SinkConversionsFromShared template

This commit is contained in:
Phil Tillet
2023-01-06 13:01:08 -08:00
parent 874ee11ab5
commit a81345f7c1
5 changed files with 49 additions and 29 deletions

View File

@@ -15,6 +15,8 @@ std::unique_ptr<Pass> createTritonGPUCoalescePass();
std::unique_ptr<Pass> createTritonGPUOptimizeLoadConvertPass();
std::unique_ptr<Pass> createTritonGPUSinkConversionsFromSharedPass();
std::unique_ptr<Pass> createTritonGPUCombineOpsPass(int computeCapability = 80);
std::unique_ptr<Pass> createTritonGPUVerifier();

View File

@@ -84,6 +84,18 @@ def TritonGPUOptimizeLoadConvert: Pass<"tritongpu-optimize-load-convert", "mlir:
"mlir::triton::TritonDialect"];
}
def TritonGPUSinkConversionsFromShared: Pass<"tritongpu-sink-conversions-from-shared", "mlir::ModuleOp"> {
let summary = "Sink conversions from shared into loops";
let description = "This pass sinks conversions from shared memory into loops. This will lead the codegen "
"to keep data in shared memory throughout loops, which will reduce register pressure.";
let constructor = "mlir::createTritonGPUSinkConversionsFromSharedPass()";
let dependentDialects = ["mlir::triton::gpu::TritonGPUDialect",
"mlir::triton::TritonDialect"];
}
def TritonGPUCanonicalizeLoops: Pass<"tritongpu-canonicalize-loops", "mlir::ModuleOp"> {
let summary = "canonicalize scf.ForOp ops";

View File

@@ -9,6 +9,7 @@ add_mlir_dialect_library(TritonGPUTransforms
Pipeline.cpp
Prefetch.cpp
OptimizeLoadConvert.cpp
SinkConversionsFromShared.cpp
TritonGPUConversion.cpp
DEPENDS

View File

@@ -1348,6 +1348,11 @@ void init_triton_ir(py::module &&m) {
[](mlir::PassManager &self) {
self.addPass(mlir::createTritonGPUOptimizeLoadConvertPass());
})
.def("add_tritongpu_sink_conversions_from_shared_pass",
[](mlir::PassManager &self) {
self.addPass(
mlir::createTritonGPUSinkConversionsFromSharedPass());
})
.def("add_triton_gpu_to_llvm",
[](mlir::PassManager &self) {
self.addPass(mlir::triton::createConvertTritonGPUToLLVMPass());

View File

@@ -191,7 +191,7 @@ def _bwd_kernel(
tl.store(dv_ptrs, dv)
tl.store(dk_ptrs, dk)
_bwd_kernel = triton.compile("./bwd.ttgir", num_warps=8)
# _bwd_kernel = triton.compile("./bwd.ttgir", num_warps=8)
# _fwd_kernel = triton.compile("./fails.ptx", num_warps=4, shared=18432)
empty = torch.empty(128, device="cuda")
@@ -256,36 +256,36 @@ class _attention(torch.autograd.Function):
BLOCK_M=ctx.BLOCK, D_HEAD=ctx.BLOCK_DMODEL,
)
_bwd_kernel[(ctx.grid[1],1,1)](
q.data_ptr(), k.data_ptr(), v.data_ptr(), ctx.sm_scale,
o.data_ptr(), do_scaled.data_ptr(),
dq.data_ptr(), dk.data_ptr(), dv.data_ptr(),
l.data_ptr(), m.data_ptr(),
delta.data_ptr(),
q.stride(0), q.stride(1), q.stride(2),
k.stride(0), k.stride(1), k.stride(2),
v.stride(0), v.stride(1), v.stride(2),
q.shape[0], q.shape[1], q.shape[2],
ctx.grid[0]
)
# pgm = _bwd_kernel[(ctx.grid[1],)](
# q, k, v, ctx.sm_scale,
# o, do_scaled,
# dq, dk, dv,
# l, m,
# delta,
# q.stride(0), q.stride(1), q.stride(2), q.stride(3),
# k.stride(0), k.stride(1), k.stride(2), k.stride(3),
# v.stride(0), v.stride(1), v.stride(2), v.stride(3),
# _bwd_kernel[(ctx.grid[1],1,1)](
# q.data_ptr(), k.data_ptr(), v.data_ptr(), ctx.sm_scale,
# o.data_ptr(), do_scaled.data_ptr(),
# dq.data_ptr(), dk.data_ptr(), dv.data_ptr(),
# l.data_ptr(), m.data_ptr(),
# delta.data_ptr(),
# q.stride(0), q.stride(1), q.stride(2),
# k.stride(0), k.stride(1), k.stride(2),
# v.stride(0), v.stride(1), v.stride(2),
# q.shape[0], q.shape[1], q.shape[2],
# ctx.grid[0],
# BLOCK_M=ctx.BLOCK, BLOCK_N=ctx.BLOCK,
# BLOCK_DMODEL=ctx.BLOCK_DMODEL, num_warps=8,
# num_stages=1,
# ctx.grid[0]
# )
# print(pgm.asm["ttgir"])
# # exit(1)
pgm = _bwd_kernel[(ctx.grid[1],)](
q, k, v, ctx.sm_scale,
o, do_scaled,
dq, dk, dv,
l, m,
delta,
q.stride(0), q.stride(1), q.stride(2), q.stride(3),
k.stride(0), k.stride(1), k.stride(2), k.stride(3),
v.stride(0), v.stride(1), v.stride(2), v.stride(3),
q.shape[0], q.shape[1], q.shape[2],
ctx.grid[0],
BLOCK_M=ctx.BLOCK, BLOCK_N=ctx.BLOCK,
BLOCK_DMODEL=ctx.BLOCK_DMODEL, num_warps=8,
num_stages=1,
)
print(pgm.asm["ttgir"])
exit(1)
return dq, dk, dv, None