[GH-PAGES] Updated website

This commit is contained in:
Philippe Tillet
2022-08-22 00:50:12 +00:00
parent 76917619fc
commit 9a6ec45a5b
161 changed files with 290 additions and 290 deletions

View File

@@ -324,13 +324,13 @@ for different problem sizes.</p>
0 4096.0 9.600000 9.600000
1 8192.0 19.200000 19.200000
2 16384.0 38.400001 38.400001
3 32768.0 63.999998 63.999998
3 32768.0 76.800002 76.800002
4 65536.0 127.999995 127.999995
5 131072.0 219.428568 219.428568
6 262144.0 341.333321 384.000001
7 524288.0 472.615390 472.615390
8 1048576.0 614.400016 614.400016
9 2097152.0 722.823517 722.823517
9 2097152.0 722.823517 702.171410
10 4194304.0 780.190482 780.190482
11 8388608.0 812.429770 812.429770
12 16777216.0 833.084721 833.084721
@@ -339,7 +339,7 @@ for different problem sizes.</p>
15 134217728.0 849.737435 850.656574
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 1 minutes 45.148 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 1 minutes 37.395 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-01-vector-add-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/62d97d49a32414049819dd8bb8378080/01-vector-add.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">01-vector-add.py</span></code></a></p>

View File

@@ -374,17 +374,17 @@ We will then compare its performance against (1) <code class="code docutils lite
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>softmax-performance:
N Triton Torch (native) Torch (jit)
0 256.0 512.000001 546.133347 188.321838
1 384.0 614.400016 585.142862 153.600004
2 512.0 655.360017 606.814814 154.566038
0 256.0 512.000001 512.000001 190.511628
1 384.0 585.142862 585.142862 153.600004
2 512.0 655.360017 585.142849 154.566038
3 640.0 682.666684 640.000002 160.000000
4 768.0 722.823517 664.216187 162.754967
.. ... ... ... ...
93 12160.0 814.058574 406.179533 198.834951
94 12288.0 814.111783 416.101597 199.197579
95 12416.0 812.498981 412.149375 198.854847
96 12544.0 812.566838 412.971190 199.111113
97 12672.0 812.633240 412.097543 199.167004
93 12160.0 812.359066 406.179533 198.834951
94 12288.0 814.111783 415.661740 199.096718
95 12416.0 812.498981 412.149375 198.755369
96 12544.0 812.566838 412.971190 199.012395
97 12672.0 812.633240 412.097543 199.069228
[98 rows x 4 columns]
</pre></div>
@@ -397,7 +397,7 @@ We will then compare its performance against (1) <code class="code docutils lite
Note however that the PyTorch <cite>softmax</cite> operation is more general and will works on tensors of any shape.</p></li>
</ul>
</div></blockquote>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 3 minutes 21.863 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 3 minutes 18.756 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-02-fused-softmax-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/d91442ac2982c4e0cc3ab0f43534afbc/02-fused-softmax.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">02-fused-softmax.py</span></code></a></p>

View File

@@ -568,42 +568,42 @@ torch_output=tensor([[ 1.1045, -36.9688, 31.4688, ..., -11.3906, 24.4531, -3
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>matmul-performance:
M cuBLAS ... Triton Triton (+ LeakyReLU)
0 256.0 2.978909 ... 2.978909 2.978909
1 384.0 7.372800 ... 8.507077 7.899428
0 256.0 2.730667 ... 2.978909 2.978909
1 384.0 7.372800 ... 8.507077 8.507077
2 512.0 14.563555 ... 16.384000 15.420235
3 640.0 22.260869 ... 24.380953 24.380953
4 768.0 32.768000 ... 34.028308 34.028308
5 896.0 39.025776 ... 40.140799 39.025776
6 1024.0 51.150050 ... 52.428801 52.428801
7 1152.0 45.242181 ... 47.396572 46.656000
8 1280.0 51.200001 ... 56.888887 56.888887
9 1408.0 64.138541 ... 67.305878 67.305878
10 1536.0 80.430545 ... 79.526831 79.526831
11 1664.0 63.372618 ... 62.492442 62.061463
12 1792.0 72.983276 ... 72.512412 72.047592
13 1920.0 69.120002 ... 70.530615 70.172588
14 2048.0 73.908442 ... 77.314362 76.959706
15 2176.0 83.500614 ... 86.367588 85.632545
16 2304.0 68.251065 ... 77.057651 76.076024
5 896.0 39.025776 ... 39.025776 37.971025
6 1024.0 49.932191 ... 53.773130 52.428801
7 1152.0 45.242181 ... 46.656000 46.656000
8 1280.0 51.200001 ... 56.888887 56.109587
9 1408.0 64.138541 ... 67.305878 66.485074
10 1536.0 80.430545 ... 79.526831 78.643199
11 1664.0 62.929456 ... 62.061463 62.061463
12 1792.0 72.512412 ... 72.047592 71.588687
13 1920.0 69.120002 ... 70.530615 70.530615
14 2048.0 73.908442 ... 76.959706 76.959706
15 2176.0 83.500614 ... 85.998493 85.632545
16 2304.0 68.251065 ... 76.319081 76.563695
17 2432.0 71.305746 ... 74.719317 84.877538
18 2560.0 77.833728 ... 80.908642 80.511054
19 2688.0 83.737433 ... 89.254248 89.888756
20 2816.0 81.369790 ... 82.290955 83.233226
21 2944.0 81.832567 ... 81.564701 82.509987
22 3072.0 82.661468 ... 88.335577 88.060814
23 3200.0 83.009080 ... 95.522391 95.238096
24 3328.0 82.843841 ... 84.052885 84.200347
25 3456.0 80.140726 ... 91.200871 90.892410
26 3584.0 86.540320 ... 94.647779 94.997774
27 3712.0 85.019017 ... 87.475786 87.706180
28 3840.0 84.036474 ... 91.247522 89.295115
29 3968.0 91.540836 ... 83.921126 91.198760
30 4096.0 86.202781 ... 86.480498 91.118618
18 2560.0 77.833728 ... 81.310171 80.908642
19 2688.0 83.004501 ... 88.732296 89.044730
20 2816.0 79.443003 ... 82.290955 83.074685
21 2944.0 82.102191 ... 83.198715 82.373605
22 3072.0 82.181572 ... 87.651868 82.661468
23 3200.0 80.808083 ... 95.808380 94.955488
24 3328.0 83.323259 ... 80.347427 84.596116
25 3456.0 81.477080 ... 86.689860 90.281712
26 3584.0 87.296493 ... 98.483450 93.564405
27 3712.0 84.088676 ... 88.404730 86.791782
28 3840.0 84.615146 ... 92.083268 84.102376
29 3968.0 92.372393 ... 80.278903 84.299785
30 4096.0 90.443212 ... 86.369197 89.538177
[31 rows x 5 columns]
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 5 minutes 25.100 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 5 minutes 18.032 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-03-matrix-multiplication-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/d5fee5b55a64e47f1b5724ec39adf171/03-matrix-multiplication.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">03-matrix-multiplication.py</span></code></a></p>

View File

@@ -194,36 +194,36 @@ to download the full example code</p>
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>layer-norm-backward:
N Triton Torch Apex
0 1024.0 311.088617 99.096776 311.088617
1 1536.0 351.085717 133.083026 341.333333
2 2048.0 423.724127 162.217818 338.979315
3 2560.0 461.954908 182.857144 330.322572
4 3072.0 511.999982 191.501303 315.076914
5 3584.0 554.941930 208.271186 310.527060
0 1024.0 311.088617 99.096776 307.200008
1 1536.0 351.085717 133.083026 338.201833
2 2048.0 423.724127 162.217818 336.657521
3 2560.0 461.954908 182.857144 328.556154
4 3072.0 511.999982 191.501303 320.556515
5 3584.0 554.941930 208.271186 308.301075
6 4096.0 568.231237 220.412561 297.890900
7 4608.0 498.162157 231.849059 290.267724
8 5120.0 525.128191 242.845844 286.433562
9 5632.0 538.517949 243.107920 290.683877
10 6144.0 544.118087 248.661056 286.322318
7 4608.0 498.162157 231.849059 287.251954
8 5120.0 525.128191 242.845844 283.787523
9 5632.0 538.517949 243.545956 290.683877
10 6144.0 542.117638 248.661056 285.767458
11 6656.0 527.207907 256.000009 286.279570
12 7168.0 505.976473 262.243907 288.160801
13 7680.0 482.513091 260.707203 277.172933
14 8192.0 460.440290 268.957600 286.600589
12 7168.0 505.976473 261.844750 288.160801
13 7680.0 482.513091 260.707203 277.590365
14 8192.0 460.440290 268.957600 286.183409
15 8704.0 416.958106 267.815384 285.377055
16 9216.0 428.651187 272.729961 289.507855
17 9728.0 439.683593 280.615388 288.950501
18 10240.0 446.836366 286.767793 290.153487
19 10752.0 430.079980 246.464170 289.941565
20 11264.0 429.786952 245.091565 285.767446
21 11776.0 421.198220 249.227509 288.686414
17 9728.0 439.683593 280.278512 288.950501
18 10240.0 447.650282 286.767793 290.496460
19 10752.0 430.079980 246.464170 290.267711
20 11264.0 429.104745 245.091565 285.767446
21 11776.0 421.198220 249.447482 288.686414
22 12288.0 420.102570 254.453844 295.207195
23 12800.0 415.696898 253.465340 288.180121
23 12800.0 415.696898 253.465340 288.721817
24 13312.0 412.242569 252.559690 290.179836
25 13824.0 405.098897 257.190689 292.571423
25 13824.0 405.098897 257.590056 292.571423
26 14336.0 397.761846 254.673567 286.481278
27 14848.0 384.414233 257.108233 289.246765
28 15360.0 374.443863 257.790220 287.775181
29 15872.0 366.982663 262.890274 291.006885
28 15360.0 374.253788 257.790220 287.550706
29 15872.0 366.982663 262.890274 291.229369
</pre></div>
</div>
<div class="line-block">
@@ -477,7 +477,7 @@ to download the full example code</p>
<span class="n">bench_layer_norm</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">save_path</span><span class="o">=</span><span class="s1">&#39;.&#39;</span><span class="p">,</span> <span class="n">print_data</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 2 minutes 10.934 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 2 minutes 12.525 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-05-layer-norm-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/935c0dd0fbeb4b2e69588471cbb2d4b2/05-layer-norm.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">05-layer-norm.py</span></code></a></p>

View File

@@ -174,7 +174,7 @@
<div class="section" id="computation-times">
<span id="sphx-glr-getting-started-tutorials-sg-execution-times"></span><h1>Computation times<a class="headerlink" href="#computation-times" title="Permalink to this headline"></a></h1>
<p><strong>12:43.056</strong> total execution time for <strong>getting-started_tutorials</strong> files:</p>
<p><strong>12:26.718</strong> total execution time for <strong>getting-started_tutorials</strong> files:</p>
<table class="docutils align-default">
<colgroup>
<col style="width: 85%" />
@@ -183,19 +183,19 @@
</colgroup>
<tbody>
<tr class="row-odd"><td><p><a class="reference internal" href="03-matrix-multiplication.html#sphx-glr-getting-started-tutorials-03-matrix-multiplication-py"><span class="std std-ref">Matrix Multiplication</span></a> (<code class="docutils literal notranslate"><span class="pre">03-matrix-multiplication.py</span></code>)</p></td>
<td><p>05:25.100</p></td>
<td><p>05:18.032</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="02-fused-softmax.html#sphx-glr-getting-started-tutorials-02-fused-softmax-py"><span class="std std-ref">Fused Softmax</span></a> (<code class="docutils literal notranslate"><span class="pre">02-fused-softmax.py</span></code>)</p></td>
<td><p>03:21.863</p></td>
<td><p>03:18.756</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="05-layer-norm.html#sphx-glr-getting-started-tutorials-05-layer-norm-py"><span class="std std-ref">Layer Normalization</span></a> (<code class="docutils literal notranslate"><span class="pre">05-layer-norm.py</span></code>)</p></td>
<td><p>02:10.934</p></td>
<td><p>02:12.525</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="01-vector-add.html#sphx-glr-getting-started-tutorials-01-vector-add-py"><span class="std std-ref">Vector Addition</span></a> (<code class="docutils literal notranslate"><span class="pre">01-vector-add.py</span></code>)</p></td>
<td><p>01:45.148</p></td>
<td><p>01:37.395</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="04-low-memory-dropout.html#sphx-glr-getting-started-tutorials-04-low-memory-dropout-py"><span class="std std-ref">Low-Memory Dropout</span></a> (<code class="docutils literal notranslate"><span class="pre">04-low-memory-dropout.py</span></code>)</p></td>