,6 +583,18 @@ UnaryOp* UnaryOp::New(int op, Expr* operand, QualType type) {
}
int UnaryOp::encodeRed(int ax, int tag) {
int result = 0;
result |= ax;
result |= tag << 16;
return result;
}
void UnaryOp::decodeRed(int info, int& ax, int& tag) {
ax = info & 0x0000FFFF;
tag = (info & 0xFFFF0000) >> 16;
}
bool UnaryOp::IsLVal() {
// Only deref('*') could be lvalue;
return op_ == Token::DEREF;
@@ -626,6 +640,9 @@ void UnaryOp::TypeChecking() {
case '^':
return TransOpTypeChecking();
case Token::REDUCE:
return ReduceOpTypeChecking();
default:
assert(false);
}
@@ -663,6 +680,16 @@ void UnaryOp::DerefOpTypeChecking() {
type_ = ScalarOrLikeTile(operand_, pointerType->Derived().GetPtr());
}
void UnaryOp::ReduceOpTypeChecking() {
int ax, tag;
decodeRed(info_, ax, tag);
auto tileType = operand_->Type()->ToTile();
if(!tileType)
Error(this, "array expected for reduction operation");
auto shape = tileType->Shape();
shape.erase(shape.begin() + ax);
type_ = TileType::New(shape, tileType->Derived());
}
void UnaryOp::TransOpTypeChecking() {
auto tileType = operand_->Type()->ToTile();

View File

@@ -154,12 +154,24 @@ void Generator::VisitBinaryOp(BinaryOp* binary) {
error_not_implemented();
}
ir::reduce_inst::op_t reduce_op(int tag, bool is_float) {
using ir::reduce_inst;
switch(tag){
case Token::ADD: return is_float ? reduce_inst::FADD : reduce_inst::ADD;
case Token::SUB: return is_float ? reduce_inst::FSUB : reduce_inst::SUB;
case Token::MAX: return is_float ? reduce_inst::FMAX : reduce_inst::MAX;
case Token::MIN: return is_float ? reduce_inst::FMIN : reduce_inst::MIN;
default: break;
}
should_not_happen();
return reduce_inst::op_t();
}
void Generator::VisitUnaryOp(UnaryOp* unary) {
// recursion
Visit(unary->operand_);
ir::value* op = ret_;
ir::value* arg = ret_;
ir::type *arg_ty = arg->get_type();
ir::type *arg_scal_ty = arg_ty->get_scalar_ty();
// return
switch (unary->op_) {
case Token::PREFIX_INC: return error_not_implemented();
@@ -167,13 +179,20 @@ void Generator::VisitUnaryOp(UnaryOp* unary) {
case Token::POSTFIX_INC: return error_not_implemented();
case Token::POSTFIX_DEC: return error_not_implemented();
case Token::ADDR: return error_not_implemented();
case Token::DEREF: return set_ret(bld_->create_load(op));
case Token::DEREF: return set_ret(bld_->create_load(arg));
case Token::PLUS: return error_not_implemented();
case Token::MINUS: return error_not_implemented();
case '~': return set_ret(bld_->create_neg(op));
case '!': return set_ret(bld_->create_not(op));
case Token::CAST: return set_ret(GenCastOp(op, GenIRType(unary->Type(), *ctx_)));
case '^': return set_ret(bld_->create_trans(op));
case '~': return set_ret(bld_->create_neg(arg));
case '!': return set_ret(bld_->create_not(arg));
case Token::CAST: return set_ret(GenCastOp(arg, GenIRType(unary->Type(), *ctx_)));
case '^': return set_ret(bld_->create_trans(arg));
case Token::REDUCE: {
int ax, tag;
UnaryOp::decodeRed(unary->info_, ax, tag);
bool is_float = arg_scal_ty->is_floating_point_ty();
ir::reduce_inst::op_t op = reduce_op(tag, is_float);
return set_ret(bld_->create_reduce(arg, op, ax));
}
default: error_not_implemented();
}
return error_not_implemented();
@@ -412,16 +431,41 @@ void Generator::Gen(ir::module *mod) {
ir::value* Generator::GenBroadcastOp(ir::value* src, ir::type* dst_ty) {
if(src->get_type() == dst_ty)
return src;
if(dst_ty->is_tile_ty()) {
ir::type *src_ty = src->get_type();
auto dst_shapes = dst_ty->get_tile_shapes();
if(!src_ty->is_tile_ty())
return bld_->create_splat(src, dst_shapes);
auto src_shapes = src_ty->get_tile_shapes();
if(src_shapes.size() != dst_shapes.size())
return bld_->create_reshape(src, dst_shapes);
else
if(src_shapes.size() != dst_shapes.size()){
unsigned src_numel = 1;
for(unsigned s: src_shapes)
src_numel *= s;
unsigned dst_numel = 1;
for(unsigned s: dst_shapes)
dst_numel *= s;
if(src_numel == dst_numel)
return bld_->create_reshape(src, dst_shapes);
else {
auto padded_shapes = src_shapes;
while(padded_shapes.size() != dst_shapes.size())
padded_shapes.insert(padded_shapes.begin(), 1);
// check that broadcast is legal
for(size_t d = 0; d < padded_shapes.size(); d++){
if(dst_shapes[d] != padded_shapes[d] &&
padded_shapes[d] != 1)
should_not_happen();
}
// pad and broadcast
ir::value *padded = bld_->create_reshape(src, padded_shapes);
return bld_->create_broadcast(padded, dst_shapes);
}
}
else{
return bld_->create_broadcast(src, dst_shapes);
}
}
return src;
}

View File

@@ -453,21 +453,52 @@ Expr* Parser::ParseSubScripting(Expr* lhs) {
TileType::ShapeInt shape;
size_t i = 0;
const Token* tok;
std::vector<std::pair<int, int>> redInfo;
do {
tok = ts_.Next();
if(tok->tag_ == ':')
shape.push_back(lhsShape[i++]);
else if(tok->tag_ == Token::NEWAXIS)
shape.push_back(1);
else
Error(tok, "only ':' and newaxis are supported in subscripts");
switch(tok->tag_) {
case ':':
shape.push_back(lhsShape[i++]);
break;
case Token::NEWAXIS:
shape.push_back(1);
break;
case Token::ADD:
case Token::SUB:
case Token::MAX:
case Token::MIN:{
int info = UnaryOp::encodeRed(i, tok->tag_);
redInfo.push_back({i, info});
shape.push_back(lhsShape[i++]);
break;
}
default:
Error(tok, "Unexpected subscript symbol encountered at dimension %d", i);
break;
}
}while(ts_.Try(','));
ts_.Expect(']');
if(lhsShape.size() > i)
Error(tok, "broadcasting not using all operand axes");
// create ret tile
TileType *retType = TileType::New(shape, lhsQual);
return UnaryOp::New(Token::CAST, lhs, retType);
Expr* res = lhs;
for(auto r: redInfo){
shape.erase(shape.begin() + r.first);
Type *retType;
if(shape.empty())
retType = lhsQual.GetPtr();
else
retType = TileType::New(shape, lhsQual);
res = UnaryOp::New(Token::REDUCE, res, retType, r.second);
}
if(!shape.empty()){
TileType *retType = TileType::New(shape, lhsQual);
res = UnaryOp::New(Token::CAST, res, retType);
}
return res;
}

View File

@@ -54,6 +54,8 @@ const std::unordered_map<std::string, int> Token::kwTypeMap_ {
{ "_Noreturn", Token::NORETURN },
{ "_Static_assert", Token::STATIC_ASSERT },
{ "_Thread_local", Token::THREAD },
{ "max", Token::MAX },
{ "min", Token::MIN },
};
const std::unordered_map<int, const char*> Token::tagLexemeMap_ {

View File

@@ -157,6 +157,7 @@ function::caller function::autotune(driver::stream* stream, const grid_fn_ty& gr
for(auto it: opt_space_.defines)
cpp.AddMacro(it.first, &opt.defines.at(it.first));
cpp.Process(tokens);
// tokens.Print(stdout);
// parse
Parser parser(tokens);
parser.Parse();
@@ -164,11 +165,7 @@ function::caller function::autotune(driver::stream* stream, const grid_fn_ty& gr
auto ir = make_ir(parser);
// binary code-gen
std::unique_ptr<driver::module> bin;
try{
bin = make_bin(*ir, stream->context(), opt);
}catch(const std::runtime_error& e) {
return;
}
bin = make_bin(*ir, stream->context(), opt);
// kernel uses too much resources
if(!bin)
return;
@@ -204,6 +201,7 @@ std::unique_ptr<driver::module> function::make_bin(ir::module &module, driver::c
codegen::transform::peephole peephole;
codegen::transform::reassociate reassociate(&alignment_info, &grids);
codegen::selection selection(&shmem_allocation, &grids, &shmem_info, &alignment_info, target.get());
// ir::print(module, std::cout);
// run passes
peephole.run(module);
dce.run(module);

27
tests/common/src/reduce.h Normal file
View File

@@ -0,0 +1,27 @@
namespace src {
const char *reduce1d =
R"(
void reduce1d(TYPE * X __noalias __readonly __aligned(16),
TYPE * Y __noalias __readonly __aligned(16),
int N) {
}
)";
const char *reduce2d =
R"(
void reduce2d(TYPE * X __noalias __readonly __aligned(16),
TYPE * Y __noalias __writeonly __aligned(16),
int M, int N, int ldx) {
int ridm = get_program_id(0);
int ridn = get_program_id(1);
int rm[TM] = ridm * TM + 0 ... TM;
int rn[TN] = ridn * TN + 0 ... TN;
TYPE* px[TM, TN] = X + rm[:, newaxis] + rn[newaxis, :] * ldx;
TYPE* py[TY] = Y + RY;
*py = (*px)[RED];
}
)";
}

View File

@@ -9,6 +9,10 @@
namespace drv = triton::driver;
namespace rt = triton::runtime;
/* ------------------------
* Launch Grid
* ------------------------ */
inline size_t ceil(size_t x, size_t y) {
return (x + y - 1) / y;
};
@@ -26,12 +30,116 @@ inline rt::function::grid_fn_ty grid2d(size_t M, size_t N) {
};
}
/* ------------------------
* Tensor Initialization
* ------------------------ */
template<class T>
void init_rand(std::vector<T>& x) {
for(size_t i = 0; i < x.size(); i++)
x[i] = static_cast<T>((double)rand()/RAND_MAX);
}
template<class T>
void init_zeros(std::vector<T>& x) {
for(size_t i = 0; i < x.size(); i++)
x[i] = 0;
}
/* ------------------------
* Loop Nests
* ------------------------ */
void _loop_nest(std::vector<int> const & ranges,
std::function<void(std::vector<int> const &)> const & f){
int D = ranges.size();
std::vector<int> values(D, 0);
// Start with innermost loop
int i = D - 1;
while(true){
// Execute function
f(values);
while(values[i]++ == ranges[i] - 1){
if(i == 0)
return;
values[i--] = 0;
}
i = D - 1;
}
}
/* -----------------------
* TENSOR INDEXING
* ----------------------- */
enum order_t {
ROWMAJOR,
COLMAJOR
};
int offset(const std::vector<int>& idx, const std::vector<int>& shapes) {
int result = idx[0];
for(int i = 1; i < idx.size(); i++)
result += idx[i]*shapes[i-1];
return result;
}
/* -----------------------
* REDUCTION HELPERS
* ----------------------- */
enum reduce_op_t {
ADD,
MAX,
MIN
};
std::string to_str(reduce_op_t op) {
switch (op) {
case ADD: return "+";
case MAX: return "max";
case MIN: return "min";
default: break;
}
assert(false);
return "";
}
template<class T>
std::function<T(T,T)> get_accumulator(reduce_op_t op) {
switch (op) {
case ADD: return [](T x, T y) { return x + y; };
case MAX: return [](T x, T y) { return std::max(x, y); };
case MIN: return [](T x, T y) { return std::min(x, y); };
default: break;
}
assert(false);
return std::function<T(T,T)>();
}
/* -----------------------
* TENSOR COMPARISON
* ----------------------- */
template<class T>
bool diff(const std::vector<T>& hc, const std::vector<T>& rc) {
if(hc.size() != rc.size())
return false;
for(size_t i = 0; i < hc.size(); i++)
if(std::isinf(hc[i]) || std::isnan(hc[i]) || std::abs(hc[i] - rc[i])/std::max(hc[i], rc[i]) > 1e-4){
std::cout << i << " " << hc[i] << " " << rc[i] << std::endl;
return false;
}
return true;
}
/* -----------------------
* PRETTY PRINTING
* ----------------------- */
namespace aux{
template<std::size_t...> struct seq{};
@@ -57,22 +165,23 @@ auto operator<<(std::basic_ostream<Ch, Tr>& os, std::tuple<Args...> const& t)
return os << ")";
}
namespace testing {
template<class T>
bool diff(const std::vector<T>& hc, const std::vector<T>& rc) {
if(hc.size() != rc.size())
return false;
for(size_t i = 0; i < hc.size(); i++)
if(std::isinf(hc[i]) || std::isnan(hc[i]) || std::abs(hc[i] - rc[i])/std::max(hc[i], rc[i]) > 1e-2){
std::cout << i << " " << hc[i] << " " << rc[i] << std::endl;
return false;
}
return true;
}
template<class Ch, class Tr, class T>
std::basic_ostream<Ch, Tr>& operator<<(std::basic_ostream<Ch, Tr>& os, const std::vector<T>& vec) {
os << "{";
for(size_t i = 0; i < vec.size(); i++){
if(i > 0)
os << ", ";
os << vec[i];
}
os << "}";
return os;
}
template<class Ch, class Tr>
std::basic_ostream<Ch, Tr>& operator<<(std::basic_ostream<Ch, Tr>& os, reduce_op_t op) {
return os << to_str(op);
}
#endif

View File

@@ -1,4 +1,4 @@
foreach(PROG dot)
foreach(PROG dot reduce)
set(TARGET unit_${PROG})
add_executable(${TARGET} ${PROG}.cc)
set_target_properties(${TARGET} PROPERTIES OUTPUT_NAME ${TARGET})

View File

@@ -50,7 +50,7 @@ void cpu_ref(bool AT_, bool BT_, size_t M, size_t N, size_t K,
}
bool do_test(drv::stream* stream, bool AT, bool BT, int32_t M, int32_t N, int32_t K, int32_t TM, int32_t TN, int32_t TK, size_t nwarp){
bool do_test(drv::stream* stream, bool AT, bool BT, int32_t M, int32_t N, int32_t K, int32_t TM, int32_t TN, int32_t TK, int nwarp){
typedef float NumericT;
std::string ty = "float";
size_t dt_nbytes = sizeof(NumericT);
@@ -62,12 +62,9 @@ bool do_test(drv::stream* stream, bool AT, bool BT, int32_t M, int32_t N, int32_
int32_t ldb = BT ? N : K;
int32_t ldc = M;
srand(0);
for(size_t i = 0; i < ha.size(); i++)
ha[i] = static_cast<NumericT>((float)rand()/RAND_MAX);
for(size_t i = 0; i < hb.size(); i++)
hb[i] = static_cast<NumericT>((float)rand()/RAND_MAX);
for(size_t i = 0; i < hc.size(); i++)
hc[i] = static_cast<NumericT>((double)0);
init_rand(ha);
init_rand(hb);
init_rand(hc);
auto dc = std::shared_ptr<drv::buffer>(drv::buffer::create(context, hc.size()*dt_nbytes));
auto da = std::shared_ptr<drv::buffer>(drv::buffer::create(context, ha.size()*dt_nbytes));
auto db = std::shared_ptr<drv::buffer>(drv::buffer::create(context, hb.size()*dt_nbytes));
@@ -94,7 +91,7 @@ bool do_test(drv::stream* stream, bool AT, bool BT, int32_t M, int32_t N, int32_
stream->read(&*dc, true, 0, hc);
std::vector<NumericT> rc(hc.size());
cpu_ref(AT, BT, M, N, K, rc, ha, hb);
return testing::diff(hc, rc);
return diff(hc, rc);
}
int main() {

106
tests/unit/reduce.cc Normal file
View File

@@ -0,0 +1,106 @@
#include <iomanip>
#include <cstring>
#include <sstream>
#include <cstdio>
#include <functional>
#include "triton/driver/backend.h"
#include "triton/driver/stream.h"
#include "triton/tools/bench.hpp"
#include "triton/external/half.hpp"
#include "triton/runtime/function.h"
#include "src/reduce.h"
#include "cuda/cublas.h"
#include "util.h"
namespace drv = triton::driver;
namespace rt = triton::runtime;
template<class T>
void reduce_nd(std::vector<T> &y, const std::vector<T> &x, reduce_op_t op, size_t axis, const std::vector<int>& shapes) {
assert(axis <= shapes.size() - 1);
// remove shape at index axis to get outer dimensions
std::vector<int> outer = shapes;
outer.erase(outer.begin() + axis);
// retrieve shape at index axis to get inner dimension
int inner = shapes[axis];
// accumualtion function
auto acc = get_accumulator<T>(op);
// iterate over outer dimensions
_loop_nest(outer, [&](const std::vector<int>& y_idx) {
T ret = 0;
auto x_idx = y_idx;
x_idx.insert(x_idx.begin() + axis, 0);
// accumulate over inner dimensions
for(int z = 0; z < inner; z++){
x_idx[axis] = z;
ret = acc(ret, x[offset(x_idx, shapes)]);
}
y[offset(y_idx, outer)] = ret;
});
}
bool do_test(drv::stream* stream, std::vector<int> shape, int axis, reduce_op_t op, int nwarp){
typedef float NumericT;
std::string ty = "float";
size_t dt_nbytes = sizeof(NumericT);
drv::context* context = stream->context();
size_t axy = (axis == 0) ? 1 : 0;
std::string RY = (axis == 0) ? "rn" : "rm";
std::vector<NumericT> hy(shape[axy]);
std::vector<NumericT> ry(shape[axy]);
std::vector<NumericT> hx(shape[0]*shape[1]);
srand(0);
init_zeros(hy);
init_rand(hx);
auto dy = std::shared_ptr<drv::buffer>(drv::buffer::create(context, hy.size()*dt_nbytes));
auto dx = std::shared_ptr<drv::buffer>(drv::buffer::create(context, hx.size()*dt_nbytes));
stream->write(&*dy, true, 0, hy);
stream->write(&*dx, true, 0, hx);
rt::function::options_space_t opt;
opt.defines.push_back({"TYPE", {ty}});
opt.defines.push_back({"TM", {std::to_string(shape[0])}});
opt.defines.push_back({"TN", {std::to_string(shape[1])}});
opt.defines.push_back({"TY", {std::to_string(shape[axy])}});
opt.defines.push_back({"RY", {RY}});
std::string RED = "";
for(int n = 0; n < 2; n++){
if(n > 0)
RED += ", ";
RED += (n==axis) ? to_str(op) : ":";
}
opt.defines.push_back({"RED", {RED}});
opt.num_warps = {nwarp};
rt::function function(src::reduce2d, opt);
function({&*dx, &*dy, shape[0], shape[1], shape[0]}, grid2d(shape[0], shape[1]), stream);
stream->synchronize();
stream->read(&*dy, true, 0, hy);
reduce_nd(ry, hx, op, axis, shape);
return diff(hy, ry);
}
int main() {
// initialize default compute device
auto context = triton::driver::backend::contexts::get_default();
triton::driver::stream* stream = triton::driver::stream::create(context);
// shapes to benchmark
typedef std::tuple<std::vector<int>, int, reduce_op_t> config_t;
std::vector<config_t> configs = {
config_t{{32, 32}, 0, MAX},
config_t{{32, 32}, 1, ADD},
config_t{{32, 64}, 0, ADD},
config_t{{64, 32}, 1, ADD}
};
// does the work
int axis;
std::vector<int> shape;
reduce_op_t op;
for(const auto& c: configs){
std::tie(shape, axis, op) = c;
std::cout << "Testing " << c << " ... " << std::flush;
if(do_test(stream, shape, axis, op, 1))
std::cout << " Pass! " << std::endl;
else
std::cout << " Fail! " << std::endl;
}
}