[GH-PAGES] Updated website

This commit is contained in:
Philippe Tillet
2022-08-22 00:50:12 +00:00
parent 76917619fc
commit 9a6ec45a5b
161 changed files with 290 additions and 290 deletions

View File

@@ -1,4 +1,4 @@
# Sphinx build info version 1
# This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done.
config: 9db37abf114d2bf6098b799c8c2e818a
config: a830d0e16d5d58b48992a9d751c88051
tags: 645f666f9bcd5a90fca523b33c5a78b7

Binary file not shown.

Binary file not shown.

Binary file not shown.

Before

Width:  |  Height:  |  Size: 25 KiB

After

Width:  |  Height:  |  Size: 24 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 16 KiB

After

Width:  |  Height:  |  Size: 16 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 37 KiB

After

Width:  |  Height:  |  Size: 37 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 23 KiB

After

Width:  |  Height:  |  Size: 23 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 59 KiB

After

Width:  |  Height:  |  Size: 59 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 34 KiB

After

Width:  |  Height:  |  Size: 34 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 35 KiB

After

Width:  |  Height:  |  Size: 35 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 22 KiB

After

Width:  |  Height:  |  Size: 22 KiB

View File

@@ -235,17 +235,17 @@ We can now run the decorated function above. Pass `print_data=True` to see the p
0 4096.0 9.600000 9.600000
1 8192.0 19.200000 19.200000
2 16384.0 38.400001 38.400001
3 32768.0 63.999998 76.800002
3 32768.0 76.800002 76.800002
4 65536.0 127.999995 127.999995
5 131072.0 219.428568 219.428568
6 262144.0 341.333321 341.333321
6 262144.0 384.000001 384.000001
7 524288.0 472.615390 472.615390
8 1048576.0 614.400016 614.400016
9 2097152.0 722.823517 702.171410
9 2097152.0 722.823517 722.823517
10 4194304.0 780.190482 780.190482
11 8388608.0 812.429770 812.429770
12 16777216.0 833.084721 833.084721
13 33554432.0 842.004273 842.004273
13 33554432.0 842.004273 843.811163
14 67108864.0 847.448255 848.362445
15 134217728.0 849.737435 850.656574
@@ -255,7 +255,7 @@ We can now run the decorated function above. Pass `print_data=True` to see the p
.. rst-class:: sphx-glr-timing
**Total running time of the script:** ( 1 minutes 38.773 seconds)
**Total running time of the script:** ( 1 minutes 45.595 seconds)
.. _sphx_glr_download_getting-started_tutorials_01-vector-add.py:

View File

@@ -278,17 +278,17 @@ We will then compare its performance against (1) :code:`torch.softmax` and (2) t
softmax-performance:
N Triton Torch (native) Torch (jit)
0 256.0 546.133347 546.133347 190.511628
1 384.0 585.142862 585.142862 151.703707
2 512.0 655.360017 606.814814 156.038096
3 640.0 682.666684 640.000002 160.000000
0 256.0 546.133347 546.133347 188.321838
1 384.0 614.400016 585.142862 153.600004
2 512.0 655.360017 606.814814 154.566038
3 640.0 706.206879 640.000002 158.759699
4 768.0 722.823517 664.216187 162.754967
.. ... ... ... ...
93 12160.0 812.359066 405.333344 198.429370
94 12288.0 812.429770 415.222812 198.794749
95 12416.0 812.498981 412.149375 198.457532
96 12544.0 810.925276 412.546756 198.569388
97 12672.0 811.007961 412.097543 198.679085
93 12160.0 812.359066 406.179533 198.631953
94 12288.0 812.429770 415.661740 198.895304
95 12416.0 812.498981 412.149375 198.556711
96 12544.0 810.925276 412.546756 198.815254
97 12672.0 811.007961 412.097543 198.873965
[98 rows x 4 columns]
@@ -306,7 +306,7 @@ In the above plot, we can see that:
.. rst-class:: sphx-glr-timing
**Total running time of the script:** ( 3 minutes 26.216 seconds)
**Total running time of the script:** ( 3 minutes 30.581 seconds)
.. _sphx_glr_download_getting-started_tutorials_02-fused-softmax.py:

View File

@@ -459,37 +459,37 @@ We can now compare the performance of our kernel against that of cuBLAS. Here we
matmul-performance:
M cuBLAS ... Triton Triton (+ LeakyReLU)
0 256.0 2.730667 ... 2.978909 2.978909
1 384.0 7.372800 ... 8.507077 7.899428
2 512.0 14.563555 ... 15.420235 15.420235
0 256.0 2.978909 ... 2.978909 3.276800
1 384.0 7.372800 ... 8.507077 8.507077
2 512.0 14.563555 ... 16.384000 16.384000
3 640.0 22.260869 ... 24.380953 24.380953
4 768.0 32.768000 ... 35.389441 34.028308
5 896.0 37.971025 ... 40.140799 39.025776
6 1024.0 51.150050 ... 53.773130 52.428801
7 1152.0 45.242181 ... 48.161033 47.396572
5 896.0 39.025776 ... 40.140799 39.025776
6 1024.0 49.932191 ... 53.773130 52.428801
7 1152.0 45.242181 ... 48.161033 48.161033
8 1280.0 51.200001 ... 57.690139 57.690139
9 1408.0 64.138541 ... 69.009825 68.147202
10 1536.0 80.430545 ... 81.355034 79.526831
11 1664.0 62.929456 ... 63.372618 62.492442
12 1792.0 72.512412 ... 73.460287 59.467852
13 1920.0 69.120002 ... 71.257735 70.892307
13 1920.0 69.120002 ... 71.257735 71.257735
14 2048.0 73.908442 ... 78.398206 77.314362
15 2176.0 83.500614 ... 87.494120 86.367588
16 2304.0 68.251065 ... 78.064941 77.307030
17 2432.0 71.305746 ... 85.915795 83.366361
18 2560.0 77.833728 ... 82.125311 81.108913
19 2688.0 83.186525 ... 90.316801 89.888756
20 2816.0 78.868366 ... 84.197315 83.074685
21 2944.0 80.510553 ... 82.784108 82.784108
22 3072.0 81.943708 ... 85.792579 88.404536
23 3200.0 84.265962 ... 96.676741 95.238096
24 3328.0 82.796202 ... 85.196803 82.417052
25 3456.0 80.783132 ... 85.133652 88.400840
26 3584.0 87.085130 ... 99.463928 90.412661
27 3712.0 82.423549 ... 88.170647 87.246590
28 3840.0 82.654712 ... 91.625518 84.615146
29 3968.0 89.756482 ... 92.197915 85.212248
30 4096.0 93.466385 ... 83.156833 85.652663
15 2176.0 83.500614 ... 87.876193 86.367588
16 2304.0 68.446623 ... 78.064941 77.307030
17 2432.0 71.305746 ... 86.179335 85.653855
18 2560.0 77.833728 ... 82.125311 81.715711
19 2688.0 83.552988 ... 90.748936 89.254248
20 2816.0 83.873477 ... 84.687779 83.873477
21 2944.0 81.967162 ... 81.431424 83.337844
22 3072.0 81.589488 ... 86.712254 88.197981
23 3200.0 84.099871 ... 96.749806 95.238096
24 3328.0 82.939284 ... 85.096096 84.695641
25 3456.0 80.300370 ... 91.615417 86.596744
26 3584.0 83.876297 ... 88.152348 93.857401
27 3712.0 85.528545 ... 83.526206 87.629253
28 3840.0 81.798814 ... 88.086021 90.058629
29 3968.0 87.976885 ... 91.989400 86.296981
30 4096.0 93.142072 ... 83.105343 84.626564
[31 rows x 5 columns]
@@ -499,7 +499,7 @@ We can now compare the performance of our kernel against that of cuBLAS. Here we
.. rst-class:: sphx-glr-timing
**Total running time of the script:** ( 6 minutes 17.908 seconds)
**Total running time of the script:** ( 6 minutes 29.672 seconds)
.. _sphx_glr_download_getting-started_tutorials_03-matrix-multiplication.py:

View File

@@ -40,34 +40,34 @@ Layer Normalization
N Triton Torch Apex
0 1024.0 585.142849 277.694907 468.114273
1 1536.0 630.153868 323.368435 511.999982
2 2048.0 668.734716 337.814445 520.126988
3 2560.0 694.237267 362.477870 518.481028
4 3072.0 702.171410 378.092307 501.551037
5 3584.0 725.873439 384.859062 458.751978
6 4096.0 728.177767 383.251446 451.972420
7 4608.0 670.254540 396.387087 418.909088
8 5120.0 688.403381 397.669909 420.102563
9 5632.0 704.000002 396.969169 411.470331
10 6144.0 702.171410 404.543206 409.600010
11 6656.0 700.631610 400.360920 398.861429
12 7168.0 686.754468 387.459443 387.459443
13 7680.0 678.895043 392.587863 385.203746
14 8192.0 636.271854 391.259714 371.308771
15 8704.0 621.714277 390.095225 379.465939
16 9216.0 604.327881 405.098894 383.002605
17 9728.0 585.142883 409.599987 382.427505
18 10240.0 564.965524 409.600010 382.803739
19 10752.0 546.133312 410.577576 380.601764
20 11264.0 530.070590 401.389743 368.556239
21 11776.0 520.486200 409.599991 376.831982
22 12288.0 516.031509 413.911572 383.251457
23 12800.0 504.433489 409.599981 377.163903
24 13312.0 494.180982 408.030638 376.976995
25 13824.0 482.934503 412.656711 379.389355
26 14336.0 471.967074 402.414053 370.558967
27 14848.0 461.297068 406.099164 374.712936
28 15360.0 454.269882 406.887417 378.092307
29 15872.0 447.098578 407.627589 376.225175
2 2048.0 668.734716 334.367358 520.126988
3 2560.0 694.237267 365.714281 518.481028
4 3072.0 712.347810 378.092307 496.484863
5 3584.0 725.873439 384.859062 451.527536
6 4096.0 728.177767 381.023256 455.111095
7 4608.0 670.254540 394.267384 421.302872
8 5120.0 688.403381 397.669909 424.455959
9 5632.0 698.542675 395.228063 411.470331
10 6144.0 702.171410 402.885254 411.313806
11 6656.0 700.631610 398.861429 400.360920
12 7168.0 690.891575 396.844306 387.459443
13 7680.0 678.895043 393.846167 386.415087
14 8192.0 636.271854 393.609605 372.363633
15 8704.0 627.315309 389.005597 380.502740
16 9216.0 606.814809 407.337026 383.999986
17 9728.0 587.350922 409.599987 382.427505
18 10240.0 564.965524 408.578556 382.803739
19 10752.0 547.872604 411.559798 381.445676
20 11264.0 533.207081 406.826188 373.134567
21 11776.0 520.486200 409.599991 377.587162
22 12288.0 514.680630 413.911572 383.251457
23 12800.0 504.433489 410.420828 376.470582
24 13312.0 494.180982 405.699062 376.976995
25 13824.0 482.934503 411.122660 379.389355
26 14336.0 471.967074 406.695045 374.185964
27 14848.0 461.297068 408.192434 375.304904
28 15360.0 454.269882 406.214870 378.092307
29 15872.0 447.098578 406.974373 376.783377
@@ -393,7 +393,7 @@ Layer Normalization
.. rst-class:: sphx-glr-timing
**Total running time of the script:** ( 5 minutes 34.534 seconds)
**Total running time of the script:** ( 5 minutes 36.337 seconds)
.. _sphx_glr_download_getting-started_tutorials_05-layer-norm.py:

View File

@@ -390,7 +390,7 @@ This is a Triton implementation of the Flash Attention algorithm
.. rst-class:: sphx-glr-timing
**Total running time of the script:** ( 0 minutes 0.076 seconds)
**Total running time of the script:** ( 0 minutes 0.072 seconds)
.. _sphx_glr_download_getting-started_tutorials_06-fused-attention.py:

View File

@@ -5,18 +5,18 @@
Computation times
=================
**16:57.529** total execution time for **getting-started_tutorials** files:
**17:22.279** total execution time for **getting-started_tutorials** files:
+---------------------------------------------------------------------------------------------------------+-----------+--------+
| :ref:`sphx_glr_getting-started_tutorials_03-matrix-multiplication.py` (``03-matrix-multiplication.py``) | 06:17.908 | 0.0 MB |
| :ref:`sphx_glr_getting-started_tutorials_03-matrix-multiplication.py` (``03-matrix-multiplication.py``) | 06:29.672 | 0.0 MB |
+---------------------------------------------------------------------------------------------------------+-----------+--------+
| :ref:`sphx_glr_getting-started_tutorials_05-layer-norm.py` (``05-layer-norm.py``) | 05:34.534 | 0.0 MB |
| :ref:`sphx_glr_getting-started_tutorials_05-layer-norm.py` (``05-layer-norm.py``) | 05:36.337 | 0.0 MB |
+---------------------------------------------------------------------------------------------------------+-----------+--------+
| :ref:`sphx_glr_getting-started_tutorials_02-fused-softmax.py` (``02-fused-softmax.py``) | 03:26.216 | 0.0 MB |
| :ref:`sphx_glr_getting-started_tutorials_02-fused-softmax.py` (``02-fused-softmax.py``) | 03:30.581 | 0.0 MB |
+---------------------------------------------------------------------------------------------------------+-----------+--------+
| :ref:`sphx_glr_getting-started_tutorials_01-vector-add.py` (``01-vector-add.py``) | 01:38.773 | 0.0 MB |
| :ref:`sphx_glr_getting-started_tutorials_01-vector-add.py` (``01-vector-add.py``) | 01:45.595 | 0.0 MB |
+---------------------------------------------------------------------------------------------------------+-----------+--------+
| :ref:`sphx_glr_getting-started_tutorials_06-fused-attention.py` (``06-fused-attention.py``) | 00:00.076 | 0.0 MB |
| :ref:`sphx_glr_getting-started_tutorials_06-fused-attention.py` (``06-fused-attention.py``) | 00:00.072 | 0.0 MB |
+---------------------------------------------------------------------------------------------------------+-----------+--------+
| :ref:`sphx_glr_getting-started_tutorials_04-low-memory-dropout.py` (``04-low-memory-dropout.py``) | 00:00.012 | 0.0 MB |
+---------------------------------------------------------------------------------------------------------+-----------+--------+

View File

@@ -327,22 +327,22 @@ for different problem sizes.</p>
0 4096.0 9.600000 9.600000
1 8192.0 19.200000 19.200000
2 16384.0 38.400001 38.400001
3 32768.0 63.999998 76.800002
3 32768.0 76.800002 76.800002
4 65536.0 127.999995 127.999995
5 131072.0 219.428568 219.428568
6 262144.0 341.333321 341.333321
6 262144.0 384.000001 384.000001
7 524288.0 472.615390 472.615390
8 1048576.0 614.400016 614.400016
9 2097152.0 722.823517 702.171410
9 2097152.0 722.823517 722.823517
10 4194304.0 780.190482 780.190482
11 8388608.0 812.429770 812.429770
12 16777216.0 833.084721 833.084721
13 33554432.0 842.004273 842.004273
13 33554432.0 842.004273 843.811163
14 67108864.0 847.448255 848.362445
15 134217728.0 849.737435 850.656574
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 1 minutes 38.773 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 1 minutes 45.595 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-01-vector-add-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/62d97d49a32414049819dd8bb8378080/01-vector-add.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">01-vector-add.py</span></code></a></p>

View File

@@ -371,17 +371,17 @@ We will then compare its performance against (1) <code class="code docutils lite
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>softmax-performance:
N Triton Torch (native) Torch (jit)
0 256.0 546.133347 546.133347 190.511628
1 384.0 585.142862 585.142862 151.703707
2 512.0 655.360017 606.814814 156.038096
3 640.0 682.666684 640.000002 160.000000
0 256.0 546.133347 546.133347 188.321838
1 384.0 614.400016 585.142862 153.600004
2 512.0 655.360017 606.814814 154.566038
3 640.0 706.206879 640.000002 158.759699
4 768.0 722.823517 664.216187 162.754967
.. ... ... ... ...
93 12160.0 812.359066 405.333344 198.429370
94 12288.0 812.429770 415.222812 198.794749
95 12416.0 812.498981 412.149375 198.457532
96 12544.0 810.925276 412.546756 198.569388
97 12672.0 811.007961 412.097543 198.679085
93 12160.0 812.359066 406.179533 198.631953
94 12288.0 812.429770 415.661740 198.895304
95 12416.0 812.498981 412.149375 198.556711
96 12544.0 810.925276 412.546756 198.815254
97 12672.0 811.007961 412.097543 198.873965
[98 rows x 4 columns]
</pre></div>
@@ -394,7 +394,7 @@ We will then compare its performance against (1) <code class="code docutils lite
Note however that the PyTorch <cite>softmax</cite> operation is more general and will works on tensors of any shape.</p></li>
</ul>
</div></blockquote>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 3 minutes 26.216 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 3 minutes 30.581 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-02-fused-softmax-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/d91442ac2982c4e0cc3ab0f43534afbc/02-fused-softmax.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">02-fused-softmax.py</span></code></a></p>

View File

@@ -567,42 +567,42 @@ torch_output=tensor([[ 1.1045, -36.9688, 31.4688, ..., -11.3906, 24.4531, -3
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>matmul-performance:
M cuBLAS ... Triton Triton (+ LeakyReLU)
0 256.0 2.730667 ... 2.978909 2.978909
1 384.0 7.372800 ... 8.507077 7.899428
2 512.0 14.563555 ... 15.420235 15.420235
0 256.0 2.978909 ... 2.978909 3.276800
1 384.0 7.372800 ... 8.507077 8.507077
2 512.0 14.563555 ... 16.384000 16.384000
3 640.0 22.260869 ... 24.380953 24.380953
4 768.0 32.768000 ... 35.389441 34.028308
5 896.0 37.971025 ... 40.140799 39.025776
6 1024.0 51.150050 ... 53.773130 52.428801
7 1152.0 45.242181 ... 48.161033 47.396572
5 896.0 39.025776 ... 40.140799 39.025776
6 1024.0 49.932191 ... 53.773130 52.428801
7 1152.0 45.242181 ... 48.161033 48.161033
8 1280.0 51.200001 ... 57.690139 57.690139
9 1408.0 64.138541 ... 69.009825 68.147202
10 1536.0 80.430545 ... 81.355034 79.526831
11 1664.0 62.929456 ... 63.372618 62.492442
12 1792.0 72.512412 ... 73.460287 59.467852
13 1920.0 69.120002 ... 71.257735 70.892307
13 1920.0 69.120002 ... 71.257735 71.257735
14 2048.0 73.908442 ... 78.398206 77.314362
15 2176.0 83.500614 ... 87.494120 86.367588
16 2304.0 68.251065 ... 78.064941 77.307030
17 2432.0 71.305746 ... 85.915795 83.366361
18 2560.0 77.833728 ... 82.125311 81.108913
19 2688.0 83.186525 ... 90.316801 89.888756
20 2816.0 78.868366 ... 84.197315 83.074685
21 2944.0 80.510553 ... 82.784108 82.784108
22 3072.0 81.943708 ... 85.792579 88.404536
23 3200.0 84.265962 ... 96.676741 95.238096
24 3328.0 82.796202 ... 85.196803 82.417052
25 3456.0 80.783132 ... 85.133652 88.400840
26 3584.0 87.085130 ... 99.463928 90.412661
27 3712.0 82.423549 ... 88.170647 87.246590
28 3840.0 82.654712 ... 91.625518 84.615146
29 3968.0 89.756482 ... 92.197915 85.212248
30 4096.0 93.466385 ... 83.156833 85.652663
15 2176.0 83.500614 ... 87.876193 86.367588
16 2304.0 68.446623 ... 78.064941 77.307030
17 2432.0 71.305746 ... 86.179335 85.653855
18 2560.0 77.833728 ... 82.125311 81.715711
19 2688.0 83.552988 ... 90.748936 89.254248
20 2816.0 83.873477 ... 84.687779 83.873477
21 2944.0 81.967162 ... 81.431424 83.337844
22 3072.0 81.589488 ... 86.712254 88.197981
23 3200.0 84.099871 ... 96.749806 95.238096
24 3328.0 82.939284 ... 85.096096 84.695641
25 3456.0 80.300370 ... 91.615417 86.596744
26 3584.0 83.876297 ... 88.152348 93.857401
27 3712.0 85.528545 ... 83.526206 87.629253
28 3840.0 81.798814 ... 88.086021 90.058629
29 3968.0 87.976885 ... 91.989400 86.296981
30 4096.0 93.142072 ... 83.105343 84.626564
[31 rows x 5 columns]
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 6 minutes 17.908 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 6 minutes 29.672 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-03-matrix-multiplication-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/d5fee5b55a64e47f1b5724ec39adf171/03-matrix-multiplication.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">03-matrix-multiplication.py</span></code></a></p>

View File

@@ -198,34 +198,34 @@ to download the full example code</p>
N Triton Torch Apex
0 1024.0 585.142849 277.694907 468.114273
1 1536.0 630.153868 323.368435 511.999982
2 2048.0 668.734716 337.814445 520.126988
3 2560.0 694.237267 362.477870 518.481028
4 3072.0 702.171410 378.092307 501.551037
5 3584.0 725.873439 384.859062 458.751978
6 4096.0 728.177767 383.251446 451.972420
7 4608.0 670.254540 396.387087 418.909088
8 5120.0 688.403381 397.669909 420.102563
9 5632.0 704.000002 396.969169 411.470331
10 6144.0 702.171410 404.543206 409.600010
11 6656.0 700.631610 400.360920 398.861429
12 7168.0 686.754468 387.459443 387.459443
13 7680.0 678.895043 392.587863 385.203746
14 8192.0 636.271854 391.259714 371.308771
15 8704.0 621.714277 390.095225 379.465939
16 9216.0 604.327881 405.098894 383.002605
17 9728.0 585.142883 409.599987 382.427505
18 10240.0 564.965524 409.600010 382.803739
19 10752.0 546.133312 410.577576 380.601764
20 11264.0 530.070590 401.389743 368.556239
21 11776.0 520.486200 409.599991 376.831982
22 12288.0 516.031509 413.911572 383.251457
23 12800.0 504.433489 409.599981 377.163903
24 13312.0 494.180982 408.030638 376.976995
25 13824.0 482.934503 412.656711 379.389355
26 14336.0 471.967074 402.414053 370.558967
27 14848.0 461.297068 406.099164 374.712936
28 15360.0 454.269882 406.887417 378.092307
29 15872.0 447.098578 407.627589 376.225175
2 2048.0 668.734716 334.367358 520.126988
3 2560.0 694.237267 365.714281 518.481028
4 3072.0 712.347810 378.092307 496.484863
5 3584.0 725.873439 384.859062 451.527536
6 4096.0 728.177767 381.023256 455.111095
7 4608.0 670.254540 394.267384 421.302872
8 5120.0 688.403381 397.669909 424.455959
9 5632.0 698.542675 395.228063 411.470331
10 6144.0 702.171410 402.885254 411.313806
11 6656.0 700.631610 398.861429 400.360920
12 7168.0 690.891575 396.844306 387.459443
13 7680.0 678.895043 393.846167 386.415087
14 8192.0 636.271854 393.609605 372.363633
15 8704.0 627.315309 389.005597 380.502740
16 9216.0 606.814809 407.337026 383.999986
17 9728.0 587.350922 409.599987 382.427505
18 10240.0 564.965524 408.578556 382.803739
19 10752.0 547.872604 411.559798 381.445676
20 11264.0 533.207081 406.826188 373.134567
21 11776.0 520.486200 409.599991 377.587162
22 12288.0 514.680630 413.911572 383.251457
23 12800.0 504.433489 410.420828 376.470582
24 13312.0 494.180982 405.699062 376.976995
25 13824.0 482.934503 411.122660 379.389355
26 14336.0 471.967074 406.695045 374.185964
27 14848.0 461.297068 408.192434 375.304904
28 15360.0 454.269882 406.214870 378.092307
29 15872.0 447.098578 406.974373 376.783377
</pre></div>
</div>
<div class="line-block">
@@ -543,7 +543,7 @@ to download the full example code</p>
<span class="n">bench_layer_norm</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">save_path</span><span class="o">=</span><span class="s1">&#39;.&#39;</span><span class="p">,</span> <span class="n">print_data</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 5 minutes 34.534 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 5 minutes 36.337 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-05-layer-norm-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/935c0dd0fbeb4b2e69588471cbb2d4b2/05-layer-norm.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">05-layer-norm.py</span></code></a></p>

View File

@@ -548,7 +548,7 @@ to download the full example code</p>
<span class="c1"># bench_flash_attention.run(save_path=&#39;.&#39;, print_data=True)</span>
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 0.076 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 0.072 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-06-fused-attention-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/54a35f6ec55f9746935b9566fb6bb1df/06-fused-attention.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">06-fused-attention.py</span></code></a></p>

View File

@@ -174,7 +174,7 @@
<div class="section" id="computation-times">
<span id="sphx-glr-getting-started-tutorials-sg-execution-times"></span><h1>Computation times<a class="headerlink" href="#computation-times" title="Permalink to this headline"></a></h1>
<p><strong>16:57.529</strong> total execution time for <strong>getting-started_tutorials</strong> files:</p>
<p><strong>17:22.279</strong> total execution time for <strong>getting-started_tutorials</strong> files:</p>
<table class="docutils align-default">
<colgroup>
<col style="width: 85%" />
@@ -183,23 +183,23 @@
</colgroup>
<tbody>
<tr class="row-odd"><td><p><a class="reference internal" href="03-matrix-multiplication.html#sphx-glr-getting-started-tutorials-03-matrix-multiplication-py"><span class="std std-ref">Matrix Multiplication</span></a> (<code class="docutils literal notranslate"><span class="pre">03-matrix-multiplication.py</span></code>)</p></td>
<td><p>06:17.908</p></td>
<td><p>06:29.672</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="05-layer-norm.html#sphx-glr-getting-started-tutorials-05-layer-norm-py"><span class="std std-ref">Layer Normalization</span></a> (<code class="docutils literal notranslate"><span class="pre">05-layer-norm.py</span></code>)</p></td>
<td><p>05:34.534</p></td>
<td><p>05:36.337</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="02-fused-softmax.html#sphx-glr-getting-started-tutorials-02-fused-softmax-py"><span class="std std-ref">Fused Softmax</span></a> (<code class="docutils literal notranslate"><span class="pre">02-fused-softmax.py</span></code>)</p></td>
<td><p>03:26.216</p></td>
<td><p>03:30.581</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="01-vector-add.html#sphx-glr-getting-started-tutorials-01-vector-add-py"><span class="std std-ref">Vector Addition</span></a> (<code class="docutils literal notranslate"><span class="pre">01-vector-add.py</span></code>)</p></td>
<td><p>01:38.773</p></td>
<td><p>01:45.595</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="06-fused-attention.html#sphx-glr-getting-started-tutorials-06-fused-attention-py"><span class="std std-ref">Fused Attention</span></a> (<code class="docutils literal notranslate"><span class="pre">06-fused-attention.py</span></code>)</p></td>
<td><p>00:00.076</p></td>
<td><p>00:00.072</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="04-low-memory-dropout.html#sphx-glr-getting-started-tutorials-04-low-memory-dropout-py"><span class="std std-ref">Low-Memory Dropout</span></a> (<code class="docutils literal notranslate"><span class="pre">04-low-memory-dropout.py</span></code>)</p></td>

File diff suppressed because one or more lines are too long

View File

@@ -1,4 +1,4 @@
# Sphinx build info version 1
# This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done.
config: 4fad19f8c60ab04d95f2686355692b5a
config: 6bd005c2a36785a0d1bb7cfbf20ed4c0
tags: 645f666f9bcd5a90fca523b33c5a78b7

Binary file not shown.

Binary file not shown.

Some files were not shown because too many files have changed in this diff Show More