[GH-PAGES] Updated website
@@ -1,4 +1,4 @@
|
||||
# Sphinx build info version 1
|
||||
# This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done.
|
||||
config: 28cad3eff84505032c4f1aeab6ffde38
|
||||
config: e6dd4093d222d862b66c8001bd347f4e
|
||||
tags: 645f666f9bcd5a90fca523b33c5a78b7
|
||||
|
Before Width: | Height: | Size: 24 KiB After Width: | Height: | Size: 23 KiB |
Before Width: | Height: | Size: 15 KiB After Width: | Height: | Size: 15 KiB |
Before Width: | Height: | Size: 37 KiB After Width: | Height: | Size: 37 KiB |
Before Width: | Height: | Size: 24 KiB After Width: | Height: | Size: 24 KiB |
Before Width: | Height: | Size: 56 KiB After Width: | Height: | Size: 55 KiB |
Before Width: | Height: | Size: 33 KiB After Width: | Height: | Size: 32 KiB |
Before Width: | Height: | Size: 32 KiB After Width: | Height: | Size: 32 KiB |
Before Width: | Height: | Size: 20 KiB After Width: | Height: | Size: 20 KiB |
@@ -231,7 +231,7 @@ We can now run the decorated function above. Pass `print_data=True` to see the p
|
||||
|
||||
vector-add-performance:
|
||||
size Triton Torch
|
||||
0 4096.0 8.000000 9.600000
|
||||
0 4096.0 9.600000 9.600000
|
||||
1 8192.0 19.200000 19.200000
|
||||
2 16384.0 38.400001 38.400001
|
||||
3 32768.0 76.800002 76.800002
|
||||
@@ -254,7 +254,7 @@ We can now run the decorated function above. Pass `print_data=True` to see the p
|
||||
|
||||
.. rst-class:: sphx-glr-timing
|
||||
|
||||
**Total running time of the script:** ( 1 minutes 52.927 seconds)
|
||||
**Total running time of the script:** ( 1 minutes 42.276 seconds)
|
||||
|
||||
|
||||
.. _sphx_glr_download_getting-started_tutorials_01-vector-add.py:
|
||||
|
@@ -287,14 +287,14 @@ We will then compare its performance against (1) :code:`torch.softmax` and (2) t
|
||||
softmax-performance:
|
||||
N Triton Torch (native) Torch (jit)
|
||||
0 256.0 512.000001 546.133347 188.321838
|
||||
1 384.0 585.142862 585.142862 151.703707
|
||||
1 384.0 585.142862 558.545450 151.703707
|
||||
2 512.0 655.360017 585.142849 154.566038
|
||||
3 640.0 682.666684 640.000002 160.000000
|
||||
4 768.0 722.823517 664.216187 162.754967
|
||||
4 768.0 702.171410 664.216187 162.754967
|
||||
.. ... ... ... ...
|
||||
93 12160.0 812.359066 406.179533 198.530610
|
||||
94 12288.0 814.111783 415.661740 198.895304
|
||||
95 12416.0 814.163950 412.149375 198.358474
|
||||
94 12288.0 814.111783 415.661740 198.794749
|
||||
95 12416.0 812.498981 412.149375 198.457532
|
||||
96 12544.0 812.566838 412.971190 198.716830
|
||||
97 12672.0 812.633240 412.097543 198.776477
|
||||
|
||||
@@ -314,7 +314,7 @@ In the above plot, we can see that:
|
||||
|
||||
.. rst-class:: sphx-glr-timing
|
||||
|
||||
**Total running time of the script:** ( 3 minutes 27.294 seconds)
|
||||
**Total running time of the script:** ( 3 minutes 21.471 seconds)
|
||||
|
||||
|
||||
.. _sphx_glr_download_getting-started_tutorials_02-fused-softmax.py:
|
||||
|
@@ -464,35 +464,35 @@ We can now compare the performance of our kernel against that of cuBLAS. Here we
|
||||
M cuBLAS ... Triton Triton (+ LeakyReLU)
|
||||
0 256.0 2.730667 ... 2.978909 2.978909
|
||||
1 384.0 7.372800 ... 8.507077 7.899428
|
||||
2 512.0 14.563555 ... 16.384000 16.384000
|
||||
2 512.0 14.563555 ... 15.420235 16.384000
|
||||
3 640.0 22.260869 ... 24.380953 24.380953
|
||||
4 768.0 32.768000 ... 34.028308 34.028308
|
||||
5 896.0 39.025776 ... 40.140799 39.025776
|
||||
6 1024.0 51.150050 ... 53.773130 52.428801
|
||||
5 896.0 37.971025 ... 39.025776 37.971025
|
||||
6 1024.0 49.932191 ... 53.773130 52.428801
|
||||
7 1152.0 45.242181 ... 46.656000 46.656000
|
||||
8 1280.0 51.200001 ... 56.888887 56.888887
|
||||
8 1280.0 51.200001 ... 56.888887 56.109587
|
||||
9 1408.0 64.138541 ... 67.305878 66.485074
|
||||
10 1536.0 80.430545 ... 79.526831 78.643199
|
||||
11 1664.0 62.929456 ... 62.492442 62.061463
|
||||
12 1792.0 72.983276 ... 59.154861 71.588687
|
||||
13 1920.0 69.120002 ... 70.172588 70.172588
|
||||
14 2048.0 73.908442 ... 76.959706 76.608294
|
||||
11 1664.0 63.372618 ... 62.492442 62.061463
|
||||
12 1792.0 72.983276 ... 72.047592 71.588687
|
||||
13 1920.0 69.120002 ... 69.818184 70.172588
|
||||
14 2048.0 73.584279 ... 76.959706 76.608294
|
||||
15 2176.0 83.155572 ... 85.998493 85.269692
|
||||
16 2304.0 68.251065 ... 77.057651 76.809875
|
||||
17 2432.0 71.305746 ... 74.918570 84.877538
|
||||
16 2304.0 68.446623 ... 76.809875 76.563695
|
||||
17 2432.0 71.125224 ... 83.490234 84.877538
|
||||
18 2560.0 77.833728 ... 81.310171 80.908642
|
||||
19 2688.0 83.922689 ... 90.102270 89.464755
|
||||
20 2816.0 83.074685 ... 83.074685 82.916747
|
||||
21 2944.0 82.646820 ... 81.564701 82.921853
|
||||
22 3072.0 81.589488 ... 88.473602 87.516392
|
||||
23 3200.0 80.706181 ... 93.704243 95.665176
|
||||
24 3328.0 82.796202 ... 83.857070 84.895397
|
||||
25 3456.0 81.766291 ... 91.304157 91.719645
|
||||
26 3584.0 87.551500 ... 96.891584 98.160909
|
||||
27 3712.0 85.601834 ... 91.397382 87.399253
|
||||
28 3840.0 84.874902 ... 90.798032 87.910967
|
||||
29 3968.0 91.954739 ... 90.859224 85.871877
|
||||
30 4096.0 93.401342 ... 92.372834 90.200084
|
||||
19 2688.0 84.108772 ... 90.102270 89.676257
|
||||
20 2816.0 82.916747 ... 83.074685 82.916747
|
||||
21 2944.0 82.646820 ... 83.198715 82.102191
|
||||
22 3072.0 82.420822 ... 86.978653 89.030036
|
||||
23 3200.0 81.012662 ... 92.888243 94.674553
|
||||
24 3328.0 83.371507 ... 84.995628 84.695641
|
||||
25 3456.0 82.773682 ... 91.304157 90.484366
|
||||
26 3584.0 86.623693 ... 95.249353 95.350361
|
||||
27 3712.0 83.317214 ... 88.797643 84.802499
|
||||
28 3840.0 84.356981 ... 91.739529 86.670843
|
||||
29 3968.0 93.361844 ... 86.911637 91.301109
|
||||
30 4096.0 88.592559 ... 84.840533 90.443212
|
||||
|
||||
[31 rows x 5 columns]
|
||||
|
||||
@@ -502,7 +502,7 @@ We can now compare the performance of our kernel against that of cuBLAS. Here we
|
||||
|
||||
.. rst-class:: sphx-glr-timing
|
||||
|
||||
**Total running time of the script:** ( 6 minutes 12.411 seconds)
|
||||
**Total running time of the script:** ( 6 minutes 7.444 seconds)
|
||||
|
||||
|
||||
.. _sphx_glr_download_getting-started_tutorials_03-matrix-multiplication.py:
|
||||
|
@@ -238,7 +238,7 @@ References
|
||||
|
||||
.. rst-class:: sphx-glr-timing
|
||||
|
||||
**Total running time of the script:** ( 0 minutes 0.216 seconds)
|
||||
**Total running time of the script:** ( 0 minutes 0.116 seconds)
|
||||
|
||||
|
||||
.. _sphx_glr_download_getting-started_tutorials_04-low-memory-dropout.py:
|
||||
|
@@ -38,36 +38,36 @@ Layer Normalization
|
||||
|
||||
layer-norm-backward:
|
||||
N Triton Torch Apex
|
||||
0 1024.0 311.088617 99.497980 311.088617
|
||||
1 1536.0 351.085717 134.050910 341.333333
|
||||
2 2048.0 423.724127 159.067963 332.108094
|
||||
3 2560.0 465.454542 181.775141 330.322572
|
||||
4 3072.0 511.999982 191.501303 313.736171
|
||||
5 3584.0 551.384634 207.267476 310.527060
|
||||
6 4096.0 568.231237 218.939860 298.796351
|
||||
7 4608.0 498.162157 233.316456 289.507855
|
||||
8 5120.0 527.381977 240.469672 285.104413
|
||||
9 5632.0 542.843364 244.426754 290.683877
|
||||
10 6144.0 544.118087 250.349744 287.438593
|
||||
11 6656.0 532.479975 255.590406 286.279570
|
||||
12 7168.0 513.528374 257.147993 282.019678
|
||||
13 7680.0 486.332448 263.690977 282.699379
|
||||
14 8192.0 464.794337 262.143998 282.077471
|
||||
15 8704.0 416.127506 266.789264 285.377055
|
||||
16 9216.0 430.319054 272.394084 289.129410
|
||||
0 1024.0 311.088617 98.303995 303.407414
|
||||
1 1536.0 351.085717 133.083026 341.333333
|
||||
2 2048.0 420.102553 161.684218 334.367350
|
||||
3 2560.0 461.954908 182.314537 326.808501
|
||||
4 3072.0 511.999982 191.501303 317.793096
|
||||
5 3584.0 551.384634 207.768111 309.410081
|
||||
6 4096.0 568.231237 219.919464 296.096389
|
||||
7 4608.0 498.162157 232.336141 286.507772
|
||||
8 5120.0 525.128191 242.366855 284.444444
|
||||
9 5632.0 538.517949 243.107920 290.060087
|
||||
10 6144.0 542.117638 248.242431 286.322318
|
||||
11 6656.0 527.207907 256.000009 285.767438
|
||||
12 7168.0 507.469040 261.446807 287.678923
|
||||
13 7680.0 482.513091 261.076480 278.429013
|
||||
14 8192.0 461.521112 268.223740 287.438585
|
||||
15 8704.0 417.791980 267.130429 284.987724
|
||||
16 9216.0 430.319054 272.059034 288.751954
|
||||
17 9728.0 438.857162 280.278512 289.308559
|
||||
18 10240.0 447.650282 286.767793 288.112552
|
||||
19 10752.0 430.079980 246.935876 290.267711
|
||||
20 11264.0 427.746848 245.983625 288.204696
|
||||
21 11776.0 421.826879 249.227509 288.686414
|
||||
22 12288.0 421.302872 254.673582 295.207195
|
||||
23 12800.0 415.135142 253.465340 290.359162
|
||||
24 13312.0 411.181478 252.959629 290.443638
|
||||
25 13824.0 405.594132 257.190689 292.056329
|
||||
26 14336.0 394.568805 254.485198 288.402346
|
||||
27 14848.0 384.829370 256.922861 289.246765
|
||||
28 15360.0 374.253788 257.970599 287.550706
|
||||
29 15872.0 366.982663 262.347108 291.006885
|
||||
18 10240.0 445.217381 286.433562 290.496460
|
||||
19 10752.0 427.940303 246.464170 290.267711
|
||||
20 11264.0 428.424741 245.091565 286.676558
|
||||
21 11776.0 421.826879 249.447482 288.391833
|
||||
22 12288.0 419.504980 254.453844 294.617366
|
||||
23 12800.0 414.016170 253.674644 289.538159
|
||||
24 13312.0 412.242569 252.360194 289.653667
|
||||
25 13824.0 405.594132 256.991469 291.543045
|
||||
26 14336.0 397.761846 254.297107 286.481278
|
||||
27 14848.0 386.498925 257.479779 289.717061
|
||||
28 15360.0 376.932517 257.970599 288.000007
|
||||
29 15872.0 366.629453 262.708969 291.229369
|
||||
|
||||
|
||||
|
||||
@@ -329,7 +329,7 @@ Layer Normalization
|
||||
|
||||
.. rst-class:: sphx-glr-timing
|
||||
|
||||
**Total running time of the script:** ( 2 minutes 14.015 seconds)
|
||||
**Total running time of the script:** ( 2 minutes 12.961 seconds)
|
||||
|
||||
|
||||
.. _sphx_glr_download_getting-started_tutorials_05-layer-norm.py:
|
||||
|
@@ -5,16 +5,16 @@
|
||||
|
||||
Computation times
|
||||
=================
|
||||
**13:46.864** total execution time for **getting-started_tutorials** files:
|
||||
**13:24.269** total execution time for **getting-started_tutorials** files:
|
||||
|
||||
+---------------------------------------------------------------------------------------------------------+-----------+--------+
|
||||
| :ref:`sphx_glr_getting-started_tutorials_03-matrix-multiplication.py` (``03-matrix-multiplication.py``) | 06:12.411 | 0.0 MB |
|
||||
| :ref:`sphx_glr_getting-started_tutorials_03-matrix-multiplication.py` (``03-matrix-multiplication.py``) | 06:07.444 | 0.0 MB |
|
||||
+---------------------------------------------------------------------------------------------------------+-----------+--------+
|
||||
| :ref:`sphx_glr_getting-started_tutorials_02-fused-softmax.py` (``02-fused-softmax.py``) | 03:27.294 | 0.0 MB |
|
||||
| :ref:`sphx_glr_getting-started_tutorials_02-fused-softmax.py` (``02-fused-softmax.py``) | 03:21.471 | 0.0 MB |
|
||||
+---------------------------------------------------------------------------------------------------------+-----------+--------+
|
||||
| :ref:`sphx_glr_getting-started_tutorials_05-layer-norm.py` (``05-layer-norm.py``) | 02:14.015 | 0.0 MB |
|
||||
| :ref:`sphx_glr_getting-started_tutorials_05-layer-norm.py` (``05-layer-norm.py``) | 02:12.961 | 0.0 MB |
|
||||
+---------------------------------------------------------------------------------------------------------+-----------+--------+
|
||||
| :ref:`sphx_glr_getting-started_tutorials_01-vector-add.py` (``01-vector-add.py``) | 01:52.927 | 0.0 MB |
|
||||
| :ref:`sphx_glr_getting-started_tutorials_01-vector-add.py` (``01-vector-add.py``) | 01:42.276 | 0.0 MB |
|
||||
+---------------------------------------------------------------------------------------------------------+-----------+--------+
|
||||
| :ref:`sphx_glr_getting-started_tutorials_04-low-memory-dropout.py` (``04-low-memory-dropout.py``) | 00:00.216 | 0.0 MB |
|
||||
| :ref:`sphx_glr_getting-started_tutorials_04-low-memory-dropout.py` (``04-low-memory-dropout.py``) | 00:00.116 | 0.0 MB |
|
||||
+---------------------------------------------------------------------------------------------------------+-----------+--------+
|
||||
|
@@ -321,7 +321,7 @@ for different problem sizes.</p>
|
||||
<p class="sphx-glr-script-out">Out:</p>
|
||||
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>vector-add-performance:
|
||||
size Triton Torch
|
||||
0 4096.0 8.000000 9.600000
|
||||
0 4096.0 9.600000 9.600000
|
||||
1 8192.0 19.200000 19.200000
|
||||
2 16384.0 38.400001 38.400001
|
||||
3 32768.0 76.800002 76.800002
|
||||
@@ -339,7 +339,7 @@ for different problem sizes.</p>
|
||||
15 134217728.0 849.737435 850.656574
|
||||
</pre></div>
|
||||
</div>
|
||||
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 1 minutes 52.927 seconds)</p>
|
||||
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 1 minutes 42.276 seconds)</p>
|
||||
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-01-vector-add-py">
|
||||
<div class="sphx-glr-download sphx-glr-download-python docutils container">
|
||||
<p><a class="reference download internal" download="" href="../../_downloads/62d97d49a32414049819dd8bb8378080/01-vector-add.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">01-vector-add.py</span></code></a></p>
|
||||
|
@@ -375,14 +375,14 @@ We will then compare its performance against (1) <code class="code docutils lite
|
||||
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>softmax-performance:
|
||||
N Triton Torch (native) Torch (jit)
|
||||
0 256.0 512.000001 546.133347 188.321838
|
||||
1 384.0 585.142862 585.142862 151.703707
|
||||
1 384.0 585.142862 558.545450 151.703707
|
||||
2 512.0 655.360017 585.142849 154.566038
|
||||
3 640.0 682.666684 640.000002 160.000000
|
||||
4 768.0 722.823517 664.216187 162.754967
|
||||
4 768.0 702.171410 664.216187 162.754967
|
||||
.. ... ... ... ...
|
||||
93 12160.0 812.359066 406.179533 198.530610
|
||||
94 12288.0 814.111783 415.661740 198.895304
|
||||
95 12416.0 814.163950 412.149375 198.358474
|
||||
94 12288.0 814.111783 415.661740 198.794749
|
||||
95 12416.0 812.498981 412.149375 198.457532
|
||||
96 12544.0 812.566838 412.971190 198.716830
|
||||
97 12672.0 812.633240 412.097543 198.776477
|
||||
|
||||
@@ -397,7 +397,7 @@ We will then compare its performance against (1) <code class="code docutils lite
|
||||
Note however that the PyTorch <cite>softmax</cite> operation is more general and will works on tensors of any shape.</p></li>
|
||||
</ul>
|
||||
</div></blockquote>
|
||||
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 3 minutes 27.294 seconds)</p>
|
||||
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 3 minutes 21.471 seconds)</p>
|
||||
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-02-fused-softmax-py">
|
||||
<div class="sphx-glr-download sphx-glr-download-python docutils container">
|
||||
<p><a class="reference download internal" download="" href="../../_downloads/d91442ac2982c4e0cc3ab0f43534afbc/02-fused-softmax.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">02-fused-softmax.py</span></code></a></p>
|
||||
|
@@ -570,40 +570,40 @@ torch_output=tensor([[ 1.1045, -36.9688, 31.4688, ..., -11.3906, 24.4531, -3
|
||||
M cuBLAS ... Triton Triton (+ LeakyReLU)
|
||||
0 256.0 2.730667 ... 2.978909 2.978909
|
||||
1 384.0 7.372800 ... 8.507077 7.899428
|
||||
2 512.0 14.563555 ... 16.384000 16.384000
|
||||
2 512.0 14.563555 ... 15.420235 16.384000
|
||||
3 640.0 22.260869 ... 24.380953 24.380953
|
||||
4 768.0 32.768000 ... 34.028308 34.028308
|
||||
5 896.0 39.025776 ... 40.140799 39.025776
|
||||
6 1024.0 51.150050 ... 53.773130 52.428801
|
||||
5 896.0 37.971025 ... 39.025776 37.971025
|
||||
6 1024.0 49.932191 ... 53.773130 52.428801
|
||||
7 1152.0 45.242181 ... 46.656000 46.656000
|
||||
8 1280.0 51.200001 ... 56.888887 56.888887
|
||||
8 1280.0 51.200001 ... 56.888887 56.109587
|
||||
9 1408.0 64.138541 ... 67.305878 66.485074
|
||||
10 1536.0 80.430545 ... 79.526831 78.643199
|
||||
11 1664.0 62.929456 ... 62.492442 62.061463
|
||||
12 1792.0 72.983276 ... 59.154861 71.588687
|
||||
13 1920.0 69.120002 ... 70.172588 70.172588
|
||||
14 2048.0 73.908442 ... 76.959706 76.608294
|
||||
11 1664.0 63.372618 ... 62.492442 62.061463
|
||||
12 1792.0 72.983276 ... 72.047592 71.588687
|
||||
13 1920.0 69.120002 ... 69.818184 70.172588
|
||||
14 2048.0 73.584279 ... 76.959706 76.608294
|
||||
15 2176.0 83.155572 ... 85.998493 85.269692
|
||||
16 2304.0 68.251065 ... 77.057651 76.809875
|
||||
17 2432.0 71.305746 ... 74.918570 84.877538
|
||||
16 2304.0 68.446623 ... 76.809875 76.563695
|
||||
17 2432.0 71.125224 ... 83.490234 84.877538
|
||||
18 2560.0 77.833728 ... 81.310171 80.908642
|
||||
19 2688.0 83.922689 ... 90.102270 89.464755
|
||||
20 2816.0 83.074685 ... 83.074685 82.916747
|
||||
21 2944.0 82.646820 ... 81.564701 82.921853
|
||||
22 3072.0 81.589488 ... 88.473602 87.516392
|
||||
23 3200.0 80.706181 ... 93.704243 95.665176
|
||||
24 3328.0 82.796202 ... 83.857070 84.895397
|
||||
25 3456.0 81.766291 ... 91.304157 91.719645
|
||||
26 3584.0 87.551500 ... 96.891584 98.160909
|
||||
27 3712.0 85.601834 ... 91.397382 87.399253
|
||||
28 3840.0 84.874902 ... 90.798032 87.910967
|
||||
29 3968.0 91.954739 ... 90.859224 85.871877
|
||||
30 4096.0 93.401342 ... 92.372834 90.200084
|
||||
19 2688.0 84.108772 ... 90.102270 89.676257
|
||||
20 2816.0 82.916747 ... 83.074685 82.916747
|
||||
21 2944.0 82.646820 ... 83.198715 82.102191
|
||||
22 3072.0 82.420822 ... 86.978653 89.030036
|
||||
23 3200.0 81.012662 ... 92.888243 94.674553
|
||||
24 3328.0 83.371507 ... 84.995628 84.695641
|
||||
25 3456.0 82.773682 ... 91.304157 90.484366
|
||||
26 3584.0 86.623693 ... 95.249353 95.350361
|
||||
27 3712.0 83.317214 ... 88.797643 84.802499
|
||||
28 3840.0 84.356981 ... 91.739529 86.670843
|
||||
29 3968.0 93.361844 ... 86.911637 91.301109
|
||||
30 4096.0 88.592559 ... 84.840533 90.443212
|
||||
|
||||
[31 rows x 5 columns]
|
||||
</pre></div>
|
||||
</div>
|
||||
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 6 minutes 12.411 seconds)</p>
|
||||
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 6 minutes 7.444 seconds)</p>
|
||||
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-03-matrix-multiplication-py">
|
||||
<div class="sphx-glr-download sphx-glr-download-python docutils container">
|
||||
<p><a class="reference download internal" download="" href="../../_downloads/d5fee5b55a64e47f1b5724ec39adf171/03-matrix-multiplication.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">03-matrix-multiplication.py</span></code></a></p>
|
||||
|
@@ -371,7 +371,7 @@ to explore the <cite>triton/language/random</cite> folder!</p>
|
||||
<dd><p>Nitish Srivastava and Geoffrey Hinton and Alex Krizhevsky and Ilya Sutskever and Ruslan Salakhutdinov, “Dropout: A Simple Way to Prevent Neural Networks from Overfitting”, JMLR 2014</p>
|
||||
</dd>
|
||||
</dl>
|
||||
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 0.216 seconds)</p>
|
||||
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 0.116 seconds)</p>
|
||||
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-04-low-memory-dropout-py">
|
||||
<div class="sphx-glr-download sphx-glr-download-python docutils container">
|
||||
<p><a class="reference download internal" download="" href="../../_downloads/c9aed78977a4c05741d675a38dde3d7d/04-low-memory-dropout.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">04-low-memory-dropout.py</span></code></a></p>
|
||||
|
@@ -194,36 +194,36 @@ to download the full example code</p>
|
||||
<p class="sphx-glr-script-out">Out:</p>
|
||||
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>layer-norm-backward:
|
||||
N Triton Torch Apex
|
||||
0 1024.0 311.088617 99.497980 311.088617
|
||||
1 1536.0 351.085717 134.050910 341.333333
|
||||
2 2048.0 423.724127 159.067963 332.108094
|
||||
3 2560.0 465.454542 181.775141 330.322572
|
||||
4 3072.0 511.999982 191.501303 313.736171
|
||||
5 3584.0 551.384634 207.267476 310.527060
|
||||
6 4096.0 568.231237 218.939860 298.796351
|
||||
7 4608.0 498.162157 233.316456 289.507855
|
||||
8 5120.0 527.381977 240.469672 285.104413
|
||||
9 5632.0 542.843364 244.426754 290.683877
|
||||
10 6144.0 544.118087 250.349744 287.438593
|
||||
11 6656.0 532.479975 255.590406 286.279570
|
||||
12 7168.0 513.528374 257.147993 282.019678
|
||||
13 7680.0 486.332448 263.690977 282.699379
|
||||
14 8192.0 464.794337 262.143998 282.077471
|
||||
15 8704.0 416.127506 266.789264 285.377055
|
||||
16 9216.0 430.319054 272.394084 289.129410
|
||||
0 1024.0 311.088617 98.303995 303.407414
|
||||
1 1536.0 351.085717 133.083026 341.333333
|
||||
2 2048.0 420.102553 161.684218 334.367350
|
||||
3 2560.0 461.954908 182.314537 326.808501
|
||||
4 3072.0 511.999982 191.501303 317.793096
|
||||
5 3584.0 551.384634 207.768111 309.410081
|
||||
6 4096.0 568.231237 219.919464 296.096389
|
||||
7 4608.0 498.162157 232.336141 286.507772
|
||||
8 5120.0 525.128191 242.366855 284.444444
|
||||
9 5632.0 538.517949 243.107920 290.060087
|
||||
10 6144.0 542.117638 248.242431 286.322318
|
||||
11 6656.0 527.207907 256.000009 285.767438
|
||||
12 7168.0 507.469040 261.446807 287.678923
|
||||
13 7680.0 482.513091 261.076480 278.429013
|
||||
14 8192.0 461.521112 268.223740 287.438585
|
||||
15 8704.0 417.791980 267.130429 284.987724
|
||||
16 9216.0 430.319054 272.059034 288.751954
|
||||
17 9728.0 438.857162 280.278512 289.308559
|
||||
18 10240.0 447.650282 286.767793 288.112552
|
||||
19 10752.0 430.079980 246.935876 290.267711
|
||||
20 11264.0 427.746848 245.983625 288.204696
|
||||
21 11776.0 421.826879 249.227509 288.686414
|
||||
22 12288.0 421.302872 254.673582 295.207195
|
||||
23 12800.0 415.135142 253.465340 290.359162
|
||||
24 13312.0 411.181478 252.959629 290.443638
|
||||
25 13824.0 405.594132 257.190689 292.056329
|
||||
26 14336.0 394.568805 254.485198 288.402346
|
||||
27 14848.0 384.829370 256.922861 289.246765
|
||||
28 15360.0 374.253788 257.970599 287.550706
|
||||
29 15872.0 366.982663 262.347108 291.006885
|
||||
18 10240.0 445.217381 286.433562 290.496460
|
||||
19 10752.0 427.940303 246.464170 290.267711
|
||||
20 11264.0 428.424741 245.091565 286.676558
|
||||
21 11776.0 421.826879 249.447482 288.391833
|
||||
22 12288.0 419.504980 254.453844 294.617366
|
||||
23 12800.0 414.016170 253.674644 289.538159
|
||||
24 13312.0 412.242569 252.360194 289.653667
|
||||
25 13824.0 405.594132 256.991469 291.543045
|
||||
26 14336.0 397.761846 254.297107 286.481278
|
||||
27 14848.0 386.498925 257.479779 289.717061
|
||||
28 15360.0 376.932517 257.970599 288.000007
|
||||
29 15872.0 366.629453 262.708969 291.229369
|
||||
</pre></div>
|
||||
</div>
|
||||
<div class="line-block">
|
||||
@@ -477,7 +477,7 @@ to download the full example code</p>
|
||||
<span class="n">bench_layer_norm</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">save_path</span><span class="o">=</span><span class="s1">'.'</span><span class="p">,</span> <span class="n">print_data</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
|
||||
</pre></div>
|
||||
</div>
|
||||
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 2 minutes 14.015 seconds)</p>
|
||||
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 2 minutes 12.961 seconds)</p>
|
||||
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-05-layer-norm-py">
|
||||
<div class="sphx-glr-download sphx-glr-download-python docutils container">
|
||||
<p><a class="reference download internal" download="" href="../../_downloads/935c0dd0fbeb4b2e69588471cbb2d4b2/05-layer-norm.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">05-layer-norm.py</span></code></a></p>
|
||||
|
@@ -174,7 +174,7 @@
|
||||
|
||||
<div class="section" id="computation-times">
|
||||
<span id="sphx-glr-getting-started-tutorials-sg-execution-times"></span><h1>Computation times<a class="headerlink" href="#computation-times" title="Permalink to this headline">¶</a></h1>
|
||||
<p><strong>13:46.864</strong> total execution time for <strong>getting-started_tutorials</strong> files:</p>
|
||||
<p><strong>13:24.269</strong> total execution time for <strong>getting-started_tutorials</strong> files:</p>
|
||||
<table class="docutils align-default">
|
||||
<colgroup>
|
||||
<col style="width: 85%" />
|
||||
@@ -183,23 +183,23 @@
|
||||
</colgroup>
|
||||
<tbody>
|
||||
<tr class="row-odd"><td><p><a class="reference internal" href="03-matrix-multiplication.html#sphx-glr-getting-started-tutorials-03-matrix-multiplication-py"><span class="std std-ref">Matrix Multiplication</span></a> (<code class="docutils literal notranslate"><span class="pre">03-matrix-multiplication.py</span></code>)</p></td>
|
||||
<td><p>06:12.411</p></td>
|
||||
<td><p>06:07.444</p></td>
|
||||
<td><p>0.0 MB</p></td>
|
||||
</tr>
|
||||
<tr class="row-even"><td><p><a class="reference internal" href="02-fused-softmax.html#sphx-glr-getting-started-tutorials-02-fused-softmax-py"><span class="std std-ref">Fused Softmax</span></a> (<code class="docutils literal notranslate"><span class="pre">02-fused-softmax.py</span></code>)</p></td>
|
||||
<td><p>03:27.294</p></td>
|
||||
<td><p>03:21.471</p></td>
|
||||
<td><p>0.0 MB</p></td>
|
||||
</tr>
|
||||
<tr class="row-odd"><td><p><a class="reference internal" href="05-layer-norm.html#sphx-glr-getting-started-tutorials-05-layer-norm-py"><span class="std std-ref">Layer Normalization</span></a> (<code class="docutils literal notranslate"><span class="pre">05-layer-norm.py</span></code>)</p></td>
|
||||
<td><p>02:14.015</p></td>
|
||||
<td><p>02:12.961</p></td>
|
||||
<td><p>0.0 MB</p></td>
|
||||
</tr>
|
||||
<tr class="row-even"><td><p><a class="reference internal" href="01-vector-add.html#sphx-glr-getting-started-tutorials-01-vector-add-py"><span class="std std-ref">Vector Addition</span></a> (<code class="docutils literal notranslate"><span class="pre">01-vector-add.py</span></code>)</p></td>
|
||||
<td><p>01:52.927</p></td>
|
||||
<td><p>01:42.276</p></td>
|
||||
<td><p>0.0 MB</p></td>
|
||||
</tr>
|
||||
<tr class="row-odd"><td><p><a class="reference internal" href="04-low-memory-dropout.html#sphx-glr-getting-started-tutorials-04-low-memory-dropout-py"><span class="std std-ref">Low-Memory Dropout</span></a> (<code class="docutils literal notranslate"><span class="pre">04-low-memory-dropout.py</span></code>)</p></td>
|
||||
<td><p>00:00.216</p></td>
|
||||
<td><p>00:00.116</p></td>
|
||||
<td><p>0.0 MB</p></td>
|
||||
</tr>
|
||||
</tbody>
|
||||
|