[GH-PAGES] Updated website
@@ -1,4 +1,4 @@
|
||||
# Sphinx build info version 1
|
||||
# This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done.
|
||||
config: e96f0ca1a41f4f95142a50de9f420de8
|
||||
config: 214bb4d8d74b485210d6a58c0171223d
|
||||
tags: 645f666f9bcd5a90fca523b33c5a78b7
|
||||
|
Before Width: | Height: | Size: 30 KiB After Width: | Height: | Size: 29 KiB |
Before Width: | Height: | Size: 18 KiB After Width: | Height: | Size: 18 KiB |
Before Width: | Height: | Size: 37 KiB After Width: | Height: | Size: 37 KiB |
Before Width: | Height: | Size: 23 KiB After Width: | Height: | Size: 23 KiB |
Before Width: | Height: | Size: 60 KiB After Width: | Height: | Size: 59 KiB |
Before Width: | Height: | Size: 34 KiB After Width: | Height: | Size: 34 KiB |
Before Width: | Height: | Size: 33 KiB After Width: | Height: | Size: 33 KiB |
Before Width: | Height: | Size: 21 KiB After Width: | Height: | Size: 21 KiB |
@@ -240,19 +240,19 @@ We can now run the decorated function above. Pass `print_data=True` to see the p
|
||||
0 4096.0 4.800000 9.600000
|
||||
1 8192.0 9.600000 19.200000
|
||||
2 16384.0 17.454545 38.400001
|
||||
3 32768.0 34.909091 63.999998
|
||||
3 32768.0 34.909091 76.800002
|
||||
4 65536.0 69.818181 127.999995
|
||||
5 131072.0 139.636363 219.428568
|
||||
6 262144.0 236.307695 384.000001
|
||||
6 262144.0 219.428568 341.333321
|
||||
7 524288.0 361.411758 472.615390
|
||||
8 1048576.0 472.615390 614.400016
|
||||
9 2097152.0 599.414644 702.171410
|
||||
10 4194304.0 712.347810 780.190482
|
||||
11 8388608.0 774.047204 812.429770
|
||||
10 4194304.0 702.171410 780.190482
|
||||
11 8388608.0 768.000002 812.429770
|
||||
12 16777216.0 812.429770 833.084721
|
||||
13 33554432.0 831.323480 842.004273
|
||||
14 67108864.0 841.103727 848.362445
|
||||
15 134217728.0 846.080710 850.656574
|
||||
15 134217728.0 845.625825 850.656574
|
||||
|
||||
|
||||
|
||||
@@ -260,7 +260,7 @@ We can now run the decorated function above. Pass `print_data=True` to see the p
|
||||
|
||||
.. rst-class:: sphx-glr-timing
|
||||
|
||||
**Total running time of the script:** ( 1 minutes 38.540 seconds)
|
||||
**Total running time of the script:** ( 1 minutes 34.363 seconds)
|
||||
|
||||
|
||||
.. _sphx_glr_download_getting-started_tutorials_01-vector-add.py:
|
||||
|
@@ -279,16 +279,16 @@ We will then compare its performance against (1) :code:`torch.softmax` and (2) t
|
||||
softmax-performance:
|
||||
N Triton Torch (native) Torch (jit)
|
||||
0 256.0 512.000001 546.133347 188.321838
|
||||
1 384.0 585.142862 585.142862 151.703707
|
||||
2 512.0 655.360017 585.142849 156.038096
|
||||
3 640.0 682.666684 640.000002 160.000000
|
||||
1 384.0 585.142862 585.142862 149.853661
|
||||
2 512.0 655.360017 585.142849 154.566038
|
||||
3 640.0 682.666684 640.000002 158.759699
|
||||
4 768.0 722.823517 646.736871 163.839992
|
||||
.. ... ... ... ...
|
||||
93 12160.0 814.058574 405.755985 198.834951
|
||||
94 12288.0 814.111783 415.222812 199.096718
|
||||
95 12416.0 814.163950 412.149375 198.755369
|
||||
96 12544.0 814.214963 412.971190 198.913776
|
||||
97 12672.0 814.265046 412.097543 199.069228
|
||||
93 12160.0 814.058574 405.755985 198.733401
|
||||
94 12288.0 814.111783 415.661740 198.895304
|
||||
95 12416.0 814.163950 412.149375 198.655991
|
||||
96 12544.0 814.214963 412.971190 198.815254
|
||||
97 12672.0 814.265046 412.097543 198.873965
|
||||
|
||||
[98 rows x 4 columns]
|
||||
|
||||
@@ -306,7 +306,7 @@ In the above plot, we can see that:
|
||||
|
||||
.. rst-class:: sphx-glr-timing
|
||||
|
||||
**Total running time of the script:** ( 3 minutes 26.985 seconds)
|
||||
**Total running time of the script:** ( 3 minutes 26.378 seconds)
|
||||
|
||||
|
||||
.. _sphx_glr_download_getting-started_tutorials_02-fused-softmax.py:
|
||||
|
@@ -459,36 +459,36 @@ We can now compare the performance of our kernel against that of cuBLAS. Here we
|
||||
matmul-performance:
|
||||
M cuBLAS ... Triton Triton (+ LeakyReLU)
|
||||
0 256.0 2.730667 ... 2.978909 2.978909
|
||||
1 384.0 7.372800 ... 8.507077 8.507077
|
||||
2 512.0 14.563555 ... 16.384000 16.384000
|
||||
1 384.0 7.372800 ... 7.899428 7.899428
|
||||
2 512.0 14.563555 ... 15.420235 15.420235
|
||||
3 640.0 22.260869 ... 24.380953 24.380953
|
||||
4 768.0 32.768000 ... 35.389441 34.028308
|
||||
5 896.0 37.971025 ... 40.140799 40.140799
|
||||
6 1024.0 49.932191 ... 53.773130 53.773130
|
||||
7 1152.0 45.242181 ... 48.161033 47.396572
|
||||
8 1280.0 51.200001 ... 58.514284 57.690139
|
||||
9 1408.0 64.138541 ... 69.009825 68.147202
|
||||
10 1536.0 80.430545 ... 80.430545 80.430545
|
||||
6 1024.0 49.932191 ... 53.773130 52.428801
|
||||
7 1152.0 44.566925 ... 47.396572 47.396572
|
||||
8 1280.0 51.200001 ... 57.690139 57.690139
|
||||
9 1408.0 64.138541 ... 68.147202 68.147202
|
||||
10 1536.0 79.526831 ... 80.430545 80.430545
|
||||
11 1664.0 62.929456 ... 63.372618 62.929456
|
||||
12 1792.0 72.983276 ... 63.499573 63.142831
|
||||
13 1920.0 69.467336 ... 71.257735 71.257735
|
||||
12 1792.0 72.983276 ... 63.142831 63.142831
|
||||
13 1920.0 69.120002 ... 71.626943 70.892307
|
||||
14 2048.0 73.908442 ... 78.398206 78.033565
|
||||
15 2176.0 83.155572 ... 87.115360 86.739860
|
||||
16 2304.0 68.446623 ... 77.810656 77.307030
|
||||
17 2432.0 71.125224 ... 75.522751 75.118889
|
||||
18 2560.0 77.833728 ... 82.331658 81.715711
|
||||
19 2688.0 83.552988 ... 90.102270 90.748936
|
||||
20 2816.0 79.587973 ... 83.552120 83.552120
|
||||
21 2944.0 82.237674 ... 82.646820 82.784108
|
||||
22 3072.0 82.181572 ... 89.310890 87.246694
|
||||
23 3200.0 78.817733 ... 96.240602 96.096095
|
||||
24 3328.0 82.939284 ... 85.602017 85.806075
|
||||
25 3456.0 78.655188 ... 92.086311 90.994998
|
||||
26 3584.0 83.101104 ... 90.276496 95.249353
|
||||
27 3712.0 85.675250 ... 85.091436 89.114488
|
||||
28 3840.0 79.562590 ... 91.322872 85.136259
|
||||
29 3968.0 93.076994 ... 79.133552 85.510815
|
||||
30 4096.0 87.666706 ... 92.723821 87.267706
|
||||
15 2176.0 83.155572 ... 87.115360 86.367588
|
||||
16 2304.0 68.251065 ... 77.307030 77.307030
|
||||
17 2432.0 71.125224 ... 75.522751 75.320281
|
||||
18 2560.0 77.833728 ... 82.125311 81.715711
|
||||
19 2688.0 82.106182 ... 90.966561 90.102270
|
||||
20 2816.0 80.026067 ... 79.806423 83.392363
|
||||
21 2944.0 81.166173 ... 83.337844 83.060049
|
||||
22 3072.0 80.316458 ... 88.750943 87.246694
|
||||
23 3200.0 79.651524 ... 96.168294 96.676741
|
||||
24 3328.0 83.034941 ... 85.602017 82.843841
|
||||
25 3456.0 79.430113 ... 92.033756 84.508982
|
||||
26 3584.0 84.905939 ... 88.236146 94.548254
|
||||
27 3712.0 85.455380 ... 85.565182 84.946722
|
||||
28 3840.0 84.744825 ... 92.895423 85.533390
|
||||
29 3968.0 91.472214 ... 84.856701 92.093539
|
||||
30 4096.0 86.591209 ... 94.121827 86.035284
|
||||
|
||||
[31 rows x 5 columns]
|
||||
|
||||
@@ -498,7 +498,7 @@ We can now compare the performance of our kernel against that of cuBLAS. Here we
|
||||
|
||||
.. rst-class:: sphx-glr-timing
|
||||
|
||||
**Total running time of the script:** ( 6 minutes 12.272 seconds)
|
||||
**Total running time of the script:** ( 6 minutes 11.287 seconds)
|
||||
|
||||
|
||||
.. _sphx_glr_download_getting-started_tutorials_03-matrix-multiplication.py:
|
||||
|
@@ -240,7 +240,7 @@ References
|
||||
|
||||
.. rst-class:: sphx-glr-timing
|
||||
|
||||
**Total running time of the script:** ( 0 minutes 0.012 seconds)
|
||||
**Total running time of the script:** ( 0 minutes 0.014 seconds)
|
||||
|
||||
|
||||
.. _sphx_glr_download_getting-started_tutorials_04-low-memory-dropout.py:
|
||||
|
@@ -38,36 +38,36 @@ Layer Normalization
|
||||
|
||||
layer-norm-backward:
|
||||
N Triton Torch Apex
|
||||
0 1024.0 361.411758 99.902435 315.076934
|
||||
1 1536.0 409.599994 134.050910 344.523365
|
||||
2 2048.0 491.520012 159.067963 332.108094
|
||||
3 2560.0 461.954908 182.857144 330.322572
|
||||
4 3072.0 519.211251 191.501303 317.793096
|
||||
5 3584.0 554.941930 207.768111 310.527060
|
||||
6 4096.0 561.737163 220.907859 299.707322
|
||||
7 4608.0 502.690905 232.336141 288.751954
|
||||
8 5120.0 527.381977 243.809526 289.129408
|
||||
9 5632.0 540.671974 244.869560 291.310338
|
||||
10 6144.0 550.208948 251.202731 287.438593
|
||||
11 6656.0 532.479975 255.590406 286.793541
|
||||
12 7168.0 510.480705 253.360829 277.470965
|
||||
13 7680.0 487.619051 266.743841 285.325090
|
||||
14 8192.0 468.114289 258.354805 278.087683
|
||||
15 8704.0 414.476194 267.815384 285.377055
|
||||
0 1024.0 356.173905 99.902435 315.076934
|
||||
1 1536.0 405.098894 134.050910 344.523365
|
||||
2 2048.0 491.520012 159.067963 334.367350
|
||||
3 2560.0 458.507457 182.314537 330.322572
|
||||
4 3072.0 519.211251 191.501303 321.956335
|
||||
5 3584.0 554.941930 207.768111 309.410081
|
||||
6 4096.0 568.231237 220.907859 299.707322
|
||||
7 4608.0 502.690905 232.336141 287.251954
|
||||
8 5120.0 527.381977 243.809526 286.433562
|
||||
9 5632.0 540.671974 244.426754 291.939522
|
||||
10 6144.0 550.208948 251.202731 288.000001
|
||||
11 6656.0 530.710976 255.590406 286.793541
|
||||
12 7168.0 510.480705 253.734520 277.470965
|
||||
13 7680.0 487.619051 266.358392 284.884090
|
||||
14 8192.0 468.114289 258.354805 278.481578
|
||||
15 8704.0 414.476194 267.472468 285.377055
|
||||
16 9216.0 431.157889 272.394084 289.887291
|
||||
17 9728.0 438.857162 279.942444 288.950501
|
||||
18 10240.0 442.810829 287.438599 290.496460
|
||||
17 9728.0 438.033784 279.942444 288.950501
|
||||
18 10240.0 442.810829 287.102804 290.153487
|
||||
19 10752.0 427.231788 246.699797 289.941565
|
||||
20 11264.0 427.071098 245.536784 286.069848
|
||||
21 11776.0 419.946507 249.667843 288.981596
|
||||
22 12288.0 415.369018 254.673582 294.323369
|
||||
23 12800.0 410.695192 254.094291 288.450715
|
||||
24 13312.0 410.652963 252.559690 289.391298
|
||||
25 13824.0 404.604870 257.190689 292.056329
|
||||
26 14336.0 396.844280 256.000002 288.886653
|
||||
27 14848.0 386.080180 257.665934 288.544136
|
||||
28 15360.0 378.869469 258.513318 287.326580
|
||||
29 15872.0 371.637071 261.626369 290.120338
|
||||
20 11264.0 427.071098 245.760001 286.069848
|
||||
21 11776.0 419.946507 249.447482 288.686414
|
||||
22 12288.0 415.369018 254.673582 294.617366
|
||||
23 12800.0 410.695192 253.884294 287.910035
|
||||
24 13312.0 410.125805 252.559690 289.129403
|
||||
25 13824.0 404.112047 257.190689 292.056329
|
||||
26 14336.0 396.844280 256.000002 289.129416
|
||||
27 14848.0 385.662341 257.479779 288.777966
|
||||
28 15360.0 378.869469 258.332158 288.225185
|
||||
29 15872.0 372.000001 261.806182 290.562936
|
||||
|
||||
|
||||
|
||||
@@ -339,7 +339,7 @@ Layer Normalization
|
||||
|
||||
.. rst-class:: sphx-glr-timing
|
||||
|
||||
**Total running time of the script:** ( 2 minutes 14.616 seconds)
|
||||
**Total running time of the script:** ( 2 minutes 12.415 seconds)
|
||||
|
||||
|
||||
.. _sphx_glr_download_getting-started_tutorials_05-layer-norm.py:
|
||||
|
@@ -5,16 +5,16 @@
|
||||
|
||||
Computation times
|
||||
=================
|
||||
**13:32.426** total execution time for **getting-started_tutorials** files:
|
||||
**13:24.457** total execution time for **getting-started_tutorials** files:
|
||||
|
||||
+---------------------------------------------------------------------------------------------------------+-----------+--------+
|
||||
| :ref:`sphx_glr_getting-started_tutorials_03-matrix-multiplication.py` (``03-matrix-multiplication.py``) | 06:12.272 | 0.0 MB |
|
||||
| :ref:`sphx_glr_getting-started_tutorials_03-matrix-multiplication.py` (``03-matrix-multiplication.py``) | 06:11.287 | 0.0 MB |
|
||||
+---------------------------------------------------------------------------------------------------------+-----------+--------+
|
||||
| :ref:`sphx_glr_getting-started_tutorials_02-fused-softmax.py` (``02-fused-softmax.py``) | 03:26.985 | 0.0 MB |
|
||||
| :ref:`sphx_glr_getting-started_tutorials_02-fused-softmax.py` (``02-fused-softmax.py``) | 03:26.378 | 0.0 MB |
|
||||
+---------------------------------------------------------------------------------------------------------+-----------+--------+
|
||||
| :ref:`sphx_glr_getting-started_tutorials_05-layer-norm.py` (``05-layer-norm.py``) | 02:14.616 | 0.0 MB |
|
||||
| :ref:`sphx_glr_getting-started_tutorials_05-layer-norm.py` (``05-layer-norm.py``) | 02:12.415 | 0.0 MB |
|
||||
+---------------------------------------------------------------------------------------------------------+-----------+--------+
|
||||
| :ref:`sphx_glr_getting-started_tutorials_01-vector-add.py` (``01-vector-add.py``) | 01:38.540 | 0.0 MB |
|
||||
| :ref:`sphx_glr_getting-started_tutorials_01-vector-add.py` (``01-vector-add.py``) | 01:34.363 | 0.0 MB |
|
||||
+---------------------------------------------------------------------------------------------------------+-----------+--------+
|
||||
| :ref:`sphx_glr_getting-started_tutorials_04-low-memory-dropout.py` (``04-low-memory-dropout.py``) | 00:00.012 | 0.0 MB |
|
||||
| :ref:`sphx_glr_getting-started_tutorials_04-low-memory-dropout.py` (``04-low-memory-dropout.py``) | 00:00.014 | 0.0 MB |
|
||||
+---------------------------------------------------------------------------------------------------------+-----------+--------+
|
||||
|
@@ -330,22 +330,22 @@ for different problem sizes.</p>
|
||||
0 4096.0 4.800000 9.600000
|
||||
1 8192.0 9.600000 19.200000
|
||||
2 16384.0 17.454545 38.400001
|
||||
3 32768.0 34.909091 63.999998
|
||||
3 32768.0 34.909091 76.800002
|
||||
4 65536.0 69.818181 127.999995
|
||||
5 131072.0 139.636363 219.428568
|
||||
6 262144.0 236.307695 384.000001
|
||||
6 262144.0 219.428568 341.333321
|
||||
7 524288.0 361.411758 472.615390
|
||||
8 1048576.0 472.615390 614.400016
|
||||
9 2097152.0 599.414644 702.171410
|
||||
10 4194304.0 712.347810 780.190482
|
||||
11 8388608.0 774.047204 812.429770
|
||||
10 4194304.0 702.171410 780.190482
|
||||
11 8388608.0 768.000002 812.429770
|
||||
12 16777216.0 812.429770 833.084721
|
||||
13 33554432.0 831.323480 842.004273
|
||||
14 67108864.0 841.103727 848.362445
|
||||
15 134217728.0 846.080710 850.656574
|
||||
15 134217728.0 845.625825 850.656574
|
||||
</pre></div>
|
||||
</div>
|
||||
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 1 minutes 38.540 seconds)</p>
|
||||
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 1 minutes 34.363 seconds)</p>
|
||||
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-01-vector-add-py">
|
||||
<div class="sphx-glr-download sphx-glr-download-python docutils container">
|
||||
<p><a class="reference download internal" download="" href="../../_downloads/62d97d49a32414049819dd8bb8378080/01-vector-add.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">01-vector-add.py</span></code></a></p>
|
||||
|
@@ -370,16 +370,16 @@ We will then compare its performance against (1) <code class="code docutils lite
|
||||
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>softmax-performance:
|
||||
N Triton Torch (native) Torch (jit)
|
||||
0 256.0 512.000001 546.133347 188.321838
|
||||
1 384.0 585.142862 585.142862 151.703707
|
||||
2 512.0 655.360017 585.142849 156.038096
|
||||
3 640.0 682.666684 640.000002 160.000000
|
||||
1 384.0 585.142862 585.142862 149.853661
|
||||
2 512.0 655.360017 585.142849 154.566038
|
||||
3 640.0 682.666684 640.000002 158.759699
|
||||
4 768.0 722.823517 646.736871 163.839992
|
||||
.. ... ... ... ...
|
||||
93 12160.0 814.058574 405.755985 198.834951
|
||||
94 12288.0 814.111783 415.222812 199.096718
|
||||
95 12416.0 814.163950 412.149375 198.755369
|
||||
96 12544.0 814.214963 412.971190 198.913776
|
||||
97 12672.0 814.265046 412.097543 199.069228
|
||||
93 12160.0 814.058574 405.755985 198.733401
|
||||
94 12288.0 814.111783 415.661740 198.895304
|
||||
95 12416.0 814.163950 412.149375 198.655991
|
||||
96 12544.0 814.214963 412.971190 198.815254
|
||||
97 12672.0 814.265046 412.097543 198.873965
|
||||
|
||||
[98 rows x 4 columns]
|
||||
</pre></div>
|
||||
@@ -392,7 +392,7 @@ We will then compare its performance against (1) <code class="code docutils lite
|
||||
Note however that the PyTorch <cite>softmax</cite> operation is more general and will works on tensors of any shape.</p></li>
|
||||
</ul>
|
||||
</div></blockquote>
|
||||
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 3 minutes 26.985 seconds)</p>
|
||||
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 3 minutes 26.378 seconds)</p>
|
||||
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-02-fused-softmax-py">
|
||||
<div class="sphx-glr-download sphx-glr-download-python docutils container">
|
||||
<p><a class="reference download internal" download="" href="../../_downloads/d91442ac2982c4e0cc3ab0f43534afbc/02-fused-softmax.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">02-fused-softmax.py</span></code></a></p>
|
||||
|
@@ -565,41 +565,41 @@ torch_output=tensor([[ 1.1045, -36.9688, 31.4688, ..., -11.3906, 24.4531, -3
|
||||
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>matmul-performance:
|
||||
M cuBLAS ... Triton Triton (+ LeakyReLU)
|
||||
0 256.0 2.730667 ... 2.978909 2.978909
|
||||
1 384.0 7.372800 ... 8.507077 8.507077
|
||||
2 512.0 14.563555 ... 16.384000 16.384000
|
||||
1 384.0 7.372800 ... 7.899428 7.899428
|
||||
2 512.0 14.563555 ... 15.420235 15.420235
|
||||
3 640.0 22.260869 ... 24.380953 24.380953
|
||||
4 768.0 32.768000 ... 35.389441 34.028308
|
||||
5 896.0 37.971025 ... 40.140799 40.140799
|
||||
6 1024.0 49.932191 ... 53.773130 53.773130
|
||||
7 1152.0 45.242181 ... 48.161033 47.396572
|
||||
8 1280.0 51.200001 ... 58.514284 57.690139
|
||||
9 1408.0 64.138541 ... 69.009825 68.147202
|
||||
10 1536.0 80.430545 ... 80.430545 80.430545
|
||||
6 1024.0 49.932191 ... 53.773130 52.428801
|
||||
7 1152.0 44.566925 ... 47.396572 47.396572
|
||||
8 1280.0 51.200001 ... 57.690139 57.690139
|
||||
9 1408.0 64.138541 ... 68.147202 68.147202
|
||||
10 1536.0 79.526831 ... 80.430545 80.430545
|
||||
11 1664.0 62.929456 ... 63.372618 62.929456
|
||||
12 1792.0 72.983276 ... 63.499573 63.142831
|
||||
13 1920.0 69.467336 ... 71.257735 71.257735
|
||||
12 1792.0 72.983276 ... 63.142831 63.142831
|
||||
13 1920.0 69.120002 ... 71.626943 70.892307
|
||||
14 2048.0 73.908442 ... 78.398206 78.033565
|
||||
15 2176.0 83.155572 ... 87.115360 86.739860
|
||||
16 2304.0 68.446623 ... 77.810656 77.307030
|
||||
17 2432.0 71.125224 ... 75.522751 75.118889
|
||||
18 2560.0 77.833728 ... 82.331658 81.715711
|
||||
19 2688.0 83.552988 ... 90.102270 90.748936
|
||||
20 2816.0 79.587973 ... 83.552120 83.552120
|
||||
21 2944.0 82.237674 ... 82.646820 82.784108
|
||||
22 3072.0 82.181572 ... 89.310890 87.246694
|
||||
23 3200.0 78.817733 ... 96.240602 96.096095
|
||||
24 3328.0 82.939284 ... 85.602017 85.806075
|
||||
25 3456.0 78.655188 ... 92.086311 90.994998
|
||||
26 3584.0 83.101104 ... 90.276496 95.249353
|
||||
27 3712.0 85.675250 ... 85.091436 89.114488
|
||||
28 3840.0 79.562590 ... 91.322872 85.136259
|
||||
29 3968.0 93.076994 ... 79.133552 85.510815
|
||||
30 4096.0 87.666706 ... 92.723821 87.267706
|
||||
15 2176.0 83.155572 ... 87.115360 86.367588
|
||||
16 2304.0 68.251065 ... 77.307030 77.307030
|
||||
17 2432.0 71.125224 ... 75.522751 75.320281
|
||||
18 2560.0 77.833728 ... 82.125311 81.715711
|
||||
19 2688.0 82.106182 ... 90.966561 90.102270
|
||||
20 2816.0 80.026067 ... 79.806423 83.392363
|
||||
21 2944.0 81.166173 ... 83.337844 83.060049
|
||||
22 3072.0 80.316458 ... 88.750943 87.246694
|
||||
23 3200.0 79.651524 ... 96.168294 96.676741
|
||||
24 3328.0 83.034941 ... 85.602017 82.843841
|
||||
25 3456.0 79.430113 ... 92.033756 84.508982
|
||||
26 3584.0 84.905939 ... 88.236146 94.548254
|
||||
27 3712.0 85.455380 ... 85.565182 84.946722
|
||||
28 3840.0 84.744825 ... 92.895423 85.533390
|
||||
29 3968.0 91.472214 ... 84.856701 92.093539
|
||||
30 4096.0 86.591209 ... 94.121827 86.035284
|
||||
|
||||
[31 rows x 5 columns]
|
||||
</pre></div>
|
||||
</div>
|
||||
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 6 minutes 12.272 seconds)</p>
|
||||
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 6 minutes 11.287 seconds)</p>
|
||||
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-03-matrix-multiplication-py">
|
||||
<div class="sphx-glr-download sphx-glr-download-python docutils container">
|
||||
<p><a class="reference download internal" download="" href="../../_downloads/d5fee5b55a64e47f1b5724ec39adf171/03-matrix-multiplication.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">03-matrix-multiplication.py</span></code></a></p>
|
||||
|
@@ -372,7 +372,7 @@ to explore the <cite>triton/language/random</cite> folder!</p>
|
||||
<dd><p>Nitish Srivastava and Geoffrey Hinton and Alex Krizhevsky and Ilya Sutskever and Ruslan Salakhutdinov, “Dropout: A Simple Way to Prevent Neural Networks from Overfitting”, JMLR 2014</p>
|
||||
</dd>
|
||||
</dl>
|
||||
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 0.012 seconds)</p>
|
||||
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 0.014 seconds)</p>
|
||||
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-04-low-memory-dropout-py">
|
||||
<div class="sphx-glr-download sphx-glr-download-python docutils container">
|
||||
<p><a class="reference download internal" download="" href="../../_downloads/c9aed78977a4c05741d675a38dde3d7d/04-low-memory-dropout.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">04-low-memory-dropout.py</span></code></a></p>
|
||||
|
@@ -194,36 +194,36 @@ to download the full example code</p>
|
||||
<p class="sphx-glr-script-out">Out:</p>
|
||||
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>layer-norm-backward:
|
||||
N Triton Torch Apex
|
||||
0 1024.0 361.411758 99.902435 315.076934
|
||||
1 1536.0 409.599994 134.050910 344.523365
|
||||
2 2048.0 491.520012 159.067963 332.108094
|
||||
3 2560.0 461.954908 182.857144 330.322572
|
||||
4 3072.0 519.211251 191.501303 317.793096
|
||||
5 3584.0 554.941930 207.768111 310.527060
|
||||
6 4096.0 561.737163 220.907859 299.707322
|
||||
7 4608.0 502.690905 232.336141 288.751954
|
||||
8 5120.0 527.381977 243.809526 289.129408
|
||||
9 5632.0 540.671974 244.869560 291.310338
|
||||
10 6144.0 550.208948 251.202731 287.438593
|
||||
11 6656.0 532.479975 255.590406 286.793541
|
||||
12 7168.0 510.480705 253.360829 277.470965
|
||||
13 7680.0 487.619051 266.743841 285.325090
|
||||
14 8192.0 468.114289 258.354805 278.087683
|
||||
15 8704.0 414.476194 267.815384 285.377055
|
||||
0 1024.0 356.173905 99.902435 315.076934
|
||||
1 1536.0 405.098894 134.050910 344.523365
|
||||
2 2048.0 491.520012 159.067963 334.367350
|
||||
3 2560.0 458.507457 182.314537 330.322572
|
||||
4 3072.0 519.211251 191.501303 321.956335
|
||||
5 3584.0 554.941930 207.768111 309.410081
|
||||
6 4096.0 568.231237 220.907859 299.707322
|
||||
7 4608.0 502.690905 232.336141 287.251954
|
||||
8 5120.0 527.381977 243.809526 286.433562
|
||||
9 5632.0 540.671974 244.426754 291.939522
|
||||
10 6144.0 550.208948 251.202731 288.000001
|
||||
11 6656.0 530.710976 255.590406 286.793541
|
||||
12 7168.0 510.480705 253.734520 277.470965
|
||||
13 7680.0 487.619051 266.358392 284.884090
|
||||
14 8192.0 468.114289 258.354805 278.481578
|
||||
15 8704.0 414.476194 267.472468 285.377055
|
||||
16 9216.0 431.157889 272.394084 289.887291
|
||||
17 9728.0 438.857162 279.942444 288.950501
|
||||
18 10240.0 442.810829 287.438599 290.496460
|
||||
17 9728.0 438.033784 279.942444 288.950501
|
||||
18 10240.0 442.810829 287.102804 290.153487
|
||||
19 10752.0 427.231788 246.699797 289.941565
|
||||
20 11264.0 427.071098 245.536784 286.069848
|
||||
21 11776.0 419.946507 249.667843 288.981596
|
||||
22 12288.0 415.369018 254.673582 294.323369
|
||||
23 12800.0 410.695192 254.094291 288.450715
|
||||
24 13312.0 410.652963 252.559690 289.391298
|
||||
25 13824.0 404.604870 257.190689 292.056329
|
||||
26 14336.0 396.844280 256.000002 288.886653
|
||||
27 14848.0 386.080180 257.665934 288.544136
|
||||
28 15360.0 378.869469 258.513318 287.326580
|
||||
29 15872.0 371.637071 261.626369 290.120338
|
||||
20 11264.0 427.071098 245.760001 286.069848
|
||||
21 11776.0 419.946507 249.447482 288.686414
|
||||
22 12288.0 415.369018 254.673582 294.617366
|
||||
23 12800.0 410.695192 253.884294 287.910035
|
||||
24 13312.0 410.125805 252.559690 289.129403
|
||||
25 13824.0 404.112047 257.190689 292.056329
|
||||
26 14336.0 396.844280 256.000002 289.129416
|
||||
27 14848.0 385.662341 257.479779 288.777966
|
||||
28 15360.0 378.869469 258.332158 288.225185
|
||||
29 15872.0 372.000001 261.806182 290.562936
|
||||
</pre></div>
|
||||
</div>
|
||||
<div class="line-block">
|
||||
@@ -487,7 +487,7 @@ to download the full example code</p>
|
||||
<span class="n">bench_layer_norm</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">save_path</span><span class="o">=</span><span class="s1">'.'</span><span class="p">,</span> <span class="n">print_data</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
|
||||
</pre></div>
|
||||
</div>
|
||||
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 2 minutes 14.616 seconds)</p>
|
||||
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 2 minutes 12.415 seconds)</p>
|
||||
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-05-layer-norm-py">
|
||||
<div class="sphx-glr-download sphx-glr-download-python docutils container">
|
||||
<p><a class="reference download internal" download="" href="../../_downloads/935c0dd0fbeb4b2e69588471cbb2d4b2/05-layer-norm.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">05-layer-norm.py</span></code></a></p>
|
||||
|
@@ -174,7 +174,7 @@
|
||||
|
||||
<div class="section" id="computation-times">
|
||||
<span id="sphx-glr-getting-started-tutorials-sg-execution-times"></span><h1>Computation times<a class="headerlink" href="#computation-times" title="Permalink to this headline">¶</a></h1>
|
||||
<p><strong>13:32.426</strong> total execution time for <strong>getting-started_tutorials</strong> files:</p>
|
||||
<p><strong>13:24.457</strong> total execution time for <strong>getting-started_tutorials</strong> files:</p>
|
||||
<table class="docutils align-default">
|
||||
<colgroup>
|
||||
<col style="width: 85%" />
|
||||
@@ -183,23 +183,23 @@
|
||||
</colgroup>
|
||||
<tbody>
|
||||
<tr class="row-odd"><td><p><a class="reference internal" href="03-matrix-multiplication.html#sphx-glr-getting-started-tutorials-03-matrix-multiplication-py"><span class="std std-ref">Matrix Multiplication</span></a> (<code class="docutils literal notranslate"><span class="pre">03-matrix-multiplication.py</span></code>)</p></td>
|
||||
<td><p>06:12.272</p></td>
|
||||
<td><p>06:11.287</p></td>
|
||||
<td><p>0.0 MB</p></td>
|
||||
</tr>
|
||||
<tr class="row-even"><td><p><a class="reference internal" href="02-fused-softmax.html#sphx-glr-getting-started-tutorials-02-fused-softmax-py"><span class="std std-ref">Fused Softmax</span></a> (<code class="docutils literal notranslate"><span class="pre">02-fused-softmax.py</span></code>)</p></td>
|
||||
<td><p>03:26.985</p></td>
|
||||
<td><p>03:26.378</p></td>
|
||||
<td><p>0.0 MB</p></td>
|
||||
</tr>
|
||||
<tr class="row-odd"><td><p><a class="reference internal" href="05-layer-norm.html#sphx-glr-getting-started-tutorials-05-layer-norm-py"><span class="std std-ref">Layer Normalization</span></a> (<code class="docutils literal notranslate"><span class="pre">05-layer-norm.py</span></code>)</p></td>
|
||||
<td><p>02:14.616</p></td>
|
||||
<td><p>02:12.415</p></td>
|
||||
<td><p>0.0 MB</p></td>
|
||||
</tr>
|
||||
<tr class="row-even"><td><p><a class="reference internal" href="01-vector-add.html#sphx-glr-getting-started-tutorials-01-vector-add-py"><span class="std std-ref">Vector Addition</span></a> (<code class="docutils literal notranslate"><span class="pre">01-vector-add.py</span></code>)</p></td>
|
||||
<td><p>01:38.540</p></td>
|
||||
<td><p>01:34.363</p></td>
|
||||
<td><p>0.0 MB</p></td>
|
||||
</tr>
|
||||
<tr class="row-odd"><td><p><a class="reference internal" href="04-low-memory-dropout.html#sphx-glr-getting-started-tutorials-04-low-memory-dropout-py"><span class="std std-ref">Low-Memory Dropout</span></a> (<code class="docutils literal notranslate"><span class="pre">04-low-memory-dropout.py</span></code>)</p></td>
|
||||
<td><p>00:00.012</p></td>
|
||||
<td><p>00:00.014</p></td>
|
||||
<td><p>0.0 MB</p></td>
|
||||
</tr>
|
||||
</tbody>
|
||||
|
@@ -1,4 +1,4 @@
|
||||
# Sphinx build info version 1
|
||||
# This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done.
|
||||
config: 2ab6c6ef8c785100319bcdbd2a7b8017
|
||||
config: 2b28432cf30a9c94dda971dc95e6e3c5
|
||||
tags: 645f666f9bcd5a90fca523b33c5a78b7
|
||||
|